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1 Introduction

In the studies of closed Riemann surfaces of genus g ≥ 2 the uniformization Theorem

plays a crucial role since it brings conformal and hyperbolic structures in one-to-one

correspondence. However, there exists a family of so-called flat metrics in the same

conformal class.

Each flat metric arises from a choice of charts away from a finite set of points so that

the transition functions are half-translations. Outside the marked points one can pull

back the flat metric to the surface. Due to the fact that the euclidean metric has been

studied for more than 2500 years, this concept is a natural one. However, according to

the Gauss-Bonnet Theorem the flat metric cannot be extended to the whole surface. In

the isolated points the metric is of cone type with cone angle kπ, k ≥ 3.

The flat metric defines a volume element on the surface. After scaling each chart one

again obtains an atlas of charts so that the transition functions are half-translations.

Therefore, one can define a flat metric with the scaled geometrical properties and a

scaled volume element. In hyperbolic geometry one normalizes the metric on a closed

surface X to curvature −1 which is equivalent to scaling the metric to total area 2πχ(X).

Since the flat metric is singular euclidean we cannot determine a normalization by cur-

vature. That is why we normalize each metric to total area 1.

For each flat metric on a Riemann surface there exists a hyperbolic metric in the same

conformal class. Unfortunately the correspondence between hyperbolic and flat metric

is hard to determine. It is generally impossible to decide whether two flat metrics are in

the same conformal class.

It is the goal of this work to investigate the geometry and dynamics of flat metrics and to

compare the structure of such metrics with the corresponding hyperbolic metrics. Since

a flat metric is locally euclidean, the local properties of flat metrics are well understood

whereas their behavior on large scales is less evident. It can be more easily investigated

on the universal cover with the lifted metric.

As the hyperbolic and the flat metric on the universal cover are quasi-isometric, the flat

metric shares various properties from coarse geometry with metrics of negative curva-

ture. For example, the growth rate of metric balls is exponential, and geodesic triangles

are uniformly thin. We can therefore compute the classic invariants of spaces of non-

positive curvature, i.e. volume entropy and metric boundaries of the universal cover.

One can define the Hausdorff dimension of the boundary. Due to the construction of

Patterson-Sullivan measures, volume entropy and Hausdorff dimension are closely re-

lated.

On a closed hyperbolic surface, the volume entropy is always 1 and the Hausdorff di-
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mension of the boundary of the universal cover is 1 as well.

This does not hold in the case of flat surfaces. The moduli space of flat metrics Qg is

the set of all closed flat surfaces of genus g and area 1, compare [Vee90]. We show that

volume entropy and Hausdorff dimension of the boundary of the universal cover, under

appropriate choice of the boundary metric, continuously depend on the point in Qg.

Theorem (Theorem 4.1, Corollary 4.2 ). The volume entropy and the Hausdorff dimen-

sion of the boundary are bounded from below by a positive constant.

A sequence of flat surfaces diverges in Qg if and only if the volume entropy and the

Hausdorff dimension of the boundary tend to infinity.

Finite sheeted branched coverings form an important concept in the theory of Rie-

mann surfaces. Since the investigated surfaces are endowed with a flat metric, we claim

compatibility of the covering with the metric. That means that covering space and base

space are flat surfaces and away from the branch points, the covering map is a local

isometry.

Theorem (Theorem 4.2). Let π : T → S be a branched flat finite-sheeted covering. The

volume entropy e(T̃ ,ΓT ) of T̃ is bounded by the inequality

e(T̃ ,ΓT ) ≤ (a(S) + b(T ))(e(S̃,ΓS) + 1)

where b(T ) is logarithmic in the combinatorics of the covering and inverse proportional

in the distance between the two closest branch points in T .

The same holds for the Hausdorff dimension of the Gromov boundary

Moreover, we construct a family of examples which show that the bounds are asymp-

totically sharp.

As another topic we investigate the asymptotic behavior of geodesic rays of flat metrics.

For each flat surface S = (X, dq) there is a unique hyperbolic metric σ on the Riemann

surface X in the same conformal class as dq. As the hyperbolic metric is Riemannian,

we can define the geodesic flow gt on the unit tangent bundle of X. gt acts ergodically

with respect to the Lebesgue measure of σ. Let v ∈ T 1X be a point in the unit tangent

bundle. The flow g : [i, j] → T 1X, t 7→ gt(v) in direction of this point defines a geodesic

arc in the unit tangent bundle. The arc projects to a geodesic arc ci,j on the surface.

We straighten ci,j with respect to the flat metric. In each homotopy class of arcs with

fixed endpoints there exists a unique length minimizing geodesic representative for the

flat metric. The length of this representative is called the flat length of the homotopy

class.
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We define the flat length of the homotopy class [ci,j] as a function Fi,j : T
1X → R+. The

family Fi,j forms a subadditive process. According to the Theorem of Kingman T−1F0,T

converges towards a constant function F a.e.

Theorem (Theorem 5.2). The volume entropy and the constant F are related.

e(S̃,ΓS) ≥ F−1

Furthermore, there is a unique length minimizing geodesic representative for the hy-

perbolic metric in any free homotopy class of closed curves. Such geodesic representatives

also exist for the flat metric. The flat length as well as the hyperbolic length of each free

homotopy class is defined as the length of the corresponding geodesic representative.

[Raf07] compared these quantities for each free homotopy class in his work. The hyper-

bolic metric of the surface admits a thick-thin decomposition. The hyperbolically thin

part of the surface is a disjoint union of annuli. Let Y be a component of the thick part.

Rafi defined the function λ(Y ) so that the following holds: Let [α] be a free homotopy

class of closed curves which can be realized in Y and which do not contain a multiple

of some boundary component of Y . Roughly speaking, the quotient of flat length and

hyperbolic length of [α] is comparable to λ(Y ).

Theorem (Theorem 5.3). Let S = (X, dq) be a closed flat surface of genus g ≥ 2. Let

σ be the hyperbolic metric on X which is in same conformal class as the flat metric.

Denote by (X>,X<) the thick-thin decomposition of (X,σ). Let Y be a connected com-

ponent of X> and denote by λ(Y ) the Rafi constant of Y . There exists a constant

A := A(χ(X)) > 0 which only depends on the topology of X such that

F ≥ Aλ(Y )

In addition we define a geodesic flow on a flat surface S. Each locally geodesic segment

which terminates at a cone point admits a one-parameter family of possible geodesic

extensions. Therefore, a definition similar to the one for Riemannian metrics on the unit

tangent bundle cannot be given.

That is why we have to make use of the universal cover S̃. We choose a metric on the

boundary of S̃. Let GS̃ be the set of all parametrized bi-infinite geodesics in S̃. The

geodesic flow gt acts as a reparametrization gtα(s) := α(t+s) on GS̃. Each parametrized

bi-infinite geodesic converges in positive and negative direction towards distinct limit

points on the boundary. Therefore, we can project GS̃ on ∂S̃ × ∂S̃ −△. The group Γ of

deck transformations acts equivariantly on both sets.

The geodesic flow gt acts on the fibers of the projection. We call a point in ∂S̃×∂S̃−△
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non-exceptional if any two geodesics with the same image arise from each other via

reparametrization. The points in the complement are called exceptional. The set of

exceptional points is countable and Γ-invariant. For any non-exceptional point we fix

a geodesic in the fiber. Using the gt action we define a R-parametrization of the fiber

in GS̃ and pull back Lebesgue measure ℓ from the real line. There exists a standard

technique for constructing an appropriate Γ-invariant measure ν̃ on ∂S̃ × ∂S̃ −△. ν̃ is

absolutely continuous with respect to the square of Hausdorff measure on ∂S̃. ν̃ is an

atom-free Radon measure. We define the product measure µ̃ = ν̃ × ℓ on GS̃ which is Γ-

and gt-invariant. The fibers of the exceptional points form a measure 0 set. µ̃ descends

to a positive finite quotient measure µ on the quotient space GS̃/Γ.
Since the action of the geodesic flow gt on GS̃ commutes with the Γ-action on GS̃, the
geodesic flow is properly defined as a µ- invariant action on GS̃/Γ. We show that gt acts

ergodically with respect to µ.

Finally, we investigate typical behavior. Let c be a locally geodesic arc S. We extend

c as much as possible in positive and negative direction with the property that the

extension is unique. Let cext be the extended arc which might be infinite. We estimate

the frequency F of a µ-typical geodesic passing through c.

Theorem (Theorem 5.4). There is a constant C(S) which depends on the geometry of

S but not on c such that the following holds:

A typical geodesic passes through c with a frequency F which is bounded from above and

below by

C(S)−1exp(−e(S̃,ΓS)l(cext)) ≤ F ≤ C(S)exp(−e(S̃,ΓS)l(cext))

Finally we deal with a different object on a flat surface, the group of orientation

preserving affine diffeomorphisms. Away from the singularities, each diffeomorphism

descends to a differentiable mapping U ⊂ R2 → R2 with constant derivative which we

interpret as a matrix A ∈ GL+(2,R). As the transition functions are half-translations,

A is independent of the choice of charts up to multiplication with ±id. Therefore, there

is a well-defined map of each affine diffeomorphism to its projectivized differential in

PGL+(2,R) = PSL(2,R). The image of the group of affine diffeomorphisms is the so-

called Veech group which is a non-cocompact fuchsian group. In case the Veech group

is a lattice, it exhibits dynamical properties on the underlying flat surface, see [MT02]

[HS06] for instance. For a typical flat surface the Veech group is trivial. However, there

are some well-studied examples of flat surfaces whose Veech groups are arithmetic lat-

tices or triangle groups, see [HS06]. It is still an open question which fuchsian groups

may appear as Veech groups of flat surfaces. For instance it is unknown whether there
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exists an infinite cyclic Veech group consisting of hyperbolic elements. There is a stan-

dard technique of finding Veech groups. For a flat surface S with large Veech group and

a finite set of points there exists a finite sheeted covering branching over his set. The

affine group of the covering surface is commensurable to the group of those affine diffeo-

morphisms on S whose periodic points contain the chosen set. Therefore, understanding

the periodic points is one way to investigate the behavior of the affine diffeomorphism

and might emerge as a tool of finding new Veech groups.

We investigate one of the most prominent examples of flat surfaces with non-trivial

Veech group, the family of Arnoux Yoccoz surfaces in all genera with a distinguished

affine diffeomorphism Φ. The Arnoux-Yoccoz diffeomorphism Φ is the only explicit ex-

ample of affine pseudo-Anosov diffeomorphisms where it is known that the whole Veech

group does not contain parabolic elements. The flat surface arises from a distinguished

polygon F ⊂ R2 with an appropriate identification of sides. F turns out to be a so-called

Markov partition for Φ. Hence we consider Φ as a mapping in coordinates of F ⊂ R2.

The expansion factor α of Φ is a pisot number i.e. an algebraic number with all complex

conjugates having absolute value less than 1.

We investigate periodic points using symbolic dynamics. Real numbers can be coded in

terms of so-called α-expansions, a technique similar to continued fraction expansions.

We code the vertical coordinate in the standard α-expansion and the horizontal one in a

slight variation called a generalized α-expansion. This expansion gives rise to a mapping

from F → {0, 1}N × {0, 1}N ∼= {0, 1}Z. The isomorphism is the concatenation.

Φ commutes with the right-shift on the bi-infinite words. Therefore, the canonical can-

didates for periodic points under Φ are the preimages of purely periodic sequences. The

standard α-expansion is well understood. It is injective. After choosing an appropriate

word metric, the coding map is Lipschitz. The image domain also is well-known and

there exist various results concerning periodic sequences.

Unfortunately these properties do not hold for the generalized α-expansion of the hori-

zontal coordinate. Therefore, we construct a finer coding, the Markov-expansion. The

Markov-expansion is again injective and Lipschitz. Since it is a refinement, there is a

canonical projection from the Markov expansion to the generalized α-expansion. How-

ever, after coding the vertical coordinate in terms of α-expansion and the horizontal one

in terms of Markov-expansion, it is difficult to determine the action of Φ. Investigation

of the interplay between both expansions of the horizontal coordinate leads to an explicit

description of the periodic points for the Arnoux Yoccoz-diffeomorphism.

There are already well-known descriptions of periodic points and their distributions for

general pseudo-Anosov mappings, see [Bow71].
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Our methods allow an explicit computation of periodic points. Furthermore, using the

pisot properties of α, we can show that the coordinates of periodic points meet number

theoretical conditions.

Theorem (Corollary 7.1). For all but a finite set of rational points y there is a periodic

point in F with vertical coordinate y. On the other hand, there is no such periodic point

for y an algebraic integer.

The number theoretical properties might turn out to be useful for determining certain

subgroups of the Veech groups when using branched covering constructions. For example

[HLM09] showed that in the case of genus g = 3 the Veech group is not virtually cyclic.

In their work they explicitly found a second pseudo-Anosov element Ψ.

Theorem (Proposition 7.3). There exist points which are periodic for Φ but not periodic

for the conjugate of Φ with Ψ.

Thus we construct Veech groups which still contain the original pseudo-Anosov up to

finite index but still have infinite index in the original Veech group.

The thesis is organized as follows. Section 2 provides background material for spaces

of non-positive curvature, i.e. for Cat(0) and Gromov δ-hyperbolic spaces. Standard

results and tools needed in the later context are mentioned. The visual boundary with

the Gromov metric is defined. We relate the Hausdorff dimension of this metric and

its Hausdorff measure to the volume entropy, using techniques from Patterson-Sullivan

theory. Readers who are familiar with these concepts can skip this section. Section 3

deals with the geometry of flat metrics. The basic facts are introduced. We mainly work

in the universal cover endowed with the lifted metric and we show that it is a metric

space of non-positive curvature. Except for section 3.4 the results are well-known.

In section 4 we study how the variation of a flat metric influences volume entropy and

Hausdorff dimension in Qg. Furthermore, we investigate how the quantities behave

under branched coverings. Section 5 deals with asymptotic behavior of geodesics on flat

surfaces. The asymptotic quotient of flat length and hyperbolic length of geodesic arcs

is investigated. Moreover, we construct the geodesic flow on flat surfaces. In the next

section we estimate the quantities for a family of examples which is a special kind of

so-called square tiled surfaces.

In Section 7 we introduce concepts from symbolic dynamics and compute periodic points

of the Arnoux-Yoccoz diffeomorphism.
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2 General constructions for spaces of non-positive curvature

2.1 Metric spaces and geodesics

Let (X, d) be a metric space. X is proper if and only if closed metric balls of finite radius

are compact. The distance between any two sets U, V ⊂ X is defined as

d(U, V ) := inf
u∈U,v∈V

d(u, v)

Let f : Y → X be some map and U ⊂ X some set.

We define the distance

d(f, U) := d(im(f), U)

A geodesic joining the points x, y in X is a mapping [x, y] : I = [a, b] ⊂ R → X such

that [x, y](a) = x, [x, y](b) = y and d([x, y](s), [x, y](t)) = |s− t| for all s, t ∈ I.

A geodesic ray is a map c : I = [a,∞) → X so that d(c(s), c(t)) = |s− t| for all s, t ∈ I.

A geodesic line is a map c : R → X such that d(c(t), c(s)) = |t− s|.
The space X is called geodesic if between any two points x, y ∈ X there exists a connect-

ing geodesic [x, y]. Let c : I → X, c′ : I ′ → X be geodesics. c′ is called a reparametriza-

tion of c if there exists an increasing bijective function r : I → I ′ so that c′(t) = c(r(t))

for all t ∈ A.

Let X be a geodesic metric space. X is uniquely geodesic if for any two geodesics c, c′

with the same endpoints, c is a reparametrization of c′.

A subset S of a geodesic metric space X is convex if any geodesic connecting two points

in S is entirely contained in S.

Convention: All considered metric spaces (X, d) are proper, geodesic and complete.

2.2 Cat(0)-structure

Let (X, d) be a metric space. We introduce the notion of comparison triangles, compare

[BH99, I Definition 1.10].

For three distinct points x, y, z ∈ X a geodesic triangle △(x, y, z) is a choice of three

geodesics [x, y], [y, z], [z, x]. x, y, z are the vertices of △(x, y, z). The vertices do not

entirely determine the triangle. However, various properties of △(x, y, z) depend on the

vertices but not on the choice of the connecting geodesics.

Let △(x, y, z) ⊂ X be a geodesic triangle. A triangle △c(xc, yc, zc), xc, yc, zc ∈ R2 in

the euclidean plane is called a comparison triangle if d(xc, yc) = d(x, y), d(yc, zc) =

d(y, z), d(zc, xc) = d(z, x). For any triangle in X, the triangle inequality ensures the

existence of a comparison triangle. Up to isometry, △c(xc, yc, zc) is uniquely defined by

the distance between the vertices.
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Definition 2.1. A space (X, d) is a Cat(0)-space if any triangle △(x, y, z) is thinner

than the comparison triangle △c(xc, yc, zc). To be precise, the following inequality is

satisfied.

d([x, y](s), [y, z](t)) ≤ d([xc, yc](s), [yc, zc](t)),∀s, t

Alexandrov introduced the following concept in geodesic metric spaces to measure

angles for geodesics issuing from a common point.

Let c, c′ : [0, T ] → X be geodesics with c(0) = c′(0). For t, t′ ∈ (0, T ] consider the

triangle △(c(0), c(t), c′(t′)). In the comparison triangle one can compute the euclidean

angle at c(0) which we abbreviate ∠c(t, t
′). The limit

∠A(c, c
′) := lim sup

t,t′→0
∠c(t, t

′)

is the so-called Alexandrov angle.

A Cat(0)-space has many of the properties which are well-known in euclidean space.

As the results are classical, we refer to [BH99, I Proposition 1.4, I Proposition 2.4, II

Proposition 8.2]:

Proposition 2.1. Let X be a Cat(0)-space.

• X is uniquely geodesic.

• Due to the properness of X, [x, y] : [0, T ] → X continuously depends on x, y in the

following manner: Let xi resp. yi be a sequence in X which converges towards x

resp. y. [xi, yi][0, Ti] → X uniformly converges to [x, y].

• A closed metric ball is a convex set.

• For every closed convex set S ⊂ X and for every x, there is a unique point sx ∈ S

such that d(sx, x) = d(x, S). The mapping πS : x 7→ sx has the following properties:

– The map πS does not increase distances.

– Let y be a point and x ∈ [y, πS(y)] some point on the geodesic connecting y

with πS(y). It follows that πS(x) = πS(y)

– Let x be a point and denote d := d(x, πS(x)). Let s ∈ S be some point and let

c := d(x, s)− d(x, πS(x)) ≥ 0. It follows that

d(s, πS(x)) ≤ 2
√

2dc+ c2

– Denote by ∠A the Alexandrov angle. The angle at the point of projection

satisfies.

∠A([x, πS(x)], [s, πS(x)]) ≥ π/2,∀x 6∈ S, s ∈ S − πS(x)
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• Let r : [0,∞) → X be a geodesic ray and x ∈ X be a point. There exists a unique

geodesic ray r′ so that r′(0) = x and the distance of r′ to r is bounded. More

precisely, there is a constant C so that for all t, d(r(t), r′(t)) < C. The uniqueness

implies that two different geodesic rays, having one point in common, drift apart.

2.2.1 Euclidean polyhedral complexes

One family of Cat(0)-spaces are uniquely geodesic euclidean polyhedral complexes.

A euclidean polyhedral cell C ⊂ Rn is the convex hull of a finite number of points

{p1 . . . pk}. The dimension of C is the dimension of the smallest m-plane containing C.

The interior of C is the interior of C as a subset of this plane.

Let H be a hyperplane in Rn so that the intersection F := C ∩H 6= ∅ is not empty. If

C lies in a closed half-space, bounded by H, then F is called a face of C. F is a proper

face if F 6= C. The dimension of F is the dimension of the smallest m′-plane containing

F . The interior of F is the interior of F in this plane.

Let x ∈ C be a point. The support supp(x) is the unique face containing x in its interior.

A shape is an isometry equivalence class of faces. We define a polyhedral complex and

follow [BH99, I Definition 7.37].

Definition 2.2. Let Ci, i ∈ I be a family of euclidean cells which correspond to a finite

number of shapes. Let X :=
⋃
(Ci, i), i ∈ I be the disjoint union of cells. Let K := X/ ∼

with respect to some equivalence relation. For each i, denote by pi the canonical mapping

pi : Ci →֒ X → K. K is called a euclidean polyhedral complex with a finite number of

shapes if and only if the following conditions are satisfied:

• The map pi, restricted to the interior of a face, is injective for each i.

• Assume that pi(x) = pj(x
′) for some i, j. There exists an isometry h : supp(x) →

supp(x′) such that for each y ∈ supp(x), y′ ∈ supp(x′) it follows that

h(y) = y′ ⇔ pi(y) = pj(y
′)

A euclidean polyhedral complex can be naturally endowed with the euclidean metric in

the interior of each cell which can be extended to a metric on K.

Proposition 2.2. A euclidean polyhedral complex K with a finite number shapes is a

Cat(0)-space if and only if K is uniquely geodesic.

Proof. [BH99, II Theorem 5.4]
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2.2.2 Boundary

Definition and topology Let (X, d) be a Cat(0)-space. We define the boundary ∂X as

equivalence classes of geodesic rays, together with an appropriate topology.

For details we refer to [BH99, II Section 8]. Denote

∂X := {r : [0,∞) → X, r geodesic ray}/ ∼

Here r1 ∼ r2 ⇔ ∃C : d(r1(t), r2) < C,∀t. Let x be a point and r a geodesic ray i.e a

boundary point. Since X is proper, due to Proposition 2.1, there exists a unique r′ ∼ r

such that r′(0) = x. For η ∈ ∂X and x ∈ X, we define [x, η] as the ray in the equivalence

class η issuing from x.

Let X := X ∪ ∂X. We endow X with the following topology: For any set U ⊂ X and

for each point x ∈ X let shx(U) ⊂ X , the U -shadow, be the set of points on the geodesic

rays r, issuing from x, which intersect U first:

shx(U) := {r(t) ∪ r, r ∈ ∂X : r(0) = x,∃0 ≤ t0 ≤ t : r(t0) ∈ U}

We define the basis of topology on X as all finite diameter open balls in X together with

all shadows of open sets U ⊂ X.

With respect to this topology, X is compact and ∂X is a closed subset of X .

We will often work on the boundary. Therefore, we define the boundary shadow:

∂shx(U) := ∂X ∩ shx(U)

The set of all boundary shadows of open sets U forms a basis of the topology on ∂X.

To compute neighborhoods on the boundary, the following Proposition is helpful.

Proposition 2.3. Let X be a Cat(0)-space and B := Bx(r) be a closed ball in X. B is

a closed convex set and therefore, there exists the natural projection πB : X → B which

is the closest point projection on X.

Let η ∈ ∂X be a boundary point and let [x, η] be the connecting geodesic.

The projection πB([x, η](t)) = [x, η](r) is constant for t > r.

We define the extended projection πB : X → B:

πB(y) :=

{

limt→∞ πB([x, y](t)) y ∈ ∂X

πB(y) y ∈ X

πB is a continuous map.

Proof. [BH99, II Proposition 8.8]

15



2.3 Gromov hyperbolic spaces

Cat(0)-spaces are, locally and globally, non-positively curved. Moreover, there is the

notion of coarsely negative curvature, the so-called Gromov δ-hyperbolicity. We refer to

[BH99, III Definition 1.1 ].

Definition 2.3. Let (X, d) be a metric space. A geodesic triangle △(x, y, z) ⊂ X is

called δ-slim if each point p ∈ [x, y] has distance at most δ to the set [y, z] ∪ [z, x]. A

metric space (X, d) is Gromov δ-hyperbolic if and only if each geodesic triangle is δ-slim.

Let X, Y be metric spaces. A mapping f : X → Y is a (K,L)-quasi-isometric

embedding for some K ≥ 0, L ≥ 1 if

L−1d(f(x1), f(x2))−K ≤ d(x1, x2) ≤ Ld(f(x1), f(x2)) +K,∀xi ∈ X

A quasi-isometric embedding is a quasi-isometry if there exists some constant C such

that d(y, f(X)) ≤ C,∀y ∈ Y .

Let f : X → Y be a (K,L)-quasi-isometry and Y be a δ-hyperbolic space. X is δ′-

hyperbolic for some constant δ′ which only depends on K,L and δ.

If K tends to 0 and L tends to 1, δ′ tends to δ.

In most cases the choice of K and L is not important, so we will skip them and denote

f as a quasi-isometry.

Let f : X → Y and g : Y → Z be quasi-isometries. The concatenation g ◦ f : X → Z is

a quasi-isometry as well.

Additionally in [BH99, I Section 8] the following Lemma is shown:

Lemma 2.1. Let (X, dX ), (Y, dY ) be metric spaces and let f : X → Y be a (K,L)-

quasi-isometry. There exists a (K ′, L′)-quasi-isometry g : Y → X and a constant C

such that

dX(x, g ◦ f(x)) ≤ C, dY (y, f ◦ g(y)) ≤ C,∀x ∈ X, y ∈ Y

Therefore, the property to be quasi-isometric is an equivalence relation on the set of

all metric spaces.

A (K,L)-quasi-isometric embedding c : I → X of a compact segment I ⊂ R is called a

(K,L)-quasi-geodesic. If I = [a,∞), c is a (K,L)-quasi-geodesic ray and if I = R, c is a

quasi-geodesic line.

It is shown in [BH99, III Lemma 1.11] that quasi-geodesics with the same endpoints are

uniformly close.
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Lemma 2.2. For any K,L, δ there is a constant λ(K,L, δ) such that any two (K,L)-

quasi-geodesics in a δ-hyperbolic space, connecting the same endpoints, have Hausdorff-

distance at most λ. Assume that δ is fixed. If K tends to 0 and L tends to 1, λ tends to

0.

One of the main tools in Gromov hyperbolic spaces is the Gromov product.

Let X be a metric space. For a fixed base point p ∈ X one defines:

(x · y)p :=
1

2
(d(x, p) + d(y, p)− d(x, y))

Proposition 2.4. Let X be a δ-hyperbolic metric space. The Gromov product has the

following properties:

i) The Gromov product is continuous in each factor.

ii) For x′, y′ let x ∈ [p, x′], y ∈ [p, y′]. Then (x′ · y′)p ≥ (x · y)p

iii) For x ∈ [p, y] it follows that (x · y)p = d(x, p)

iv) Let c : [0, t] → X be a geodesic. It follows

d(p, c) − 4δ ≤ (c(0) · c(t))p ≤ d(p, c)

v) (x · y)p ≥ min{(x · z)p, (y · z)p} − δ,∀x, y, z

Proof. The statements i)− iii) follow from the triangle inequality.

iv) is shown in [CP93, I Proposition 1.5] and v) is proved in [BH99, III Remark 1.21].

2.3.1 Boundary metric

On a Gromov hyperbolic space X one can define a boundary, together with a topology,

similarly to the definition of boundary of Cat(0)-spaces, compare [BH99, III Section 3 ].

In case X is a δ-hyperbolic, Cat(0)-space both definitions of boundary are equivalent,

[BH99, III Proposition 3.7].

For simplicity we assume that X is a δ-hyperbolic Cat(0)-space.

We will use the fact that X is a δ-hyperbolic space to construct a family of metrics on

the boundary. The topology, induced by any of the metrics, equals the original topology.

Denote by X the extension of X as described in section 2.2.2. Various properties of the

space X also hold in the extended space.
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Proposition 2.5. Let X be a δ-hyperbolic Cat(0)-space.

Recall that the boundary at infinity is defined as equivalence classes of geodesic rays.

For any two points η 6= ζ ∈ ∂X there exists a geodesic c such that the rays r+ :=

c(t)|[0,∞) , r− := c(−t)|(−∞,0] satisfy r+ ∈ η, r− ∈ ζ

Thus we have a notion of geodesics in X. Any triangle, with vertices in X, is 4δ slim.

Proof. The proof of the first part, which mainly uses an Arcelà Ascoli argument, can be

found in [BH99, III Lemma 3.2].

The second part is straight forward. We refer to [CP93, I Proposition 3.2].

The notion of Gromov product extends to the space X.

Definition 2.4. Let X be a δ-hyperbolic Cat(0)-space. For any points η, ζ ∈ ∂X let

si, ti ∈ R be sequences tending to infinity.

The Gromov product on the boundary is defined as

(η · ζ)p := lim
i
([p, η](si) · [p, ζ](ti))p

The existence of the limit and the independence of the sequences si, ti follows from Propo-

sition 2.4.

Proposition 2.6. Let X be a δ-hyperbolic, Cat(0)-space.

i) Let η, ζ ∈ ∂X. For all sequences of points xi ∈ X resp. yi ∈ X, which converge

towards η resp. ζ, it follows:

(η · ζ)p − 2δ ≤ lim inf
i

(xi · yi)p ≤ (η · ζ)p

ii) Let Y be a proper geodesic Cat(0)-space. Assume that there exists a quasi-isometry

f : X → Y .

f extends to a homeomorphism f∗ : ∂X → ∂Y .

iii) The Gromov product is a priori not continuous on the boundary.

Proof. iii) and the left inequality of i) are due to [BH99, III Remark 3.17].

ii) follows from [BH99, III Theorem 3.9].

It remains to show the right inequality of i). Let xi ∈ X resp. yi ∈ X be a sequence

of points which tends towards η ∈ ∂X resp. ζ ∈ ∂X. Let [p, xi] resp. [p, yi] be the

connecting geodesic. Due to the definition of the shadow and the uniqueness of geodesics

for all ǫ > 0 and all t, there exists a i0 such that for all i ≥ i0

d([p, xi](t), [p, η](t)) ≤ ǫ
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d([p, yi](t), [p, ζ](t)) ≤ ǫ

Therefore

([p, xi](t) · [p, yi](t))p ≥ ([p, η](t) · [p, ζ](t))p − 2ǫ

It follows that

(xi · yi)p ≥ (η · ζ)p − 2ǫ

and consequently

lim inf(xi · yi)p ≥ (η · ζ)p

For any Gromov hyperbolic space the Gromov product on the boundary is the main

tool for defining an appropriate boundary metric which is compatible with the topology

of the boundary.

Let X be a δ-hyperbolic space. X is also (δ + ǫ)-hyperbolic for any ǫ > 0. Denote

δinf (X) := inf
δ′

X is δ′-hyperbolic

We define the function

ξ : R+ → R+, ξ(δ) := 2
1
2δ

The following Proposition is crucial.

Proposition 2.7. Let X be a δ-hyperbolic space. For any point x ∈ X and for each

c ≤ ξ(δ) there is a metric dc,x on ∂X and a constant ǫ(c) < 1 which satisfies:

c−(η·ζ)x ≥ dc,x(η, ζ) ≥ (1− ǫ(c))(c−(η·ζ)x)

The metric dc,x is called a Gromov metric and (∂X, dc,x) the Gromov boundary of X.

Proof. [BH99, III Proposition 3.21]

Definition 2.5. Let X be a δ-hyperbolic space. Let x ∈ X be a point and δinf (X) be

defined as above. Denote

c :=
1

2
ξ(δinf (X))

By Proposition 2.7 the boundary metric

d∞,x := dc,x

exists.

It is a consequence of the triangle inequality that any two metrics dc,x, dc,x′ , with

respect to the same constant c but different base points x, x′, are bilipschitz.

In various situations the choice of metrics, up to bilipschitz equivalence, does not affect

the result. Therefore, we will often skip the index x and abbreviate dc := dc,x.
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2.4 Patterson-Sullivan theory and volume entropy

As we have a family of metrics dc,x on the boundary, we can define Hausdorff measure

and Hausdorff dimension on the boundary. Let x 6= x′ be points in X. The Gromov

metrics dc,x and dc,x′ are bilipschitz equivalent. Therefore, the Hausdorff dimensions of

the boundary, with respect to the metrics dc,x and dc,x′ , are equal.

We connect these quantities with the theory of Patterson-Sullivan measures. Patterson-

Sullivan measures have been constructed by [Pat76] for fuchsian groups and generalized

by Sullivan [Sul79] for groups of isometries acting properly discontinuously and freely

on a finite-dimensional hyperbolic space. Sullivan’s work led to the generalization by

Coornaert [Coo93] for groups of isometries Γ acting properly discontinuously and freely

on a δ-hyperbolic space X which is complete, proper and geodesic.

We will restrict ourselves to the case that the action of Γ is cocompact.

Let x0 ∈ X be a point. Denote by

Nx0(R) := |x0Γ ∩Bx0(R)|

the number of orbit points in the closed metric ball Bx0(R) of radius R about x0. The

volume entropy of Γ is defined as

e(X,Γ) := lim sup
R→∞

log(Nx0(R))

R

Convention: By entropy we always mean the volume entropy.

Due to the triangle inequality, e(X,Γ) is independent of x0. We will only make use

of the counting function to compute the entropy. Therefore, we skip the base point

and abbreviate N(R). Assume that e(X,Γ) is positive and finite. Since the quotient

is compact, one observes the following connection between volume growth and orbit

growth:

Lemma 2.3. Let Γ be a group of isometries acting properly discontinuously cocompactly

and freely on a metric space X so that the entropy e(X,Γ) is finite. Let ℓ be a Γ-invariant

non-zero Radon measure on X and let x0 ∈ X be a point. There exists some C > 0 such

that

C−1ℓ(Bx0(R))− C ≤ Nx0(R) ≤ Cℓ(Bx0(R)) + C

Proof. Since X is proper and since the group Γ acts discretely and freely, Nx0(R) is

finite for each R.

X/Γ is compact, hence for any point y, y′ ∈ X the distance d(y,Γy′) has a universal

upper bound D independent of y, y′.
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Choose some y0 ∈ supp(ℓ). Since the support is Γ-invariant, we can assume that

d(x0, y0) ≤ D.

Each point in Bx0(R) has distance at most D to an orbit point y ∈ Γy0. So Bx0(R)

can be covered by Nx0(R + 2D) balls of radius D. The centers of these balls are orbit

points of y0. Since the group Γ acts by isometries, all the balls are translates of the ball

By0(D). So the balls have the same measure C := ℓ(By0(D) > 0 with respect to ℓ.

ℓ(Bx0(R)) ≤ CNx0(R + 2D)

On the other hand, Γ acts discretely and freely. Therefore, there is some radius D > 0

so that the projection By0(D) → X/Γ is an embedding.

Around each orbit point y ∈ y0Γ ∩ Bx0(R −D −D) we can embed a disc of radius D.

By definition, all such balls are disjoint and contained in Bx0(R). They are translates

of the ball By0(D) under Γ. Therefore, we can estimate the measure

ℓ(Bx0(R)) ≥ ℓ(By0(D))Nx0(R−D −D)

Since y0 is in the support of ℓ, the set By0(D) has positive measure. We can enlarge C

so that ℓ(By0(D)) ≥ C−1.

We showed the that there exists some constant C such that

C−1ℓ(Bx0(R − 2D)) ≤ Nx0(R) ≤ Cℓ(Bx0(R+D +D))

Let r > 0 be some constant. It remains to show that there exists some constant C(r) > 0

such that the quantities Nx0(R) and Nx0(R + r) at most differ by C(r), independently

of R.

Nx0(R + r) ≤ C(r)ℓ(Nx0(R)) + C(r)

We choose C(r) := Nx0(2r + 2D). The claim holds for R < r + 2D.

Assume that R ≥ r + 2D.

Let x be a point in Γx0 with R < d(x, x0) < R + r. Let y be the point on the geodesic

[x, x0] of distance r+D to x. There exists a point x′ ∈ Γx0 of distance at most D to y.

Therefore

d(x′, x) ≤ d(x′, y) + d(y, x) ≤ R

The distance between x0 and x′ can be estimated by

d(x0, x
′) ≤ r + 2D

It follows that for each point x in Γx0 of distance at most R+ r to x0, there exists some

point x′ ∈ Γx0,∩Bx0(r+2D) of distance at most R to x. The number of such points x′
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is at most Nx0(r + 2D). Since Nx0(R) = Nx′(R), it follows that

Nx0(R + r) ≤ Nx0(r + 2D)Nx0(R) ≤ C(r)Nx0(R)

We recall the construction of Patterson-Sullivan measures. Rigorous computations

can be found in [Sul79, Section 1-3], [Coo93, Section 4-8].

We define the Poincaré series

gs(z0) :=
∑

z∈Γz0
exp(−sd(z0, z))

Proposition 2.8. Let X be a δ-hyperbolic space. Let Γ be a discrete group of isometries

acting freely on X and x0 ∈ X be some point.

For s > e(X,Γ), gs(x0) is finite, whereas for s < e(X,Γ), gs(z0) diverges. If Γ acts

cocompactly, gs(z0) also diverges for s = e(X,Γ).

Proof. [Coo93, Proposition 5.3, Corollary 7.3]

For s > e(X,Γ) one defines the following Radon measure νx,s on X

νs,x :=
1

gs(z0)

∑

z∈Γz0
exp(−sd(x, z))δz

where δz is the Dirac measure. For any x ∈ Γz0, νx,s is a probability measure. One

shows that for si ց e(X,Γ), νsi,x converges towards a Radon measure νx which is again

finite. As Γ acts cocompactly, gs diverges. Therefore, νx is supported on the boundary.

For more details compare [Coo93, Theorem 5.4]

As Γ is a group of isometries, νs,x satisfies the following invariance:

γ ∗ νs,γ(x) = νs,x

The limit measure νx meets the same invariance.

γ ∗ νγ(x) = νx

Theorem 2.1. Let X be a δ-hyperbolic Cat(0)-space and let Γ be a discrete group of

isometries acting cocompactly on X. Let dc,x be the Gromov metric on the boundary

with respect to some base c and some base point x ∈ X.

The Hausdorff dimension of the boundary coincides with e(X,Γ)
log(c) .

Furthermore, the Hausdorff measure exists and is absolutely continuous with respect to

νx. One can use the ergodicity of the action of Γ with respect to the measure class of νx

to show that both measures have to coincide up to a multiplicative constant.
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Proof. We refer to [Coo93, Theorem 7.7].

Recall that in Definition 2.5 we chose the base c for the Gromov metric dc,x as c :=
1
2ξ(δinf (X)) and called the resulting Gromov metric d∞,x.

Remark 2.1. With respect to the normalized Gromov metric d∞,x, the Hausdorff di-

mension on the boundary remains unchanged under scaling the metric on X.

The measure νx is not complete. For simplicity we can use a standard construction,

see i.e. [Rud87, I Theorem 1.36] to extend νx to a complete measure. From now on

we will, without stating explicitly, assume that we always take the completion of any

measure instead of the measure itself.

Radon-Nikodym derivative For distinct base points x, y, the resulting measures νx, νy

are absolutely continuous with respect to each other. In the later context we need to

estimate the difference of the two measures.

The diameter of X/Γ is defined as

diam := sup
x,y∈X

d(x,Γy)

Since Γ acts cocompactly, diam is bounded.

Lemma 2.4. Let νx, νy be Patterson-Sullivan measures. The difference between νx and

νy is bounded by the following inequalities. Let A be a measurable set.

exp(−e(X,Γ)d(x, y))νy(A) ≤ νx(A) ≤ exp(e(X,Γ)d(x, y))νy(A)

Furthermore, the measure of the whole space is bounded by the following inequality.

exp(−e(X,Γ)diam) ≤ νx(∂X) ≤ exp(e(X,Γ)diam)

Proof. The first inequality follows from the triangle inequality.

The second is a consequence of the fact that νγ(x)(γ(A)) = νx(A) and there exists some

x0 so that νx0(X) = 1.

For more accurate estimations we have to compute the Radon-Nikodym derivative.

Let X be a Cat(0)- space. By [BH99][II Lemma 8.18] the limit

b(x, y, η) := lim
t→∞

t− d([x, η](t), y)

exists. b(x, y, η) is the horospherical distance or Busemann distance with respect to η.
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Lemma 2.5. Let x0, x1 ∈ X be points in a δ-hyperbolic Cat(0)-space X. Let η ∈ ∂X

be a boundary point. There exists a constant C(δ), which only depends on δ, and a

neighborhood U ⊂ X of η so that for any y ∈ U ∩X it follows

|d(x0, y)− d(x1, y)− b(x0, x1, η)| < C(δ)

Assume that x1 is contained in the geodesic ray [x0, η]. For all ǫ > 0 there exists a

neighborhood Uǫ ⊂ X of η such that for all y ∈ Uǫ it follows:

|d(x0, y)− d(x1, y)− b(x0, x1, η)| < ǫ

Proof. The first claim is shown in [Coo93, Lemma 2.2]. It remains to show the second

claim. The set

U2ǫ := shx0(Bx1(ǫ))

is an open neighborhood for η. Let y be a point in Uǫ. The geodesic [x0, y] has distance

at most ǫ to x1. Therefore

|d(x0, y)− d(x1, y)− d(x0, x1)| ≤ 2ǫ

Since in this special case the Busemann distance satisfies

d(x0, x1) = b(x0, x1, η)

the claim is proved.

Corollary 2.1. The Radon-Nikodym derivative can be estimated by

exp(−e(X,Γ)(b(x0, x1, η) + C(δ))) ≤ dνx0

dνx1

(η) ≤ exp(−e(X,Γ)(b(x0, x1, η)− C(δ)))

If x1 ∈ [x0, η] it follows that:

dνx0

dνx1

(η) = exp(−e(X,Γ)b(x0, x1, η)) = exp(−e(X,Γ)d(x0, x1))

Remark 2.2. If X is a Cat(κ)-space, κ < 0, it is well-known, see [BM96, section 1.1]

for instance, that
dνx0

dνx1

(η) = exp(−e(X,Γ)b(x0, x1, η))

24



3 Geometry of flat metrics

We introduce the geometry of flat surfaces. For rigorous computations we refer to [Str84],

[MT02] and [Min92].

Let X be a closed Riemann surface of genus g ≥ 2 which admits a natural holomorphic

cotangent bundle T ′X. A holomorphic quadratic differential q on X is a holomorphic

section of the bundle T ′X ⊗X T ′X. Let q be a non-zero quadratic differential and let Σ

be the set of zeros of q. It is a consequence of the Riemann-Roch Theorem that the sum

of the zeros, counted with multiplicity, equals 4g − 4. For any point x ∈ X −Σ one can

choose a simply connected neighborhood U and
√
q, one branch of the root of q in U ,

which is a holomorphic 1-form. For any point y ∈ U there is a path c in U connecting

x with y. We define φ : U → C, φ(y) :=
∫

c

√
q. Since

√
q is holomorphic and U simply

connected, the integral is independent of the chosen path. φ is a locally biholomorphic

map which we take as a chart.

Such charts form an atlas on X −Σ with the property that the transition functions are

of the form z 7→ ±z + c due to the choice of the root. After identifying C with R2 we

can pull back the flat metric in each chart and obtain a flat metric on X − Σ. About a

zero of q we take a small disk D where q is of the local form k+2
2 zkdz2 and subdivide D

into sectors i2π/k ≤ arg(z) ≤ (i+ 1)2π/k.

The integral of
√
q, along the points in each sector, defines a biholomorphic mapping

onto a half circle in C. At each point ς ∈ Σ the metric is locally isometric to k + 2 half

circles which are glued at the boundary in clockwise order.

For any point x ∈ X we call a neighborhood standard if it is isometric to a finite union

of euclidean half discs glued along the boundary. If x is a regular point, each standard

neighborhood is isometric to a euclidean disc.

Consequently, the flat metric on X−Σ can be extended to a metric dq on X which is a

Figure 1: The horizontal line segments at a regular point and at a singularity for k=4 resp. 8.

singular cone metric with cone angle (k + 2)π at each zero of q. The metric dq is called

a flat. We denote S = (X, dq) as a flat surface.

By construction, the metric dq defines the topology of the underlying Riemann surface

X.
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The length of a curve c, with respect to the flat metric, equals

lq(c) =

∫

c
|√q|

The area ℓq of a quadratic differential is the area of the flat metric it defines. When we

scale q with a positive number λ, the metric scales with
√
λ. We normalize the quadratic

differential such that it has area one.

A straight line segment on S − Σ is defined as the pull-back of a straight line segment

on R2 = C in each chart. A straight half-line emanating from one singularity is called

a seperatrix. A straight line segment which emanates from one singularity and ends at

another is called a saddle connection. With respect to the flat metric one can define the

angle in the following manner:

Let x ∈ S be a point. Recall that a standard neighborhood of U of x is isometric to a

finite number n ≥ 2 of half discs, isometrically glued along the boundary.

The boundary of the standard neighborhood is a topological circle. We choose an ori-

entation of the boundary.

Definition 3.1. Let c1, c2 be straight line segments, issuing from x. Let U be a standard

neighborhood of x. The metric at x is cone with cone angle nπ ≥ 2π. The complement

U − c1∩ c2 consists of two connected components U1, U2 which are isometric to euclidean

circle sectors with angle ϑi, i = 1, 2 possibly greater than 2π. We measure the flat angle

∠x(c1, c2) which is the sector angle at U1 or U2 due to the choice of the orientation. ϑ

takes values in [0, nπ).

It is shown in [Str84, Theorem 8.1] that local geodesics on S are concatenations of

straight line segments. The points of transition are singularities, and there is some

constraint on the euclidean angle of the in- and outgoing straight line segments.

Lemma 3.1. A path c : [0, T ] → S is a local geodesic if and only if it is continuous

and a sequence of straight lines segments outside Σ. In the singularities ς = c(t) the

consecutive line segments make angle, measured in the flat metric, at least π with respect

to both boundary orientations.

∠ς(c|[t,t+ǫ] , c|[t−ǫ,t]) ≥ π

Due to the fact that local geodesics are characterized by local properties, each local

geodesic can be infinitely extended in both directions.

Proposition 3.1. Let S be a flat surface and c : [0, T ] → S a local geodesic. There

exists a locally geodesic line c′ : R → S which, restricted to the interval [0, T ], equals c.
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Local geodesics are uniquely defined by their free homotopy class with fixed endpoints.

Proposition 3.2. In any homotopy class of arcs with fixed endpoints there exists a

unique local geodesic which is also length-minimizing. Furthermore, for any closed curve

there exists a length-minimizing local geodesic in its free homotopy class.

Proof. [Str84, Corollary 18.2]

Let S be a flat surface and c, c′ be local geodesics issuing from a common point x.

Since both of them are locally of the form of two straight line segments, one can compute

the euclidean angles ∠x(c, c
′) and ∠x(c

′, c) with respect to some boundary orientation.

The Alexandrov angle equals min{π,∠x(c, c
′),∠x(c

′, c)}.

Definition 3.2. A flat cylinder of height h and circumference c in S is an isometric

embedding of [0, c] × (0, h)/ ∼, (0, t) ∼ (c, t) into S. We call a cylinder maximal if it

cannot be extended.

The boundary of a maximal flat cylinder is a union of saddle connections, see [MT02,

Lemma 1.6].

Remark 3.1. By the Gauss-Bonnet Theorem, for any smooth metric on a closed surface

of genus ≥ 2, the integral over the curvature is negative. On the other hand, outside the

zeros the metric is flat. So intuitively the curvature is concentrated in the singularities.

3.1 The universal cover

Let X be a closed Riemann surface of genus g ≥ 2. We consider the universal cover X̃,

a topological disc, together with the Deck-transformation group Γ.

We will make use of the Jordan curve Theorem.

Proposition 3.3. Let α : S1 →֒ R2 be a simple closed curve. The complement R2 − α

consists of two connected components which are both bounded by α.

Assume that X is endowed with a flat metric S = (X, dq). dq can be lifted to a flat

metric dq on the universal cover X̃ . We call S̃ = (X̃, dq) the flat universal cover of S.

S is a complete and proper space. The flat universal cover S̃ = (X̃, dq) is a complete

proper metric space as well. An arc on S̃ is geodesic if and only if its projection to S

is a local geodesic. Since in any homotopy class of arcs with fixed endpoints on S there

exists a unique length-minimizing local geodesic, S̃ is a uniquely geodesic metric space.

Finally, the projection π : S̃ → S is a local isometry. Consequently, each element γ ∈ Γ

of the Deck transformation group is an isometry as well.
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3.2 Comparison with the natural hyperbolic metric

It is a result of the uniformization Theorem that for any flat surface there exists a natural

hyperbolic metric σ on X which is in the same conformal class as dq.

Both the flat universal cover as well as the hyperbolic universal cover are geodesic metric

spaces. The Deck transformation group acts properly cocompactly by isometries with

respect to both metrics. Therefore, we can apply the Švarc-Milnor Lemma.

Lemma 3.2. Let X be a geodesic metric space. Suppose that a group Γ acts properly,

cocompactly and isometrically on X. Then Γ is finitely generated.

Choose a base point x ∈ X. The map

Γ → X, γ 7→ γx

is a quasi-isometry with respect to a word metric on Γ.

Proof. In [BH99, I Proposition 8.19] one finds an accessible proof as well as references

to the original work.

Consequently, the flat and the hyperbolic metric on the universal cover are quasi-

isometric.

Furthermore, both metrics define the same topology of the underlying Riemann surface.

We will show that S̃ is a Gromov hyperbolic Cat(0)-space.

The Poincaré disc is a Gromov hyperbolic space. That is why the universal cover,

endowed with the flat metric, is Gromov hyperbolic as well.

3.3 Non-positive curvature of the universal cover

Let S = (X, dq) be a closed flat surface of genus g ≥ 2. Since the metric is locally flat,

we cannot expect local properties of spaces with negative curvature. Therefore, from

the viewpoint of hyperbolic geometry, being Cat(0) is the best we can achieve.

Recall that a polyhedral complex with a finite number of shapes is a disjoint union of

cells which are isometrically glued along some faces. Up to isometry, the number of cells

is finite. For a precise characterization we refer to Definition 2.2.

We show that S as well as the universal cover S̃ are polyhedral complexes with a finite

number of shapes.

We make use of triangulations of the surface S which are explicitly described in [Vor96,

Section 2], [KMS86].

Let Σ be the set of singularities on S. A triangulation T of S is an isometry from

an euclidean polyhedral complex to S so that each cell is a euclidean triangle. Each
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0-dimensional face is a point ς ∈ Σ.

The number of cells has an upper bound which only depends on the topology of S and

on the set of vertices V .

Proposition 3.4. For each flat surface S there exists such a triangulation.

Proof. We refer to [BS07, Proposition 12] and [MS91, section 4].

Proposition 3.5. Let S be a flat surface. The flat universal cover (S̃, dq) is a uniquely

geodesic polyhedral complex with a finite number of shapes and therefore, by Proposition

2.2, it is a Cat(0)-space.

Proof. We showed that S is a polyhedral complex with a finite number of shapes. The

polyhedral structure of S lifts to a polyhedral decomposition of the universal cover with

an infinite number of cells. Each cell on S̃ is a lift of a cell of S. Since the covering

projection is a local isometry, the number of shapes is finite.

We showed that the flat universal cover S̃ is a proper δ-hyperbolic Cat(0)-space which

is quasi-isometric to the Poincaré disc.

We compute δ explicitly in geometric terms of S̃.

We need the Gauss Bonnet formula for quadratic differentials which is extensively de-

scribed in [Hub06, Proposition 5.3.3]:

Let S be a flat surface. Let P ⊂ S be a compact topological subsurface whose boundary

consists of a finite union of locally geodesic arcs. For each boundary point x ∈ ∂P , we

define ϑ as follows:

Choose a small standard neighborhood of x in S. Since the boundary of P is piecewise

locally geodesic, the two outgoing boundary segments at x are straight line-segments

s1, s2. We define ϑ(x) as the flat angle of s1, s2 at x, measured at the circle sector inside

of P .

At each point x in
◦
P let n(x) be the vanishing order of the quadratic differential. The

curvature term at x is defined as

κ(x) := −πn(x)

Therefore, for each point x ∈ X which is not a zero of the quadratic differential q, the

curvature κ(x) is 0.

Proposition 3.6. Let S be a flat surface and let P be a compact subsurface of S with

piecewise locally geodesic boundary. Denote by χ(P ) the Euler characteristic of P . Then

2πχ(P ) =
∑

x∈
◦

P

κ(x) +
∑

x∈∂P
(π − ϑ(x))
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We mainly deal with the special case that P is a polygon with piecewise geodesic

boundary.

Corollary 3.1. Let S be a flat surface and P ⊂ S be a simply connected compact

polygon with piecewise geodesic boundary. Let xi be the points on the boundary such that

the angle ϑ(xi) 6= π and let ςj be the zeros in the interior of P of order nj. Then

2π = −
∑

j

njπ +
∑

i

(π − ϑ(xi))

Let S be a singular flat surface which is not necessarily closed and let Σ be the set of

singularities on S. We define the packing density ρ.

ρ(S) := sup
x∈S

d(x,Σ)

If S is compact, ρ(S) is finite. The flat universal cover π : S̃ → S is a flat surface, and

consequently the packing density is also defined on S̃. Any point ς̃ ∈ S̃ is a singularity

if and only if π(ς̃) ∈ S is a singularity as well. Furthermore, geodesics in the universal

cover project to local geodesics in the base space. Since lifts of local geodesics are again

geodesics, it follows:

ρ(S) = ρ(S̃)

Proposition 3.7. S̃ is δ-hyperbolic with δ = 2ρ(S). There exist triangles in S̃ which

are not ρ(S)/2-slim. If S has area 1, there is a lower bound on ρ(S) which only depends

on the topology of S.

Proof. Let △(x̃1, x̃2, x̃3) be a triangle in S̃. S̃ is uniquely geodesic and therefore, the two

geodesics emanating from a point x̃i might coincide for some time but after spreading,

they remain disjoint. Denote by ỹi the point at which [x̃i, x̃j ] and [x̃i, x̃k] start spreading

apart. The interior P of the triangle is either empty or a topological disc bounded by

△(ỹ1, ỹ2, ỹ2), see Figure 2.

If P = ∅, the triangle is a tripod, consequently it is 0-slim.

It suffices to show that △(ỹ1, ỹ2, ỹ3) is 2ρ(S)-slim. At ỹi the two emanating geodesics

are locally straight line segments which spread apart. The flat angle, measured inside

P̃ , satisfies ϑ(ỹi) > 0.

Assume there is a singularity ς̃ in P . By Corollary 3.1, κ(ς̃) ≤ −π. Furthermore, each

point in the interior has at most curvature 0 and so

∑

x̃∈
◦

P

κ(x̃) ≤ −π.
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Figure 2: The geodesics which correspond to the triangle of the x̃i might share some arc until

they spread apart. We call the spread point ỹi.

The boundary consists of three geodesics. At each point x̃ in the interior of each geodesic,

ϑ(x̃) ≥ π hence π − ϑ(x̃) ≤ 0.

So the positive curvature terms can appear at most in the corners of the triangle. But

in each corner ỹi one can have a positive amount of at most π which is attained if and

only if ϑ(ỹi) = 0. This contradicts the Gauss Bonnet formula.

We showed that P cannot contain a singularity.

By definition, each ball of radius ρ(S) contains a singularity.

Recall that [ỹ1, ỹ2] ⊂ S̃ is a closed convex set and S̃ is Cat(0)- space. Denote by

πỹ1,ỹ2 : S̃ → [ỹ1, ỹ2]

the closest point projection, see Proposition 2.1. Let x̃ ∈ [ỹ1, ỹ2] be a regular point

which is not an endpoint. Choose a standard neighborhood U of x̃ which is isometric to

a euclidean disc. By the fact that the projection is locally orthogonal, π−1
ỹ1,ỹ2

(x̃)∩U is a

straight line segment which is perpendicular to [ỹ1, x]. We can extend this line segment

to a geodesic half-line c̃ which starts at x̃ and points inside P . We parametrize c̃ such

that c̃(0) = x̃.

Consider the disc Bt := Bc̃(t)(t). One observes that Bt′ ⊂ Bt, t
′ < t. As c̃ points inside

P , the intersection of P and Bt is not empty.

Let be ǫ > 0 be so small that 2ǫ + 4
√

ǫρ(S) + 3ǫ2 < d(x̃,Σ) and let t0 be chosen in a

way that the distance of Bt0 to the set of singularities Σ satisfies

ǫ < d(Bt0 ,Σ) < 2ǫ
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By definition t0 < ρ(S)− ǫ.

The closure Bt0 is a closed disc and therefore convex. It can be slightly thickened to an

open euclidean disc B′
t of radius t0 + ǫ. The point x̃ is contained in ∂Bt0 . In a small

neighborhood of x̃, [ỹ1, ỹ2] is a straight line segment which is tangent to Bt0 ⊂ B′
t. By

convexity of Bt0 , the line segment [ỹ1, ỹ2] intersects Bt0 only at x̃.

Especially

πỹ1,ỹ2(c̃(t0)) = x̃

There exists a singularity ς̃ with t0 ≤ d(c̃(t0), ς̃) ≤ t0 + 2ǫ. ς cannot be contained in the

interior of P . Let g := [x̃, c̃(t0)] ∗ [c̃(t0), ς̃ ] be the piecewise geodesic arc which has to

intersect the triangle △(ỹ1, ỹ2, ỹ3) at some point ỹ.

We want to show that ỹ 6∈ [ỹ1, ỹ2].

If ỹ ∈ [ỹ1, ỹ2] observe that

t0 = d(c̃(t0), x̃) = d(c̃(t0), [ỹ1, ỹ2]) ≤ d(c̃(t0), ỹ) ≤ t0 + 2ǫ

and so,

d(ς̃ , ỹ) ≤ 2ǫ

Moreover, by Proposition 2.1

d(x̃, ỹ) ≤ 2
√

4ǫ(t0 + 2ǫ) + 4ǫ2 ≤ 4
√

ǫρ(S) + 3ǫ2

We deduce

d(ς̃ , x̃) ≤ 2ǫ+ 4
√

ǫρ(S) + 3ǫ2

But we chose ǫ so small that such a singularity does not exist.

Consequently, ỹ is contained in the geodesics [ỹ2, ỹ3] ∩ [ỹ1, ỹ3] and therefore

d(x̃, [ỹ2, ỹ3] ∩ [ỹ1, ỹ3]) ≤ d(x̃, ỹ) ≤ 2t0 + 2ǫ ≤ 2ρ(S)

We showed that each regular point on [ỹ1, ỹ2] has distance at most 2ρ(S) to the other

two geodesics. Since regular points are dense, this holds for each point on [ỹ1, ỹ2].

Therefore, each triangle is 2ρ(S) slim.

We have to show that there exists a triangle which is not ρ(S̃)/2 slim. Recall that

by definition of the packing density there is a ball of radius ρ(S̃) in S̃ which does not

contain a singularity. This ball is isometric to a euclidean disc. One can inscribe a

maximal euclidean equilateral triangle and compute that it is not ρ(S)/2 slim.

Finally, we show that for a flat surface S of area 1 there is a lower bound on ρ(S) which

only depends on the genus of S.
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Let ςi, 1 . . . n be the set of singularities in the flat surface S. Let niπ be the cone angle

at ςi. Recall that by Riemann Roch Theorem

∑

(ni − 2) = 4g − 4

Let ǫ > 0. Around each singularity ςi one can choose a disc of radius

r =

√

1
∑

i niπ
− ǫ

The volume of the union of the discs is at most
∑

i r
2niπ < 1. Therefore, there exists

a point in the complement of the discs. This point has distance at least r to each

singularity. Therefore ρ(S) ≥ r. Since ni ≥ 3 for each i, the constant r has a lower

bound which only depends on the genus.

3.4 Asymptotic rays

The following fact concerning geodesic rays in the Poincaré disc is classical: Two geodesic

rays with the same endpoint on the boundary converge towards each other exponentially

fast.

We investigate the behavior of geodesic rays in the flat universal cover π : S̃ → S of a

closed flat surface S. S̃ is quasi-isometric to the Poincaré disc and the map extends to

a homeomorphism between the topological boundaries. Consequently, the boundary of

the flat universal cover is a topological circle.

The following Proposition is well-known:

Proposition 3.8. Let S be a closed flat surface and S̃ be the flat universal cover of S.

Let α̃1, α̃2 be geodesic lines in S̃. Assume that α̃1 and α̃2 have finite Hausdorff distance,

but there is some constant c > 0 such that d(α̃1(t), α2) > c,∀t.
It follows that the projections of α̃i to the flat surface S are closed curves which are freely

homotopic to core curves of the same maximal flat cylinder.

Proof. [MS85, Theorem 1]

The converse also holds. Let α1, α2 be locally geodesic core curves of the same maximal

flat cylinder on a flat surface S so that α1 is not a reparametrization of α2. One can

choose complete lifts α̃i of αi in the universal cover S̃. The geodesic lines α̃i have finite

Hausdorff distance but do not converge towards each other.

It was shown by Masur [Mas86, Theorem 2] that flat cylinders always exist.

Proposition 3.9. Each closed flat surface S of genus g ≥ 2 contains a countable set of

maximal flat cylinders.
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Therefore, on each flat universal cover S̃ of a closed flat surface S of genus g ≥ 2

one finds infinitely many pairs of geodesic lines which tend towards the same boundary

points but do not approach.

However, on the boundary of the flat cover S̃ we can choose a Gromov metric and define

the corresponding positive finite Hausdorff measure. With respect to the Hausdorff

measure let η ∈ ∂S be a typical point and let α̃, β̃ be two geodesic rays with the same

positive endpoint η. We will show that the lines α̃, β̃ eventually coincide in positive

direction.

We need some criterion for the non-typical boundary points which we call quasi-straight.

In this section we define the quasi-straight points and describe some properties. The

methods are highly motivated by [DLR09]. The fact that quasi-straight points form a

set of measure 0 will be shown in section 5.3.

Let S̃ be the universal cover of a closed flat surface S. Let α̃ be a parametrized geodesic

line in S̃. The complement S̃ − α̃ consists of two connected components S̃±. For each

point α̃(t) we choose a standard neighborhood U . U − α̃ consists of two connected

components U± so that U i ⊂ S̃i, i ∈ ±.

We choose the orientation in a way that ϑ+ resp. ϑ− measures the flat angle

∠α̃(t)( α̃|[t−ǫ,t] , α̃|[t,t+ǫ])

inside of U+ resp. U−.

Definition 3.3. Let α̃ be a geodesic line.

• α̃ is called quasi-straight if there is some i ∈ ± so that

∑

t>0

(ϑi(α̃(t))− π) < ∞

• We call a boundary point η ∈ ∂S̃ a quasi-straight point if there is a quasi-straight

geodesic line which tends to η in positive direction.

• The set of quasi-straight points is denoted as str∂.

Let α̃ be a geodesic line. At each regular point α̃(t) the angle satisfies ϑi(α̃(t))−π = 0.

At each singularity the angle is bounded, ϑi(α̃(t)) < ∞. Therefore, the sum, restricted

to a compact set A ⊂ R, is finite.

Consequently, a geodesic line α̃ is quasi-straight if and only if each reparametrization of

α̃ is quasi-straight.
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Since the choice of S̃+ is arbitrary, we assume that for any quasi-straight geodesic line

the angle ϑ+ is bounded
∑

t>0

(ϑ+(α̃(t))− π) < ∞

Lemma 3.3. Let α̃ be a parametrized geodesic line which is not quasi-straight and let

S̃+ be a component of S̃ − α̃. Let η ∈ ∂S̃ be the endpoint in positive direction of α̃.

There exists a sequence of times ti which tends to infinity and a sequence of geodesic

lines β̃i ∈ S̃+ ∪ α̃ which remain on one side of α̃ and share exactly one point α̃(ti) with

α̃. Precisely,

β̃i ∩ α̃ = α̃(ti)

Furthermore, let ηi,+ resp. ηi,− be the endpoints of β̃i in positive resp. negative direction.

Both endpoints ηi,j , j ∈ ± tend towards η.

Proof. The geodesic line α̃ is not quasi-straight. Therefore, there is an increasing se-

quence of times ti > 0 such that the angle ϑ+(α̃(ti)) is strictly greater than π. This

is only possible if α̃(ti) is a singularity. Since the set of singularities is discrete, the

sequence ti tends to infinity.

Let U be a standard neighborhood of the point α̃(ti). Denote by U+ := U ∩ S̃+ the

circle sector in S̃+. By definition, the angle at α(ti) in U+ is strictly greater than π. We

can locally choose two line segments c̃1, c̃2 which issue from α̃(ti) in the interior of U+

and form an internal angle at least π. The concatenation c̃1 ∗ c̃2 is a geodesic which only

shares α̃(ti) with α̃. It can be extended to a geodesic line β̃i. Due to the uniqueness of

geodesics, β̃i cannot hit α̃ outside α̃(ti), consequently β̃i ⊂ S̃+ ∪ α̃.

Recall that the visual boundary ∂S̃ consists of equivalence classes of geodesic rays.

Let

ηi,+ := β̃i(t)
∣
∣
∣
[0,∞])

, ηi,− := β̃i(−t)
∣
∣
∣
[0,∞)

be the endpoints of β̃i in ∂S̃. It remains to show that the sequence ηi,j , j ∈ ± converge

towards η, the positive endpoint of α̃. The topology on the boundary is the topology of

each Gromov metric. We choose a Gromov metric dp̃,c with base point p̃ := α̃(0) and

some constant c > 0.

It suffices to show that

limi(ηi,j · η)p̃ = ∞, j ∈ ±

We make use of the following observation:

Let s0 < t0 ∈ R so that
∑

t∈(s0,t0)
(ϑ+(α̃(t))− π) ≥ π

35



Let x̃ ∈ S̃+ be a point in S̃+. We claim that, up to reparametrization, one of the two

geodesics [α̃(s0), x̃], [x̃, α̃(t0)] coincides with α̃ on a subsegment of α̃|[s0,t0].
Assume that the geodesics [x̃, α̃(t0)] and [x̃, α̃(s0)] both do not share a subsegment with

α̃|[s0,t0]. Then the interior of the triangle △(α̃(t0), α̃(s0), x̃) violates the Gauss Bonnet

formula as, by definition of s0, t0, the interior angle at the line segment α̃|[s0,t0] is too

large.

Therefore, [α̃(s0), x̃] coincides with α̃ on the interval [s0, s
′], for some s′ > s0 or [α̃(t0), x̃]

coincides with α̃ on the interval for some [t′, t0], t′ < t0, up to reparametrization.

Recall that
∑

t>0

(ϑ+(α̃(t))− π) = ∞

Up to removing the first elements of the sequence ti, we can assume that

∑

t∈(0,ti)
(ϑ+(α̃(t))− π) ≥ π,∀ti

We can choose a sequence si, so that 0 ≤ si ≤ ti, limi si = ∞ and

∑

t∈(si,ti)
(ϑ+(α̃(t))− π) ≥ π

Let x̃ ∈ β̃i be a point on β̃i.

The geodesic [α̃(ti), x̃] is a segment of β̃i and therefore no subsegment of [α̃(ti), x̃] of

positive length can coincide with a subsegment of α̃. So, the geodesic which connects x̃

with α̃(si) necessarily coincides with α̃ along some interval α̃|[si,s′].
Consequently, the concatenation of [p̃, α̃(si)] = α̃|[0,si] with [α̃(si), x̃] is a geodesic. We

deduce

(x̃ · α̃(ti))p̃ = (x̃ · α̃(ti))α̃(si) + si ≥ si

Therefore, the Gromov product of ηi,j, j ∈ ± and η is at least si

(ηi,j · η)p̃ ≥ si, j ∈ ±

Since the sequence si tends to infinity, we can estimate the Gromov product

lim
i
(ηi,j · η)p̃ = ∞, j ∈ ±

Since the Group of Deck transformations Γ acts by isometries and therefore preserves

angles, the set of parametrized quasi-straight geodesic lines is Γ-invariant. Consequently,

the set of quasi-straight boundary points is Γ-invariant as well.
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Proposition 3.10. Let S̃ be the flat universal cover of a closed flat surface S.

i) Let α̃1, α̃2 be parametrized geodesic lines with the same positive endpoint η.

Assume that α̃1 is not quasi-straight.

Then there are times r, s ∈ R so that α̃1(s+ t) = α̃2(r + t) for all t > 0.

ii) Let η be a quasi-straight point. Any geodesic line with positive endpoint η is quasi-

straight.

Proof. We show i) first:

Since geodesic rays are uniquely defined by their endpoints either α̃1, α̃2 are disjoint or

there are times r, s ∈ R so that α̃1(s+ t) = α̃2(r + t) for all t > 0.

Assume that α̃1 and α̃2 are disjoint. Denote by S̃+ the connected component of S̃ − α̃1

containing α̃2. Let C be the connected component of S̃+ − α̃2 which is bounded by

α̃1, α̃2, see Figure 3. Let ζ be the negative endpoint of α̃2 which might coincide with

Figure 3: β̃ is in S̃+ which is marked gray and C ⊂ S̃+ the dark gray part. The distance of ζ

to η is larger than the distance of η to both endpoints of β̃. Consequently, both rays β̃± have to

leave C. But they intersect α̃2 at most once.

the negative endpoint of α̃1. Since the boundary of S̃ is a topological circle, we can

parametrize the boundary at infinity of S̃+ by an arc starting at the negative endpoint

of α̃1 and ending at the positive endpoint η. By Lemma 3.3 there is some geodesic line

β̃ ⊂ S̃+ which shares one point α̃(t0) with α̃1 such that both endpoints of β̃ are closer

to η than to ζ with respect to the parametrization of the boundary at infinity of S̃+.

Therefore, both endpoints of β̃ are disjoint from the boundary at infinity of C. We

parametrize β̃ such that β̃(0) = α̃1(t0). Therefore, β̃(0) does not lie on α̃2.

The geodesic rays β̃+(t) := β̃(t)
∣
∣
∣
[0,∞)

and β̃−(t) := β̃(−t)
∣
∣
∣
[0,∞)

emanate from α̃1(t0)
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and therefore start in C. Since both endpoints are outside the boundary at infinity of

C, both rays have to leave C. Therefore they intersect α̃2 what violates the fact that

geodesics are unique.

We deduce that α̃1 and α̃2 are not disjoint.

To show ii) observe that a reparametrization of the geodesic line α̃1 is not a quasi-

straight line if and only if α̃1 is not quasi straight either. Consequently, for any not

quasi-straight boundary point η each geodesic line with positive endpoint η is not quasi-

straight either.

Remark 3.2. Recall that the boundary of S̃ is defined as equivalence classes of geodesic

rays. We call a geodesic ray r̃ quasi-straight if the corresponding boundary point is

quasi-straight. Let r̃, r̃′ be geodesic rays in the same equivalence class η. If the η is not

quasi-straight, the rays r, r′ eventually coincide.

3.5 Concatenation of compact geodesics and intersections of closed curves

Let c be a compact locally geodesic arc on a closed flat S and assume that ς, the positive

endpoint of c, is a singularity. There exists a one-parameter family of possible local

extensions of c.

We make use of this feature to show that for any local geodesics c, c′, so that the positive

endpoint of c and the negative endpoint of c′ are a singularities, we find some local

geodesic g which first coincides with c and eventually coincides with c′.

Proposition 3.11. Let S be a closed flat surface. Let c, c′ be parametrized locally

geodesic arcs on S so that c ends at a singularity ς and c′ issues from some singu-

larity ς ′. There is a local geodesic g so that g first passes through c and eventually passes

through c′. The length of g is bounded from above by l(g) < Cl(S) + l(c) + l(c′). The

constant Cl(S) only depends on the flat surface S.

We need the following technical facts:

Lemma 3.4. Let S be closed a flat surface of genus g ≥ 2 and x ∈ S be a point. Let

θ be an outgoing direction at ς. Let ∠ς be the flat angle at ς with respect to a choice

of orientation. For any ǫ there exists a singularity ς which emanates from x so that

∠x([x, ς], θ) ≤ ǫ.

Proof. We refer to [Vor96, Proposition 3.1].

Lemma 3.5. Let S be a flat surface and let ς ∈ S be a singularity. There exist 4 saddle

connections s1, . . . , s4 emanating from ς with the following property:
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Let c be a local geodesic with endpoint ς. The concatenation of c with at least one si is

again a local geodesic.

Proof. Let kπ ≥ 3π be the total angle at ς. Let s1 be some saddle connection emanating

from ς. With respect to some orientation we define an angle ∠ς at ς. Let si, i = 2 . . . 4 be

consecutive saddle connections such that ∠ς(si, si+1) ∈
[
2π
3 , 3π4

]
, i = 1 . . . 3. By Lemma

3.4 such saddle connections exist.

Since the total angle is kπ ≥ 3π we observe that

kπ − 2π > ∠ς(s4, s1) ≥
3

4
π

Let c be some incoming locally geodesic line segment. To show that the concatenation

of c and some saddle connection si is a geodesic, it suffices to show that ∠ς(si, c) ≥
π,∠ς(c, si) ≥ π. Since

∠ς(c, si) = kπ − ∠ς(si, c)

it suffices to show that there exists some si so that π ≤ ∠ς(c, si) ≤ (k − 1)π.

But we chose the sequence si in a way that we can always ensure the existence of such

a saddle connection.

A further tool in the universal cover are shadows of singularities. Shadows have already

been defined in section 2.2.2.

Lemma 3.6. Let S̃ be the universal cover of a flat surface and let x̃ 6= ς̃ be points in S̃.

We require that ς̃ is a singularity. The shadow ∂shx̃(ς̃) contains an open subset of the

boundary. It is a closed set.

Proof. Let [x̃, ς̃ ] be the geodesic connecting x̃ with ς̃. Let ∠ς̃ measure the flat angle at

ς̃ with respect to some orientation.

Let I be the subinterval of directions at ς̃ such for each θ ∈ I the angle satisfies

π ≤ ∠ς̃([x̃, ς̃ ], θ) ≤ 2π

As the cone angle at ς is at least 3π, it follows that π ≤ ∠ς̃(θ, [x̃, ς̃ ]).

Let c̃ be a ray issuing from ς̃ in direction I. The concatenation [x̃, ς̃ ] ∗ c̃ is a geodesic.

We can choose a standard neighborhood U of ς̃. The rays which issue from ς̃ in direction

of I sweep out a circle sector of U of circular angle π. We choose an open subset V of

this sector.

By construction, any geodesic from x̃ to a point ỹ ∈ V passes through ς̃. By the

construction of the topology, ∂shx̃(V ) ⊂ ∂shx̃(ς̃) is an open subset of the boundary ∂S̃.

It remains to show, that ∂shx̃(ς̃) is a closed subset of ∂S̃. Denote by D := Bx̃(d(x̃, ς̃))
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the closed disc with center x̃ which contains ς̃ on the boundary.

Recall the closest point projection πD : ∂S̃ → D, see Proposition 2.5. A boundary

point η ∈ ∂S̃ is mapped to [x̃, η](d(x̃, ς̃)), the intersection of the boundary of D with the

geodesic connecting the center of D̄ and η.

Therefore

∂shx̃(ς̃) = ∂S̃ ∩ π−1
D̄

(ς̃)

Since the closest point projection is a continuous map, the shadow is necessarily a closed

set.

Finally, we need some criterion for closed local geodesics α on S, to ensure that each

complete lift of α in the flat universal cover is not quasi-straight.

By definition of a flat cylinder C, there exists a core curve c which is locally geodesic

and does not pass through any singularity. Therefore, at each point c(t) the angle of the

ingoing and outgoing ray is exactly π, independent of the choice of orientation.

The converse also holds:

Lemma 3.7. Let S be a closed flat surface and let α be a, not necessarily simple, closed

local geodesic. Let α̃ be a complete lift of α in the flat universal cover. α is freely

homotopic to a core curve of a flat cylinder if and only if at one side of α̃ the flat angle

is π at each point.

Proof. We refer to [DLR09, Lemma 17].

Proof of the Proposition. Let c, c′ be geodesic arcs on S so that c ends at a singularity ς

and c′ issues from ς ′. We have to show that there exists a local geodesic g of uniformly

bounded length which first passes through c and eventually through c′.

We first show the existence of such a connecting local geodesic g. Let α be a closed local

geodesic in S which is not freely homotopic to a simple closed curve.

We claim that there exists a local geodesic g which first passes through c and then

through α.

Take a complete lift α̃ of α in the universal cover. We claim that α̃ is not quasi straight.

Let S̃± be the components of S̃ − α̃.

By Lemma 3.7, there is a point p̃+ = α̃(t+) so that the angle ϑ+(p̃) at p̃, measured inside

S̃+, satisfies ϑ+(p̃) > π. Moreover, there is a point p̃− = α̃(t−) so that ϑ−(p̃−) > π.

α̃ is preserved by a cyclic subgroup < γα >< Γ of the Deck transformation group. Up

to replacing γα by γ2α, we can assume that γα preserves S̃+.

It follows that

ϑ+(γkα(p̃+)) = ϑ+(p̃+),∀k

40



ϑ−(γkα(p̃−)) = ϑ−(p̃−),∀k

Consequently α̃ is not quasi-straight. Moreover, the geodesic line α̃′(t) := α̃(−t) is not

quasi-straight either.

We also choose a lift c̃ : [0, T ] → S̃ of c. The shadow shc̃(0)(c̃(T )) contains an open subset

of the boundary. The visual metric boundary of the hyperbolic plane and the Gromov

boundary of the flat metric are homeomorphic and the Deck transformation group Γ

acts on both boundaries in same topological way. It is well-known that each element

in a cocompact Fuchsian group acts with north-south dynamics on the boundary of the

Poincaré disc and that the attracting fixed points are dense, see i.e. [Kat92].

Therefore, up to translating α̃ with an element γ ∈ Γ, we can assume that the endpoints

of α̃ are in the interior of ∂shc̃(0)(c̃(T )). Let η be the positive endpoint of α̃. The geodesic

ray [c̃(0), η] has to pass through c̃ first. Since α̃ is not quasi-straight, the geodesic ray

[c̃(0), η] and the line α̃ eventually coincide along a subray of α̃.

Analogously let ζ be the positive endpoint of the geodesic line α̃′ which is the negative

endpoint of α̃. The geodesic ray [c̃′(0), ζ] passes through c̃′. Moreover, α̃′ and [c̃(0), ζ]

eventually coincide.

We constructed a geodesic g̃1 in S̃ which first passes through c̃ and eventually coincides

with a subray of α̃. We truncate g̃1 to a compact segment so that g̃1 eventually coincides

with subsegment of α̃ of positive length and ends at a preimage of α(0). The projection

of g1 := π(g̃1) is a local geodesic in S which first passes through c and eventually through

the closed curve α. The endpoint of g1 is α(0). In the same manner one can construct

a local geodesic g2 which begins in c′ and which passes through α′(t) := α(−t). The

endpoint of g2 is also α(0). The concatenation of the local geodesics g := g1 ∗ g−1
2 is

an arc which first passes through c and eventually through c′. Outside the point of

transition g1 ∗ g−1
2 , is a local geodesic. At α(0) the arc g1 ∗ g−1

2 locally coincides with α

and is therefore locally geodesic as well.

It remains to show that we can choose such a local geodesic g with uniformly bounded

length. We choose a set of saddle connections si on the flat surface S with following

property:

Any local geodesic whose endpoint is a singularity can be concatenated with some saddle

connection si to an extended local geodesic. The number of singularities on S is finite and

by Lemma 3.5 at each singularity it suffices to choose 4 saddle connections. Therefore,

the total number of such chosen saddle connections is finite. For each pair of saddle

connections si, sj, we construct the local geodesic gi,j which first passes through si and

eventually through sj. Since there is only a finite number of such pairs, the length of

gi,j is bounded from above by a constant Cl(S).
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For any two geodesic arcs c, c′ there are two saddle connections si, sj such that the

concatenation c ∗ si and sj ∗ c′ is a local geodesic. So g := c ∗ gij ∗ c′ is also a local

geodesic of length

l(c ∗ gij ∗ c) ≤ Cl(S) + l(c) + l(c′)

Corollary 3.2. Let S be a closed flat surface. Let x ∈ S be a point and s be a saddle

connection. There exists a local geodesic c starting at x which passes through s. The

length of c is bounded by l(c) ≤ diam(S) + Cl(S) + l(s).

Proof. There is some local geodesic connecting x with a singularity ς of length at most

diam(S). As explained above, one finds a local geodesic connecting [x, ς] with s.

We will use Cl(S) as a universal constant for the flat metric.

Finally, we discuss the intersections of closed local geodesics on flat surfaces. Let (X, d)

be a closed surface endowed with a metric d which is either a hyperbolic metric or a flat

metric.

Let [α] be a free homotopy class of closed curves in X. We define:

ld([α]) := min
α′∈[α]

ld(α
′)

Since in each free homotopy class of closed curves, there exist length-minimizing geodesic

representatives αd the minimum is attained:

ld([α]) = ld(αd)

If d is a flat metric the representative αd is not necessarily unique.

Analogous let [c] be a homotopy class of arcs with fixed endpoints in X.

ld([c]) := min
c′∈[c]

ld(c)

In any such homotopy class there exists a unique length-minimizing geodesic represen-

tatives cd.

ld([c]) = ld(cd)

A useful property of hyperbolic metrics is the following: Let α, β be closed curves on a

orientable closed topological surface X of negative Euler characteristics and let [α], [β] be

their free homotopy classes. The geometric intersection number i([α], [β]) is the minimal

number of intersection points of α′, β′ where α′ ∈ [α], β′ ∈ [β]. With respect to any

hyperbolic metric σ on X, in [α],[β] there are unique geodesic representatives ασ, βσ.
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The number of intersection points of ασ, βσ equals the geometric intersection number of

the corresponding free homotopy classes.

On flat surfaces the following analogon holds:

Lemma 3.8. Let α, β be closed curves on a flat surface S and αq, βq be a choice of locally

geodesic representatives in the free homotopy class. If the number of intersection points

of αq, βq is bigger than i([α], [β]), the local geodesics αq and βq share some arcs which

start and end at singularities. We also allow degenerated arcs which are singularities.

Proof. Assume that αq and βq have more points in common than i(α, β). Either αq and

βq share some arc or there is a bigon bounded by an arc in αq and βq. This bigon lifts to

a geodesically bounded bigon in the universal cover. Since Cat(0)-spaces are uniquely

geodesic, this is impossible. So αq,βq share some arc. As local geodesics in flat surfaces

are straight line segments outside the singularities, two local geodesics having some arc

in common can drift apart at most at singularities. So they can share at most arcs with

singularities as start- and endpoints.

The Lemma shows that it is possible to homotope αq and βq slightly away from their

common saddle connection such that the length only changes by an arbitrary small

amount and the number of intersections of the homotoped curves is minimal.

3.6 Decomposition of flat surfaces

3.6.1 Removing long cylinders

In this section we show same standard facts about decompositions of flat surfaces. Most

of the concepts can be found in [MS91, Section 5].

The following Lemma is due to [MS91, Lemma 5.1, Lemma 5.2].

Lemma 3.9. Let S be a flat surface and π : S̃ → S the flat universal cover. Let x̃ ∈ S̃

be a regular point. Take D̃ a disc of radius r and center x̃ which does not contain a

singularity. Let D̃′ be the subdisc of radius r/2 and center x̃. Assume that D̃′ does not

embed into S.

Then π(x̃) lies in a flat cylinder, which has circumference at most r and height at least
√

3
4r.

Proof. We only sketch the proof.

Since D̃′ does not contain a singularity and does not embed, there are two points in D̃′

which lie in the same Γ-orbit. Take the two closest points and let c̃ be the connecting

geodesic in D̃′. c̃ does not pass through a singularity and therefore does not change
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direction. So it projects to a simple closed local geodesic. As D̃ is a euclidean disc, one

can transport c̃ in direction of the normal bundle. One can proceed at least until one

reaches the boundary of D̃. The projection of this variation is a flat cylinder. Using

euclidean geometry one computes that the height of this cylinder is at least
√

3
4r.

From Lemma 3.9 one easily deduces:

Lemma 3.10. Let S be a closed flat surface of area 1 and genus g ≥ 2. Let ΣS be

the set of singularities on S. There exists some uniform constant cheight such that the

following holds:

i) Each point x ∈ S with d(x,ΣS) >
√

4
3cheight is contained in a maximal flat cylinder

of height at least cheight.

ii) Any two maximal flat cylinders of height at least cheight are either disjoint or equal.

Proof. We refer to [MS91, Theorem 5.3]

Let S be a closed flat surface of area 1 and genus g ≥ 2. Let
⋃

Ci be the disjoint union

of all maximal flat cylinders Ci each of height at least cheight. By Lemma 3.10,
⋃

Ci

contains all points which are of distance at least
√

4
3cheight to each singularity. Since

the core curves of different maximal flat cylinders are simple, disjoint and pairwise not

freely homotopic, the number of such cylinders is bounded from above by a constant

which only depends on the topology of S.

For each such cylinder Ci we choose C
∗
i ⊂ Ci the closed central subcylinder of Ci so that

Ci − C∗
i consists of two flat cylinders both of height

cheight
3 . Let

⋃
Sj := S −⋃i C

∗
i be

the complement of the cylinders.

Definition 3.4. We call
⋃

Sj the thin-cylinder decomposition of S.

Proposition 3.12. Let S be a closed flat surface of area 1 and let
⋃

Sj be the thin-

cylinder decomposition of S.

Each connected component Sj is an open subsurface with locally geodesic boundary. The

boundary is disjoint from the singularities.

The diameter of Sj is bounded from above by some constant cdiam which only depends

on the topology of S.

Proof. Let Ci be the maximal cylinder in the homotopy class of C∗
i . By construction of

C∗
i , each point in S −⋃i Ci is of distance at most

√
4
3cheight to a singularity.

Each connected component of Ci − C∗
i is a flat cylinder of height

cheight
3 and of circum-

ference at most c−1
height as the area of Ci is at most 1 and the height of Ci is at least
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cheight. Therefore, each component of Ci − C∗
i is of diameter at most

cheight
3 + c−1

height.

Moreover, the boundary of each component of Ci − C∗
i contains a singularity.

Consequently, the distance of each point in S−⋃C∗
i to a singularity is uniformly bounded

by a constant which only depends on cheight. The number of singularities on S is bounded

from above by a constant which only depends on the topology of S. So, the diameter

of each connected component Sj ⊂ S − ⋃C∗
i is bounded from above by some uniform

constant.

To show that Sj is geodesically bounded, one observes that each boundary component

is the geodesic core curve of some cylinder Ci.

⋃

j Sj is obtained from S by removing disjoint annuli. No core curves of different

removed annuli are freely homotopic in S. Therefore, each subsurface Sj is of negative

Euler characteristic.

Lemma 3.11. Let Sj ⊂ S be a component of the thin-cylinder decomposition of a closed

surface S of genus g ≥ 2 and area 1.

Let α be some essential closed curve in Sj which might be freely homotopic to a boundary

component. There exists some locally geodesic representative αq ⊂ S in the free homotopy

class of α which is contained in Sj.

Proof. Assume first that α is freely homotopic to the multiple of some boundary com-

ponent. Each boundary component of Sj is the core curve of some cylinder Ci and there

exists a geodesic core curve of Ci in Sj .

Assume next that α is not freely homotopic to the boundary. α cannot not be realized

disjointly from Sj as otherwise α were in the free homotopy class of the multiple of some

boundary component. Therefore, the geodesic representative αq of α intersects Sj.

It remains to show that each geodesic representative does not intersect the boundary of

Sj. Let βq be a boundary component of Sj which is the locally geodesic core curve of

some cylinder Ci. By definition i(αq, βq) = 0. By Lemma 3.8 two intersecting locally

geodesic closed curves, which are freely homotopic to disjoint curves, intersect each other

at least at some singularities. Since βq does not contain any singularity αq is disjoint

from each boundary component of Sj.

Lemma 3.12. Let S be flat surface of genus g ≥ 2 and area 1. Denote by
⋃

Sj the

thin-cylinder decomposition of S and let cheight be the constant as in Lemma 3.10.

Then, for each closed curve α ⊂ S of length less than cheight there exists a length min-

imizing representative αq of the free homotopy class [α] which is a contained in some

subsurface Sj.
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Proof. We can assume that α is length-minimizing in its free homotopy class of closed

curves and therefore locally geodesic. Let Cj be a maximal cylinder which contains a

component of the complement S − ⋃Sj . Let β be a geodesic core curve of Cj. Cj

is isometric to a flat cylinder and α a local geodesic. If α intersects β then it has to

cross through Cj and has length at least cheight, which is impossible. Therefore, α is

freely homotopic to some curve which is disjoint from the core curves of all cylinders

and therefore can be homotoped in some subsurface Sj .

By Lemma 3.11, there exists a geodesic representative αq in the free homotopy class of

α which is contained in Sj.

3.6.2 Length of simple closed curves in the hyperbolic metric and the Rafi

thick-thin decomposition

Finally, we compare the length of simple closed curves with respect to the flat and

hyperbolic metric in the same conformal class.

Let S = (X, dq) be a closed flat surface of genus g ≥ 2. Let (X,σ) be the hyperbolic

metric in the same conformal class as dq.

Let [α] be a free homotopy class of closed curves in X. We recall the notation

l∗([α]) := min
α′∈[α]

li(α
′), ∗ = q, σ

Since in each free homotopy class of closed curves, there exist a length-minimizing

geodesic representative α∗, ∗ = q, σ the minimum is attained:

l∗([α]) = l∗(α∗), ∗ = q, σ

The length lq([α]) can be bounded by the length lσ([α]).

Proposition 3.13. Denote by f the function

f : R+ → R+, x 7→ 1

2
x exp

(x

2

)

Let S = (X, dq) be a closed flat surface of genus g ≥ 2 and area 1. Let (X,σ) be the

hyperbolic metric in the same conformal class.

Let [α] be a free homotopy class of a simple closed curve. The length lq([α]) can be

estimated by lσ([α]).

lq([α]) ≤ f(lσ([α]))

Proof. The proof uses extremal length. We refer to [Mas85, Corollary 3].

46



Remark 3.3. The converse does not hold: There exists a family of flat surfaces Si =

(Xi, dq,i) of genus g and a sequence of simple closed local curves αi ∈ Si so that

limi lq,i([αi]) = 0. The length of the corresponding hyperbolic geodesic representatives

lσ,i([αi]) in the hyperbolic metric is bounded from below by a positive constant.

For details we refer to the family of examples in [Raf07, Section 5].

In his work [Raf07] compared the length of simple closed local geodesics in terms of the

hyperbolic resp. the flat metric.

The following facts concerning the geometry of hyperbolic surfaces are standard:

Lemma 3.13. Let (X,σ) be a finite-volume hyperbolic surface with cusps.

i) Around any simple closed local geodesic ασ there exists a neighborhood which is an

equidistant convex collar. The distance from the boundary to the locally geodesic

core curve is bounded from below by a function r(lσ(ασ)) which is independent from

the surface (X,σ). r is decreasing and unbounded.

ii) There exists some small ǫ > 0 which only depends on the topology of X with the

following property:

Let X< ⊂ X be the set of points with injectivity radius of at most ǫ. By the

Margulis Lemma, X< is a disjoint union of annuli. Each connected component is

convex. We call X> := X−X< the thick part of the surface. The diameter of each

connected component of X> is bounded from above by a constant which again only

depends on the topology of X.

iii) There exists a maximal collection of pairwise disjoint non-peripheral not free-

homotopic simple closed curves in the hyperbolic surface (X,σ) with following prop-

erties:

The length of each curve is bounded from above by a constant which only depends

on the Euler characteristic χ(X). Each connected component in the complement

is homeomorphic to a 3-punctured sphere, a so-called pair of pants. Such a de-

composition by curves of uniformly bounded length is called a Bers-short pants-

decomposition.

iv) Let ǫ be the constant from ii) and let (X>,X<) be the ǫ thick-thin decomposition of

X. There exists a Bers-short pants decomposition αi of X so that the core curve

of each ǫ-thin component is part of the pants decomposition. Let Y ⊂ X> be a

component of the thick part. Each pants curve αi is either disjoint from Y or

contained in Y . Let αi ⊂ Y be such a pants curve. There exists a second curve
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βi ⊂ Y that intersects αi essentially. The length of βi is bounded from above by

some uniform constant.

Proof. Since the statements are classic, we only refer to the references

i) The so-called Collar Lemma, was shown in [Kee74].

ii) We choose ǫ smaller than the constant of the Margulis Lemma which only depends

on the topology of X. The fact that X< is a disjoint union of annuli can be found

in [Thu80], [BP92].

iii) The existence of a short pants decomposition can be found in [Ber85].

iv) Let (X>,X<) be the ǫ thick-thin decomposition. The core curves αi of each com-

ponent of the thin part are of length at most 2ǫ. The core curves can be extended

to a Bers short pants decomposition.

Let αi ⊂ X> be a pants curve in the thick part. The existence of a short inter-

secting curve βi ⊂ X> was shown in [MM00], see also [Raf07, Section 3.1].

Let ǫ be the Margulis constant as in Proposition 3.13. Let S = (X, dq) be a flat surface

and σ the corresponding hyperbolic metric on the Riemann surface X which is in same

conformal class as dq.

With respect to the hyperbolic metric σ and the Margulis constant ǫ, let (X>,X<)be

the thick thin decomposition and let Y be a connected component of the thick part X>.

There is a unique subsurface Yq in the homotopy class of Y which has locally geodesic

boundary with respect to the flat metric dq so that for each boundary curve of Y there

is a unique q-geodesic representative in Yq.

Yq might be degenerated, so it might be a graph. Nevertheless, let α be a simple closed

curve which can be homotoped into Y . At least one locally geodesic representative in

the flat metric αq is entirely contained in Yq.

Assume that Y is not a topological pair of pants. We define λ(Y ), the q-size of Y , as the

flat length of the shortest essential non-peripheral simple closed local geodesic on Yq.

If Y is a topological pair of pants, λ(Y ) is defined as the maximal flat q-length of

boundary components.

Proposition 3.14. Let S = (X, dq) be a closed flat surface and σ the hyperbolic metric

on X in the same conformal class as dq. There exists some constant c > 0, which only
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depends on the topology of X, such that for any non-peripheral simple closed curves α, β

in Y it follows that:

c−1λ(Yq)lσ([α]) < lq([α]) < cλ(Yq)lσ([α])

Moreover, the diameter of each connected component is comparable to λ.

c−1λ(Y ) ≤ diam(Yq) ≤ cλ(Y )

Proof. [Raf07]

4 Hausdorff dimension and entropy

Let S be a closed flat surface and π : S̃ → S the flat universal cover. We showed that S̃

is a δ-hyperbolic Cat(0)-space. We recall the notation of Section 2.3.1.

Let δinf (S̃) be the infimum of all δ′ so that S̃ is δ′-hyperbolic. We defined the continuous

function ξ : R+ → R+. Denote ξ := 1
2ξ(δinf ).

There exists a family of Gromov metrics dx̃,ξ, x̃ ∈ S̃ with respect to the base point x̃.

Any two of such metrics are bilipschitz equivalent.

We investigate the Hausdorff dimension of the boundary with respect to such a metric.

Since Hausdorff dimension is invariant under bilipshitz equivalence, we skip the base

point and abbreviate

d∞ := dξ,x̃

4.1 Hausdorff dimension in moduli space and asymptotic behavior

Lemma 4.1. Let S be a closed flat surface and π : S̃ → S the flat universal cover. Let

d∞ be a Gromov metric on the boundary. The Hausdorff dimension of the boundary

(∂S̃, d∞) is at least 1.

Proof. The Gromov boundary is a homeomorphic to the boundary of the Poincaré disc

and therefore a topological circle. Consequently, the topological dimension of (∂S̃, d∞)

is 1. The topological dimension is a lower bound for the Hausdorff dimension, compare

[Fal03] for details. Therefore, the Hausdorff dimension is at least 1.

It is natural to ask how the Hausdorff dimension and the entropy vary under slight

changes of the flat metric.

Let Qg be the moduli space of flat structures which is the set of all isometry equivalence

classes of flat surfaces of genus g ≥ 2 and area 1. For rigorous statements and computa-

tions we refer to [Vee90].
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Let S ∈ Qg be a flat surface and ǫ > 0.

We define

BS(ǫ) := {S′ ∈ Qg : ∃f : S′ → S, f is a (1 + ǫ)− bilipschitz homeomorphism}

The sets BS(ǫ), S ∈ Qg, ǫ > 0 form a basis of the topology on Qg.

We consider the following mappings

i) δinf : Qg → R, the minimal Gromov hyperbolic constant of the flat universal cover

S̃.

ii) e(S̃,ΓS) : Qg → R the entropy of the Deck transformation group ΓS acting on the

flat universal cover.

iii) hdim : Qg → R the Hausdorff dimension of the Gromov boundary of the universal

cover with respect to the Gromov metric d∞.

iv) l0 : Qg → R the length of the shortest essential simple closed curve on the flat

surface S.

Proposition 4.1. The functions δinf , e(S̃,ΓS), hdim and l0 are continuous in moduli

space.

Recall that in section 2.3 we mentioned the existence of a function r(K,L, δ) with

lim
K→0,L→1

r(K,L, δ) = δ

so that the following property is satisfied :

Let φ : X → Y be a (K,L)-quasi-isometry and Y be a δ-hyperbolic space. Then X is a

r(K,L, δ)-hyperbolic space.

Proof of the Proposition. Let S be a point in Qg and let Si ∈ Qg be a sequence which

converges towards S. Therefore, there exists a sequence of homeomorphisms fi : S →
Si, gi : Si → S which are Li-bilipschitz, so that the constant Li tends to 1. fi, gi lift to

Li-bilipschitz homeomorphism between the flat universal covers f̃i : S̃ → S̃i, g̃i : S̃i → S̃.

We first show that δinf is continuous.

For each ǫ > 0, S̃ is a (δinf (S)+ǫ)-hyperbolic space. Each flat covering S̃i is also Gromov

hyperbolic with Gromov hyperbolic constant r(0, Li, δinf (S̃) + ǫ). Therefore

r(0, Li, δinf (S) + ǫ) ≥ δinf (Si)

r(0, Li, δinf (Si) + ǫ) ≥ δinf (S)
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r tends to δinf + ǫ if Li tends to 1. Consequently

lim
i

δinf (S̃i) = δinf (S̃)

The entropy e(S̃,ΓS) and e(S̃i,ΓSi
) satisfies the relation

Lie(S̃,ΓS) ≤ e(S̃i,ΓSi
) ≤ Lie(S̃,ΓS)

and therefore

lim
i

e(S̃i,ΓSi
) = e(S̃,ΓS)

By Proposition 2.1 the Hausdorff dimension of the boundary equals

hdim(S) =
e(S̃,ΓS)

log
(
1
2ξ(δinf (S))

)

Since ξ depends continuously on δinf (S), the Hausdorff dimension of the Gromov bound-

ary is a continuous function in the moduli space Qg.

It remains to show that l0 is continuous which follows from:

L−1
i l0(S) ≤ l0(Si) ≤ Lil0(S)

Consequently, in compact sets of moduli space the Hausdorff dimension of the Gromov

boundary with respect to the metric d∞ is bounded from above. It remains to investigate

the quantities under the degeneration of the flat surface.

A sequence Si ∈ Qg is called divergent if it eventually leaves every compact subset of

Qg.

The function l0 : Qg → R+, which measures the length of the shortest essential simple

closed curve on the flat surface S, is continuous. Consequently, in compact subsets of

Qg, l0 has a positive lower bound.

It is a classical fact, see i.e. [Mas92, Proposition 1.2], that the converse also holds.

Proposition 4.2. Let ǫ > 0. The set l−1
0 ((ǫ,∞)) ⊂ Qg is contained in a compact subset

of Qg.

Therefore, a sequence Si ∈ Qg diverges if and only if lim
i→∞

l0(Si) = 0.

We will show that the entropy e(Γi, S̃i) tends to infinity if and only if the sequence Si

diverges.

We need the following Lemmas:
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Lemma 4.2. Let S be a closed flat surface of genus g ≥ 2. Let α, β : [0, 1] → S be

closed curves sharing at least one point p := α(0) = β(0) = α(1) = β(1).

Assume that the group < α, β >, considered as a subgroup of π1(S, p), is neither cyclic

nor trivial.

Let a = lq(α) resp. b = lq(β) be the length of α resp. β. We assume that a ≤ b.

The entropy of S can be estimated in terms of a, b:

e(S̃,Γ) ≥ max

{
1

2b
log

(
b

a

)

,
log(2)

b

}

We emphasize that α, β are not necessarily local geodesics. The term length in this

context actually means the length of α, β and not the length of geodesic representatives.

Moreover, we do not require that α and β intersect transversely.

Proof. Since S is a closed surface of genus g ≥ 2, it is a classical fact that the group

< α, β >< π1(S, p) is free , see i.e. [Jac70, Corollary 2].

As < α, β > is neither cyclic nor trivial, the positive semi-group < α, β >s is free with

respect to the generating system {α, β}.
Let π : S̃ → S be the universal cover of S and let p̃ ∈ π−1(p) be a preimage of p. We can

choose connected arcs α̃, β̃ : [0, 1] → S̃, emanating from p̃, so that π ◦ α̃ = α, π ◦ β̃ = β.

Let p̃α := α̃(1), resp. p̃β := β̃(1) be the endpoints. By definition of a, b,

d(p̃α, p̃) ≤ a, d(p̃β , p̃) ≤ b

Let γα resp. γβ be the element of the Deck transformation group which maps p̃ to p̃α

resp. p̃β.

Let Φ be the canonical isomorphism of the positive semi-group of words with letters α, β

to the semi-group < γα, γβ >s with distinguished generating system {γα, γβ} which is

defined as Φ(α) := γα,Φ(β) := γβ.

Let w = a1 . . . an be a word which contains k times the letter α and l = n− k times the

letter β. Let wi be the sub-word of w truncated after the i-th letter.

Due to the triangle inequality

d(p̃,Φ(w)(p̃)) ≤
n∑

i=1

d(Φ(wi−1)(p̃),Φ(wi)(p̃))

Since Γ is a group of isometries,

d(Φ(wi−1)(p̃),Φ(wi)(p̃)) = d(Φ(wi−1)(p̃),Φ(wi−1, ai)(p̃)) = d(p̃,Φ(ai)(p̃))

If follows that the distance between p̃ and its image under Φ(w) can be estimated by

the following formula:

d(p̃,Φ(w)(p̃)) ≤ ka+ lb
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Let U(R) be the set of words so that the number of α-letters is ⌊R/a⌋ and the number of

β-letters is ⌊R/b⌋. The function ⌊∗⌋ : R → Z rounds down each number. The cardinality

of U(R) is

|U(R)| =

(⌊R/a⌋+ ⌊R/b⌋
⌊R/b⌋

)

≥

⌊R/b⌋∏

i=1
(i+R/a− 1)

⌊R/b⌋! ≥
(
R/a− 1

R/b

)R/b−1

=

(
b

a
− b

R

)R/b−1

Let w ∈ U(R) be such a word. The distance d(p̃,Φ(w)p̃) is at most 2R. The Deck

transformation group acts freely. Therefore, the counting function

Np̃(R) := |Γp̃ ∩Bp̃(R)|

is bounded below by

N(R) ≥ |U(R/2)| ≥
(
b

a
− 2b

R

)R/2b−1

Consequently

e(S̃,ΓS) ≥
1

2b
log

(
b

a

)

The other inequality is analogous. Since a ≤ b, for any word w of length n the distance

can be estimated by

d(p̃,Φ(w)(p̃)) ≤ bn

Let V (R) be the set of words of length ⌊R/b⌋. The cardinality of V (R) is 2⌊R/b⌋ and

therefore

N(R) ≥ 2⌊R/b⌋ ≥ 1

2
2R/b

The following Corollary is an immediate consequence.

Corollary 4.1. Let Si be a sequence of flat surfaces and let αi, βi be two closed curves

on Si satisfying the conditions as in Lemma 4.2. If the length of αi tends to zero and

the length of βi is bounded from above, then the entropy of Si tends to infinity.

Let S be a point in Qg. Assume that S contains a short simple closed curve α. It

is the goal to show that there exists a curve β whose length is uniformly bounded from

above so that α, β satisfy the conditions of Lemma 4.2.

We recall the thin-cylinder decomposition, which was defined in section 3.6.1.
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There exists a finite union of open subsurfaces
⋃

Sj ⊂ S of negative Euler characteristic.

The closures of any two different subsurfaces Sj1 , Sj2 are disjoint. The diameter of each

connected component Sj is bounded from above by some constant cdiam which only

depends on the topology of S.

The complement S−⋃Sj is contained in a disjoint union of maximal flat cylinders
⋃

Ci.

The height of each cylinder Ci is bounded from below by a uniform constant cheight which

also only depends on the topology of S.

None of the cylinders Ci is entirely contained in the complement. Assume that Ci

intersect some subsurface Sj. Then Sj contains a geodesic core curve of Ci.

For each closed curve α which is contained in a subsurface Sj, there exists a geodesic

representative αq in the free homotopy class of α which is also contained in Sj .

Moreover, let α be a closed curve in S whose length is less than cheight. There exists a

geodesic representative αq in the free homotopy class of α, which is contained in some

subsurface Sj .

Proposition 4.3. Let S = (X, dq) ∈ Qg be a closed flat surface of genus g ≥ 2 and

area 1. Let
⋃

Sj be the thin-cylinder decomposition of S. Let α be a simple closed curve

in S1 which might be freely homotopic to a boundary curve. There exists some uniform

constant c > 0 which only depends on the genus of X and a simple closed local geodesic

βq ⊂ S which intersects S1. The length of βq is bounded from above by c. No multiple

of βq is in the free homotopy class of any multiple of α in S.

Proof. Denote by X the underlying Riemann surface of S = (X, dq). Let σ be hyperbolic

metric on X which is in the same conformal class as the flat metric dq.

Recall that on a hyperbolic surface (X,σ) there exists a short pants decomposition with

pants curves βσ,i, see section 3.6.2. The hyperbolic length of each pants curve βσ,i is

bounded from above by the Bers constant which only depends on the genus of X. Let

βq,i be a flat geodesic representative in the free homotopy class of βσ,i. We showed in

Proposition 3.13 that the flat length of βq,i is bounded from above by a uniform constant

c.

Assume first that there is a pants curve βσ,i which intersects S1 essentially, but cannot

be homotoped inside of S1. No multiple of βσ,i is in the free homotopy class of a multiple

of α and the flat geodesic representative βq,i also intersects S1.

If such a pants curve does not exist, recall that the Euler characteristic of S1 is negative.

There are at least two pants curves βσ,i1 , βσ,i2 which can be homotoped inside of S1,

possibly as boundary components.

By Lemma 3.11 the flat geodesic representatives βq,ij , j = 1, 2 are contained in S1. One

observes that for at least one i no multiple of βq,i is freely homotopic to a multiple of
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α.

Theorem 4.1. The entropy is bounded from below by a positive constant.

A sequence of flat surfaces diverges in Qg if and only if the entropy tends to infinity.

Proof. Recall that the Hausdorff dimension of the boundary is at least 1 with respect to

the Gromov metric d∞. It was shown in Proposition 3.7 that the minimal Gromov hy-

perbolic constant δinf is bounded from below by a positive constant which only depends

on the topology of S. By Theorem 2.1 the entropy is related to these quantities by

log

(
1

2
ξ(δinf )

)

hdim(∂S̃, d∞) = e(S̃,ΓS)

Therefore, the entropy is bounded from below by some uniform positive constant.

Let Si be a sequence of flat surfaces. The entropy depends continuously on the point

in Qg. If the entropy e(S̃i,ΓSi
) tends to infinity, the sequence eventually leaves every

compact set.

On the other hand, assume that the sequence Si leaves every compact set. Equivalently,

there exists a sequence of essential simple closed curves αi in Si so that the length of αi

tends to zero. Let
⋃

j

Si,j ⊂ Si

be the thin-cylinder decomposition of Si.

Assume that αi is shorter than cheight the minimal height of the removed cylinders. By

Lemma 3.12, αi is contained in some subsurface Si,j. By Proposition 4.3, there exists

an essential curve β′
i which intersects Si,j and no multiple of β′

i is freely homotopic to a

multiple of αi. The length of β′
i is smaller than some uniform constant c.

The diameter of Si,j is bounded from above by some uniform constant cdiam. We choose

a short excursion from β′
i to αi of length at most cdiam. We concatenate β′

i with the

excursion and call the resulting closed curve βi.

The length of βi is uniformly bounded and the two curves αi, βi satisfy the conditions

of Lemma 4.2.

By Corollary 4.1 the entropy of e(S̃i,ΓSi
) tends to infinity.

Corollary 4.2. Let Si ∈ Qg be a sequence of flat surfaces. The Hausdorff dimension of

the boundary hdim(Si), with respect to the Gromov metric d∞, tends to infinity if and

only if the sequence Si diverges.

Proof. The function hdim is bounded from below by 1.

Let Si ∈ Qg be a sequence of surfaces.
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hdim is a continuous function and therefore Si diverges if hdim(Si) tends to infinity.

On the other hand, assume that Si diverges. The entropy e(S̃i,ΓSi
) tends to infinity.

By Proposition 2.1 the Hausdorff dimension of the boundary equals

hdim(Si) =
e(S̃i,ΓSi

)

log
(
1
2ξ(δinf (S̃i))

)

By Proposition 3.7 the function δinf is uniformly bounded from below and therefore

1

2
ξ(δinf (S)) = 2

1
2δinf

is bounded from above.

Consequently, hdim(Si) tends to infinity.

4.2 Hausdorff dimension under branched coverings

Let π : Y → X be a holomorphic branched covering of Riemann surfaces. The number

of sheets and the number of branch points together with the branching index is called

the combinatorics of the covering.

Holomorphic branched coverings satisfy the Riemann Hurwitz formula.

Proposition 4.4. Let π : Y → X be an n-sheeted holomorphic branched covering be-

tween compact Riemann surfaces. Let ind(y) be the branching index at the point y ∈ Y

and χ(X) be the Euler characteristics of X. The Euler characteristic of X and Y are

related by

χ(Y ) = nχ(X)−
∑

y∈Y
ind(y)

The Euler characteristics of a closed Riemann surface is 2−2g for some integer g ∈ N.

Consequently, for some kind of combinatorics there cannot exist a branched covering

which realizes the combinatorics. For instance, let X be a Riemann surface. There is no

even-sheeted branched covering π : Y → X with only one branch point.

On the other hand, it was shown by [Hus62], [EKS84] that for closed surfaces of pos-

itive genus the Riemann-Hurwitz formula is the only constraint on the existence of a

holomorphic branched covering.

Proposition 4.5. Let X be a compact Riemann surface of genus g ≥ 1 and let x1 · · · xk
be distinct points of X.

Let mi,j, i = 1 . . . k, j = 1, . . . , li be positive numbers so that
∑

i,j mi,j is even. Let n ≥
max

i

∑

j(mi,j +1). There exists an n-sheeted holomorphic branched covering π : Y → X

with marked points yi,j ∈ Y so that π(yi,j) = xi and ind(yi,j) = mi,j.
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Let π : Y → X be a holomorphic branched covering.

Assume that X is endowed with a flat metric S := (X, dqX ). The metric dqX can be

pulled back to a flat metric dqY on Y . Denote by T := (Y, dqY ) the flat surface.

The induced covering map π : T → S is called a flat branched covering which is locally

isometric outside the branch points. The preimages of the singularities on S and the set

of branch points form the singularities on T . Since the flat covering is locally isometric,

the volume of T is the product of the number of sheets and the volume of S.

We investigate how the entropy and the minimal Gromov hyperbolic constant of the flat

universal covers of S and T are related.

Proposition 4.6. Let π : T → S be an n-sheeted branched flat covering with k branch

points.

Let S̃ resp. T̃ be the flat universal cover of S resp. T . Denote by δinf (S̃) resp. δinf (T̃ )

the minimal Gromov hyperbolic constant of S̃ resp. T̃ .

Then δinf (T̃ ) can be estimated in terms of δinf (S̃) and k.

δinf (S̃)

24k
≤ δinf (T ) ≤ 4δinf (S̃)

Proof. Denote by ΣS resp. ΣT the set of singularities on S resp. T .

Recall that by Proposition 3.7 the quantity ρ(S) := sup
x∈S

d(x,ΣS) and the quantity δinf (S̃)

are nearly equal.
ρ(S)

2
≤ δinf (S̃) ≤ 2ρ(S)

We showed that ρ(S̃) = ρ(S).

Let y ∈ T be a point and let x = π(y) ∈ S be the image of y. Let ς ∈ S be a closest

singularity to x and let [x, ς] be a shortest connecting geodesic. One can choose a lift

[y, ς ′] of [x, ς] which is maximal with respect to the property that it does not contain a

branch point. Since branch points are singularities and since the flat covering is locally

isometric, d(y,ΣT ) ≤ d(π(y),ΣS). Consequently,

ρ(T ) ≤ ρ(S)

On the other hand, let BT ⊂ T be the set of all branch points on T . Let BS := π(BT ) ⊂ S

be the image of BT . The cardinality of BS is at most k. Let BS̃ := π−1(BS) ⊂ S̃ be the

preimage of BS in the flat universal cover.

There is a disc D̃1 of radius ρ(S̃) = ρ(S) in S̃ which does not contain a singularity.

D̃1 ∩ ΣS̃ = ∅

Let x̃ be the center of D̃1. Let D̃2 ⊂ D̃1 be the sub-disc of radius ρ(S)
2 and center x̃. We

have to distinguish two cases.
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• The projection of D̃2 embeds into S.

Since D̃2 is an euclidean disc, the volume of any subdisc of D̃2 of radius r equals

πr2. As D̃2 embeds into S, there are at most k points of BS̃ in D̃2. Therefore, the

discs of radius r = ρ(S)

3
√
k
around each point of BS̃ ∩ D̃2 do not cover D̃3 ⊂ D̃2, the

subdisc of center x̃ and radius ρ(S)
3 .

Consequently, there is a point x̃′ ∈ D̃3 which is of distance at least ρ(S)

3
√
k
to any

point in BS̃ ∩ D̃2. Since x̃′ has also distance 1
6ρ(S) to the boundary of D̃2, it has

distance at least ρ(S)

6
√
k
to any point in BS̃ and any singularity.

Let x′ := π(x̃′) ∈ S. By construction, the distance between x′ and the set BS ∪ΣS

is again at least ρ(S)

6
√
k
.

Let y′ ∈ π−1(x′) ⊂ T be a preimage of x′. Let ΣT be the set of singularities on T .

ΣT consists of the branch points and preimages of singularities on S and therefore

ΣT ⊂ π−1(ΣS ∪BS) ⊂ T

Consequently,

ρ(T ) ≥ d(y′,ΣT ) ≥ d(x′,ΣS ∪BS) ≥
ρ(S)

6
√
k
≥ ρ(S)

6k

• D̃2 is immersed but not embedded. By Lemma 3.9, the projection of D̃2 in S is

contained in a cylinder C ′ of height at least
√
3ρ(S)
2 . As the cardinality of BS is

at most k, there is a sub-cylinder C ⊂ C ′ of height
√
3ρ(S)
2k which does not contain

an element of BS . Therefore, one finds a point x′ ∈ C of distance
√
3ρ(S)
4k to a

singularity and to BS.

In both cases

ρ(T ) ≥ ρ(S)

6k

Using the relationship between ρ and δinf one can estimate:

δinf (S̃)

24k
≤ ρ(S)

12k
≤ ρ(T )

2
≤ δinf (T ) ≤ 2ρ(T ) ≤ 2ρ(S) ≤ 4δinf (S̃)

We construct a family of examples which show that the bounds are asymptotically

sharp:

A Strebel differential is a flat surface which, after removing a finite union of saddle

connections, is isometric to disjoint union of flat cylinders. We consider the subset of

Strebel differentials which admit only one cylinder. The set of Strebel differentials with
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one cylinder is dense in the moduli space of flat structures [Mas79].

Let S′ be a Strebel differential with one cylinder of area 1. Assume that the core curve

of the cylinder is horizontal. One can stretch the vertical component by a large factor

λ and shrink the horizontal component by λ−1. The resulting flat surface S is again

a Strebel differential with one cylinder of area 1. The horizontal cylinder is of short

circumference and large height h. The Gromov hyperbolic constant of the flat universal

cover δinf (S̃) is nearly h
2 . We can distribute k points xi on S so that each point in S

has distance at most 2h
k to some point xi. We can construct a flat branched covering

π : T → S, so that each preimage of each point xi is a branch point and therefore a

singularity.

In this special example one observes that the quantity δinf (T̃ ) is nearly
δinf (S̃)

k . The

precise statement is summarized in the following remark:

Remark 4.1. There exists a family of branched covering πi : Ti → Si, Si ∈ Qg, i ∈ N.

The genus of Si is fixed and the number of branch points on Ti equals i.

The quantity i · ρ(Ti) is bounded from above independent of i.

To compute the entropy we first consider the following example:

Let S be a flat surface and D ⊂ S be a small euclidean disc. On D one can make a small

horizontal slit of length l and take n ≥ 3 copies S1, . . . Sn of S endowed with the same

slit. The copies can be isometrically glued along the slit. The right-hand side of the slit

in Si is glued to the left-hand side of the slit in Si+1. Finally, the left-hand side of the

slit in S1 is glued on the right-hand side of the one in Sn. A detailed construction for

n = 2 can be found in [Str84, Section 12.3].

Denote by T the resulting flat surface. There is a canonical projection π : T → S which

is a flat n-sheeted covering. The branch points are the endpoints of the slits.

Let T̃ be the flat universal cover of T . The lifts of all slits in T to the flat universal cover

T̃ is a countable disjoint union of isometrically embedded n-valent trees of edge length

l. Each vertex is the preimage of one of the branch points. Let B(R) be a ball of radius

R in T̃ whose center is a vertex. B(R) contains at least nR/l−1 vertices.

Let ỹ0 ∈ T̃ be one such vertex. Recall that the counting function NT (R) is defined as

NT (R) := |Γỹ0 ∩Bỹ0(R)|

One deduces that

e(T̃ ,ΓT ) = lim sup
R→∞

log(NT (R))

R
≥ log(n)

l
+ log(1/2)

Therefore, one cannot expect a growth rate which is smaller than an expression inverse
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proportional to distance between the branch points and logarithmic in the combinatorics

of the cover. We will show that this inequality is almost sharp.

Theorem 4.2. Let π : T → S be a branched flat finite-sheeted covering. The entropy

e(T̃ ,ΓT ) of T̃ is bounded by the inequality

e(T̃ ,ΓT ) ≤ (a(S) + b(T ))(e(S̃,ΓS) + 1)

where b(T ) is logarithmic in the combinatorics of the covering and inverse proportional

to the distance between the two closest branch points in T .

The methods to prove the statement are mainly combinatorial. We first show the claim

for the special case that the branch points in T project to singularities in S. Afterwards

we show that the general case can be reduced to the first.

The following Lemma is well-known:

Lemma 4.3. Let π : T → S be a flat branched covering. Denote by BT ⊂ T the branch

points and BS := π(BT ) its image. Assume that the branching index is bounded from

above by some constant

n := sup
y∈BT

ind(y) + 1

• Let c : [0, t] → S be an arc in S which passes k times through points in BS. Let

y ∈ π−1(c(0)) be a preimage of the starting point of c(0) in T . There are at most

kn connected arcs c′ in T which project to c and have the starting point y.

• Let c′0 : [0, t] → T be an arc in T which passes k times through branch points.

Denote by y = c′0(0) the starting point of c′0. There are at most kn connected arcs

c′ in T which project to π(c′0), have the starting point y and pass through k branch

points.

Proof. The proofs of both statements are similar and use the following fact:

Let y′ ∈ BT be a branch point and let x′ := π(y′). Let α be a short line segment issuing

from x′ which does not pass through any image of a branch point. There are at most n

lifts α′
j ⊂ T so that π(α′

j) = α,α′
j(0) = y′.

• Let c : [0, t] → S be an arc in S. One can decompose c into subarcs ci : [ti, ti+1] =

c|[ti,ti+1] → S, i = 1, . . . k so that each interior point of ci is disjoint from BS for

any i. We chose a preimage y ∈ π−1(c1(t1)) of the starting point of c1. There

are at most n different connected arcs c′1,j so that π ◦ c′1,j = c1, c1,j(t1) = y. To

extend the lift c′1,j to a complete connected lift of c, one has to find a lift c′2,k of c2
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so that c′2,k(t2) = c′1,j(t2). Again there are at most n of such lifts c′2,k for each j.

One iterates the process and observes that there are at most kn connected lifts of

c with the starting point y.

• The proof is analogous to the one in the first case. Let c := π ◦ c′0 ⊂ S. One can

choose at most n maximal lifts c′i,1 of c which emanate from y with the property

that they do not meet a branch point. At the branch point, there are again at

most n possibilities to continue the lift.

One iterates the process k times and eventually obtains all lifts c′ which pass

through k branch points so that π ◦ c′ = c. All in all there are at most kn of such

lifts which emanate from y.

Let S be a flat surface and s1, s2 be saddle connections on S. Recall that by Proposition

3.11 there exists a constant Cl(S), which is independent of s1, s2, and a geodesic g of

length l(g) ≤ l(s1) + l(s2) + Cl(S) which first coincides with s1 and eventually with s2.

Proposition 4.7. Let π : T → S be an n-sheeted flat covering which branches at most

over singularities in S. Let l0(S) be the length of the shortest saddle connection in S

and Cl(S) be the constant as mentioned. NT (R) denotes the counting function on the

flat universal cover T̃ of T .

NT (R) := |ΓT ỹ0 ∩Bỹ0(R)|

Denote by l0(∗) the length of the shortest saddle connection on the space ∗ = S, T .

One can estimate the counting functions of S and T .

NT (R) ≤ n
R

l0(S)
+1

2
R

l0(S)

(

1+
Cl(S)

l0(S)

)

NS

(

R

(

1 +
Cl(S)

l0(S)

))

Proof. Let S̃ resp. T̃ be the flat universal cover of S resp. T . Denote by Σ∗, ∗ = S, T, S̃, T̃

the set of singularities in the corresponding space ∗.
Since the singularities of T project to singularities of S, l0(S̃) = l0(S) = l0(T ) = l0(T̃ ).

Let x̃0 ∈ S̃ and ỹ0 ∈ T̃ be points and x0 ∈ S, y0 ∈ T their projections. We choose x̃0, ỹ0

such that π(y0) = x0. For simplicity of notation we assume that x̃0, ỹ0 are singularities.

Let P(R) be the set of parametrized loops h in S which have the following properties:

i) h emanates from x0 and ends at x0.

ii) h is a parametrized by arc length. The length of h is at most R.

61



iii) h is locally geodesic outside ΣS.

Let ỹ ∈ Γỹ0 ∩ Bỹ0(R) ⊂ T̃ be a point in the flat universal cover of T . Let [ỹ0, ỹ] be the

parametrized connecting geodesic. We define the mapping

Φ : Γỹ0 ∩Bỹ0(R) → P(R), ỹ 7→ h := π ◦ [ỹ0, ỹ] ⊂ S

The flat covering map π : T → S only branches over the singularities of S. Consequently,

away from ΣS , h is a local geodesic. One checks that h is contained in P(R).

Let h ∈ P (R) be such a loop. We have to estimate the maximal number of possible

preimages.

Recall that the projection π : T → S is an n-sheeted branched covering. Therefore,

the branching index of each branch point is at most n − 1. Each branch point of the

branched covering π : T̃ → S satisfies the same property.

The loop h is, away from the singularities, a local geodesic and the starting and endpoint

of h is a singularity. Therefore, h is a concatenation of saddle connections. Since

each saddle connection has length at least l0(S), h passes through at most R
l0(S)

+ 1

singularities.

By Lemma 4.3 there are at most n
R

l0(S)
+1

different arcs in T̃ which emanate from ỹ0 and

project to the same loop h. Therefore, the number of singularities in ΓT ỹ0 ∩Bỹ0(R) can

be estimated in terms of the cardinality of P(R).

NT (R) ≤ n
R

l0(S)
+1|P(R)|

It remains to compare the cardinality of the set P(R) with the counting function NS(R).

Denote by L(R) the set of all locally geodesic loops in S of length at most R with the

same starting point x0.

We define an injective mapping Ψ which maps a piecewise geodesic loop h ∈ P(R) to a

geodesic loop g ∈ L
(

R
(

1 + Cl(S)
l0(S)

))

which we equip with a combinatorial datum which

consists in a coloring of each saddle connection in g with the color red or green.

Let h ∈ P(R) be a piecewise locally geodesic loop in S of length at most R. As h is

locally geodesic outside the singularities and the endpoints of h are singularities, h is

a concatenation of saddle connections s1 ∗ . . . ∗ sm. Let si−1 ∗ si be the incoming and

outgoing saddle connections at the singularity h(ti). By Proposition 3.11 there exists a

local geodesic αi whose length is at most Cl(S) + l(si−1) + l(si) and which first leaves

si−1 and eventually passes through si. If h is not locally geodesic at h(ti), we replace

si−1 ∗ si by the local geodesic αi.

We can do this construction successively at all points h(ti) where h is not locally geodesic.

Let g be the resulting locally geodesic loop. The starting point and endpoint of g equals
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the starting and endpoint of h which is x0.

The length of g is bounded from above by:

l(g) ≤ l(h) +
RCl(S)

l0(S)
≤ R

(

1 +
Cl(S)

l0(S)

)

The map h → g is not necessarily injective. It is possible that the same loop g arises

from different points h, h′ ∈ P(R). That is why we add a combinatorial datum.

h is a concatenation of saddle connections s1 ∗ . . . ∗ sm. g can also be written as such a

concatenation s′1 ∗ . . . ∗ s′n which arises from s1 ∗ . . . ∗ sm by gluing in additional saddle

connections. We color each saddle connection s′i with one of the colors red or green, so

that the subsequence of green saddle connections equals the original sequence s1∗. . .∗sm.

Let g′ be the colored loop. The mapping

Ψ(h) := g′

is injective, as we can reconstruct h from g′ by removing the red saddle connections.

Since each locally geodesic loop g consists of at most l(g)
l0(S)

saddle connections, g can be

colored in at most 2
l(g)
l0(S) different ways.

Therefore

|P(R)| ≤ 2
R

l0(S)

(

1+
Cl(S)

l0(S)

)
∣
∣
∣
∣
L
(

R

(

1 +
Cl(S)

l0(S)

))∣
∣
∣
∣

Since |L(R)| = NS(R), the two formulae allow to compare the counting functions with

respect to S and T .

NT (R) ≤ n
R

l0(S)
+1

2
R

l0(S)

(

1+
Cl(S)

l0(S)

)

∗NS

(

R

(

1 +
Cl(S)

l0(S)

))

Corollary 4.3. Let π : T → S be an n-sheeted flat branched covering which branches at

most over the singularities. Let Cl(S), l0(S) be the constants defined above. The entropy

of T can be estimated in terms of the following formula:

e(T̃ ,ΓT ) ≤
log(n)

l0(S)
+

(

1 +
Cl(S)

l0(S)

)(

e(S̃,ΓS) + log(2)
)

To compute the entropy of general branched coverings, one makes use of the following

obvious observation

Lemma 4.4. Let π : T → S be a flat n-sheeted branched covering with exactly one

ramification point y0. Assume that y0 ramifies with maximal index n − 1 ≥ 2 over

x0 = π(y0). Let c : [0, t] → S be a connected arc which is locally geodesic outside x0.

Then, for each y ∈ π−1(c(0)) there exists some local geodesic g in T such that π ◦ g = c

and g(0) = y.
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Proposition 4.8. Let π : T → S be an n-sheeted flat branched covering and let BT ⊂ T

be the set of all branch points in T . Denote by lb(T ) the minimal distance between any

two branch points on T and let k := |BT | be the cardinality of BT .

Finally, let ςS be a distinguished singularity on S and let π : T0 → S be a 3-sheeted

flat covering which ramifies with maximal index over ςS and has no other branch points.

Then

NT (R) ≤ nR/lb(T )NT0

(

R

(

1 +
2diam(S)

lb(T )

))

k
R

lb(T )

Proof. We choose ςT ∈ π−1(ςS) ∈ T a singularity in T which is a preimage of ςS . Denote

by ςT0 = π−1(ςS) ∈ T0 the unique preimage of ςS in T0.

Let BT = {b1 . . . bk} ⊂ T be the set of all branch points in T . Let ci = [π(bi), ςS ], lq(ci) ≤
diam(S) be a shortest geodesic in S connecting any point π(bi) ∈ S with ςS .

Let L∗(R), ∗ = T, T0 be the set of geodesic loops of length at most R in ∗, which connect

ς∗ with itself. We define a mapping

Φ : LT (R) → LT0

(

R

(

1 +
2diam(S)

lb(T )

))

×B
R

lb(T )

T

Let g ∈ LT (R) be such a loop of length at most R. One can cut g at each branch

point ai ∈ BT and obtains local geodesics gi, i = 1 . . . m. The length of each of the local

geodesics is at least lb(T ) and therefore

m ≤ R

lb(T )

Let π ◦gi ⊂ S be the projection of gi to S. π ◦gi is a local geodesic. Since π ◦gi starts at
the image of some branch point and ends at some other, there are some geodesics cj , ck

so that hi := cj ∗ π ◦ gi ∗ c−1
k is a connected arc with the starting and endpoint ςS . If

i = 1 resp. i = m, one only has to concatenate cj at the endpoint resp. at the starting

point of π ◦ gi.
Let hi,q ∈ [hi] ⊂ S be the length-minimizing local geodesic in the homotopy class of arcs

with fixed endpoints, see Figure 4.

Denote by

h := h1,q ∗ h2,q . . . ∗ hm,q

the concatenation of all such arcs. h is a loop which is locally geodesic outside ςS . It

follows from Lemma 4.4 that we can choose a lift α of h in T0 which is a local geodesic

and emanates from ςT0 . Since α is a lift of h, α ends at a preimage of the endpoint of

h which is a preimage of ςS. By construction π−1(ςS) = ςT0 and therefore α is a locally
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Figure 4: The two surfaces are identified along the dotted and the solid line and form a branched

covering of the surface. We fix one point in the base, here the solid square, and for each image

of a branch point, we fix a connecting geodesic, here marked on the lower left. A geodesic in

the covering projects to a path here marked dotted which is locally geodesic outside the image

of the branch points. We cut off each piece of the path at each branch point image and we glue

in the excursion to the square. Finally, we straighten each such path so that the concatenation

is locally geodesic outside the square.

geodesic loop. The length of α equals the length of h. Therefore

l(α) =
∑

i

l(hi) ≤
∑

i

(l(gi) + 2l(ci)) ≤ l(g) + 2mdiam(S)

≤ R+
2R

lb(T )
diam(S)

We define the mapping

Φ : g 7→ (α, (ai)i)

where ai ∈ BT is the endpoint of gi.

(g = g1 ∗ . . . ∗ gm ⊂ T, (ai)i)

π

��

(α ⊂ T0, (ai)i)

(π(g) = π(g1) ∗ . . . ∗ π(gm) ⊂ S, (ai)i) ///o/o/o (h = h1 ∗ . . . ∗ hm ⊂ S, (ai))

OO�

�

�

Again we have to count the number of possible preimages.

Let g, g′ ⊂ T be different geodesics loops in T .

If the associated data (ai)i ∈ Bm
T resp. (a′j)j ∈ Bm′

T are different, Φ(g) 6= Φ(g′).

Assume that the data (ai)i are equal, but the projections π(g), π(g′) ⊂ S are different.

In each homotopy class of arcs there exists exactly one local geodesic. Therefore, at least

one of the homotopy classes [gi] and [g′i] differ.

65



Consequently, the concatenations h and h′ are different. Let Φ(g) = (α, ai),Φ(g
′) =

(α′, ai). Since the loop α resp. α′ project to h resp. h′, Φ(g) 6= Φ(g′).

Therefore, Φ(g) = Φ(g′) only if π(g) = π(g′) and only if the branch point data ai = a′i
equal as well.

By Lemma 4.3 for each m there are at most nm different loops g ⊂ T with the same

starting point which pass through m branch points and which project to the same arc

π(g) ⊂ S.

Since a geodesic in g ⊂ T of length at most R can pass through at most R
lb(T ) branch

points, it follows that

m ≤ R

lb(T )

Therefore, the map Φ, restricted to loops of length at most R, is at most nR/lb(T )-to-1.

Consequently,

NT (R) ≤ n
R

lb(T )NT0

(

R

(

1 +
2diam(S)

lb(T )

))

|BT |
R

lb(T )

Corollary 4.4. Let π : T → S be a flat branched n-sheeted covering. Let lb(T ) be the

minimal distance of branch points in T . Let π : T0 → S be defined as above.

e(T,ΓT ) ≤
(

1 +
2diam(S)

lb(T )

)

e(T0,ΓT0) +
log(n) + log(k)

lb(T )

Theorem 4.2 follows from Corollary 4.4 and Corollary 4.3.

5 Asymptotic behavior

In this section we investigate the asymptotic behavior of bi-infinite geodesics on the flat

surface. In the first two sections, we compare the length of geodesic arcs with respect

to the flat and the hyperbolic metric in the same conformal class.

Finally, we define a geodesic flow and construct an appropriate measure on the space

of geodesic on the flat surface. With respect to this measure we show how the typical

geodesic winds through the flat surface.

5.1 Asymptotic comparison of hyperbolic and flat geodesics

It is the goal of this part to investigate the relationship between the singular euclidean

metric and the hyperbolic metric in the same conformal class. We therefore compare

the geodesic flows. We make use of standard results in ergodic theory following [Kre85,

section 1.5].
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Definition 5.1. Let (Ω,A, µ) be a measurable space together with the measure preserving

flow gt.

A family of integrable functions Fi,j , i, j ∈ R is called a subadditive process with respect

to the flow gt if and only if:

• Fi,j ◦ gt = Fi+t,j+t

• F0,t̃ + Ft̃,t ≥ F0,t

• inft t
−1
∫
F0,t > −∞

In ergodic theory the Theorem of Kingman is classical.

Theorem 5.1. Let Fi,j be a subadditive process on (Ω,A, µ) with respect to gt.

Then the sequence T−1F0,T converges to a gt-invariant measurable limit F a. e. More-

over, when µ is a finite measure then T−1F0,T converges with respect to the L1-norm.

We apply this concept to our setting:

Let S = (X, dq) be a closed flat surface and σ the hyperbolic metric on the Riemann

surface X which is in the same conformal class as dq. Let τ : T 1X → X be the unit

tangent bundle of X .

Let ℓ∗, ∗ = dq, σ be the Lebesgue measure on X induced by the hyperbolic resp. flat

metric. Denote by m the corresponding Liouville measure for the hyperbolic metric on

the unit tangent bundle. Let mx, x ∈ X be the induced family of measures of the fiber

T 1
xX

∼= S1 which is absolutely to continuous to the Lebesgue measure of S1 and which

is invariant under parallel transport along unit speed geodesics.

Let π : X̃ → X be the universal cover. The measures are defined in the same way on

the universal cover X̃ endowed with the lifted structure i.e. the unit tangent bundle

τ : T 1X̃ → X̃, the hyperbolic or flat metric. The covering map π naturally extends to

π : T 1X̃ → T 1X.

Let c be an arc on X. We called c∗, ∗ = dq, σ the shortest representative in the homotopy

class of c with fixed endpoints. Such a length-minimizing arc always exists and is unique.

We introduced the notion

l∗([c]) := min
c′∈[c]

l∗(c
′) = l∗(c∗), ∗ = dq, σ

as the length of the length-minimizing representative ci in the homotopy class.

Let gt : T
1X → T 1X be the geodesic flow with respect to the hyperbolic metric σ on

T 1X. It is a result of Hopf, [Hop71] that the geodesic flow gt acts ergodically with
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respect to m on the unit tangent bundle T 1X .

To each point v ∈ T 1X and to each i, j ∈ R, one can naturally associate an arc on X.

ci,j : [0, j − i] → X, ci,j(t) := τ(gi+t(v))

ci,j is a local geodesic on (X,σ).

We define

Fi,j : T
1X → R+ : v 7→ lq([ci,j ])

By definition of ci,j ,

Fi,j ◦ gt = Fi+t,j+t

We will first show some properties of Fi,j :

Let π : X̃ → X be the universal cover and (X̃, ∗), ∗ = σ, dq the lifted metrics. (X̃, σ) is

isometric to the Poincaré disc and therefore a δ-hyperbolic space where δ is independent

of X.

On the universal cover the flat and the hyperbolic metric are (L,L)-quasi-isometric for

some L.

Lemma 5.1. Let S = (X, dq) be a closed flat surface of genus g ≥ 2. Let σ be the

hyperbolic metric on X in the same conformal class as dq. Denote by L the quasi-

isometric constant between the two metrics on the universal cover.

Then, the function Fi,j : T
1X → R≥0 meets the following properties:

i)

L−1|i− j| − L ≤ Fi,j ≤ L|i− j|+ L

ii) There exists a constant λ(L) which only depends on L such that for each s, t ≥ 0,

F0,s+t ≥ F0,s(x) + Fs,s+t − λ

iii) Let λ be the constant from ii)

F0,s ≤ F0,s+t,∀t ≥ λ′ := L(λ+ 1)

iv) Fi,j is a subadditive process with respect to m

Proof. Statement i) is obvious.

We show statement ii). Let v ∈ T 1X be a point in the unit tangent bundle. x := τ(v)

resp. y := τ(gs(v)), z := τ(gs+t(v)). Furthermore, let [x, z]∗ be the connecting geodesics

with respect to the metrics ∗ = dq, σ.
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We can choose a lift [x̃, z̃]∗ in the universal cover and ỹ = [x̃, z̃]σ(s). As geodesics

in the hyperbolic metric are (L,L)-quasi-geodesics in the flat metric, the Hausdorff

distance of [x̃, z̃]σ and [x̃, z̃]q is uniformly bounded by some constant λ
2 with respect to

the flat metric. λ only depends on L. Consequently, there is a point [x̃, z̃]q(r) such that

dq([x̃, z̃]q(r), ỹ) ≤ λ
2 . It follows that

F0,t(v) + Ft,t+s(v) = dq(x̃, ỹ) + dq(ỹ, z̃)

≤ dq(x̃, [x̃, z̃]q(r)) +
λ

2
+ dq([x̃, z̃]q(r), z̃) +

λ

2
= dq(x̃, z̃) + λ

= F0,s+t(v) + λ

iii) follows from i) and ii).

To prove iv) it remains to show that Fi,j is integrable. The geodesic flow gt acts con-

tinuously on T 1X. The flat as well as the hyperbolic metric are length metrics on X̃.

Since both metrics induce the same topology on X̃ , Fi,j is continuous and therefore

measurable. Since Fi,j is bounded and the unit tangent bundle T 1X is of finite volume,

the integrability of Fi,j holds.

We can apply Kingman’s Theorem and conclude the existence of a gt-invariant mea-

surable limit function

F := lim
r

r−1F0,r

As gt acts ergodically for m, F is constant a. e.

Theorem 5.2. The entropy and the constant F are related.

e(S̃,ΓS) ≥ F−1

Proof. Assume on the contrary that e(S̃,ΓS) < F−1 − 3ǫ for some 0 < ǫ < F−1.

Since r−1F0,r converges towards F with respect to the L1-norm,

lim
r→∞

∫

v∈T 1X

|r−1F0,r − F |dm = 0

We notice that 1
F−1−ǫ > F .

Let x be a typical point for lσ in X. Let cr(x) be the measure of directions in the T 1
xX

fiber over x so that F0,r is exceptionally large.

cr(x) := mx

(
v ∈ T 1

xX : F0,r(F−1−ǫ)(v) > r
)
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Since x is lσ-typical, cr(x) tends to zero if r tends to infinity.

Let x̃ ∈ π−1(x) ⊂ X̃ be a preimage of x in the universal cover. Denote by B∗
x̃(r) the

closed ball with center x̃ and radius r with respect to the metric ∗ = σ, dq.

It is a standard fact from hyperbolic geometry, see i.e. [BP92], that

lim
r→∞

log
(

ℓσ

(

Bσ
x̃ (r)

))

r
= 1

lσ is a Γ-invariant Radon measure on X̃. By Lemma 2.3 the entropy satisfies the following

formula:

e(S̃,ΓS) = lim sup
r→∞

log
(

ℓσ

(

Bq
x̃(r)

))

r

One can estimate F by comparing the volume of metric balls:

ℓσ

(

Bσ
x̃ (r(e(S̃,ΓS) + ǫ))

)

− ℓσ

(

Bq
x̃(r)

)

≤ ℓσ

(

Bσ
x̃ (r(e(S̃,ΓS) + ǫ))−Bq

x̃(r)
)

= ℓσ

({

τ(gt(v))|(v, t) ∈ T 1
x̃ X̃ × [0, r(e(S̃,ΓS) + ǫ)] : F0,t(π(v)) > r

})

Let λ′ be the constant of Lemma 5.1 and let r be so large that

r(F−1 − ǫ)− r(e(S̃,ΓS) + ǫ) ≥ rǫ ≥ 2λ′

By Lemma 5.1, we conclude

F0,r(F−1−ǫ)(π(v)) ≥ F0,t(π(v)),∀v ∈ T 1X̃, t ∈ [0, r(e(S̃,ΓS) + ǫ)]

Therefore, we can estimate

ℓσ

(

Bσ
x̃ (r(e(S̃,ΓS) + ǫ))−Bq

x̃(r)
)

≤ ℓσ

({

τ(gt(v))|(v, t) ∈ T 1
x̃ X̃ × [0, r(e(S̃,ΓS) + ǫ)] : F0,r(F−1−ǫ)(π(v)) > r

})

By definition of cr(x) it follows

ℓσ

({

τ(gt(v))|(v, t) ∈ T 1
x̃ X̃ × [0, r(e(S̃,ΓS) + ǫ)] : F0,r(F−1−ǫ)(π(v)) > r

})

= ℓσ

(

Bσ
x̃ (r(e(S̃,ΓS) + ǫ))

)

cr(x)

We summarize

ℓσ

(

Bσ
x̃ (r(e(S̃,ΓS) + ǫ))

)

− ℓσ

(

Bq
x̃(r)

)

≤ ℓσ

(

Bσ
x̃ (r(e(S̃,ΓS) + ǫ))

)

cr(x)

⇔
log(1− cr(x)) + log

(

ℓσ

(

Bσ
x̃ (r(e(S̃,ΓS) + ǫ)

))

r
≤

log
(

ℓσ

(

Bq
x̃(r)

))

r
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If r tends to infinity, the left term tends to e(S̃,ΓS)+ǫ whereas the right term is bounded

from above by e(S̃,ΓS), what is a contradiction.

5.2 Flow limit and size of subsurfaces

We showed that the entropy bounds the asymptotic difference between hyperbolic and

quadratic differential length. A similar quantity was introduced in section 3.6.2. We

recall the facts:

Let S = (X, dq) be a closed flat surface and σ the hyperbolic metric in the same confor-

mal class as dq. Denote by (X>,X<) the thick-thin decomposition of (X,σ) with respect

to the Margulis constant ǫ > 0.

Let Y be a connected component of X>. In the same homotopy class as Y there exists

a subsurface Yq so that for each boundary component of Y the length minimizing rep-

resentative in Yq is unique. Yq might be degenerated to a graph.

If Y is not a topological pair of pants, we define λ(Y ) as the flat length of the shortest

essential non-peripheral simple closed curve in Y . If Y is a topological pair of pants,

λ(Y ) is defined as the flat length of the longest boundary component.

Let [α] be a free homotopy class of a non-peripheral simple closed curve α which can

be realized in Y . It was shown that the hyperbolic length lσ([α]), multiplied with λ(Y ),

and the flat length lq([α]) equal up to a multiplicative constant c which only depends on

the topology of X:

clq([α]) ≥ λ(Y )lσ([α]) ≥ c−1lq([α])

Moreover, the diameter of Yq is comparable to λ(Y ).

c · diamq(Yq) ≥ λ(Y ) ≥ c−1diamq(Yq)

Denote by Fi,j again the subadditive process as in the previous section and F :=

limT T−1F0,T the measurable limit.

Theorem 5.3. Let S = (X, dq) be a closed flat surface of genus g ≥ 2. Let σ be the

hyperbolic metric on X which is in same conformal class as dq.

Denote by (X>,X<) the thick-thin decomposition of (X,σ) with respect to the Margulis

constant ǫ. Let Y be a connected component of X>.

Then there exists a constant A := A(χ(X)) > 0 which only depends on the topology of

X such that

F ≥ Aλ(Y )

Proof. We recall that τ : T 1X → X is the projection of the unit tangent bundle to the

Riemann surface X, whereas π : X̃ → X is the projection of the universal cover.
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Assume first that the connected component Y ⊂ X> is not a topological pair of pants.

By Lemma 3.13 there exist non-peripheral intersecting simple closed local geodesics

ασ, βσ ⊂ Y whose hyperbolic lengths are bounded from above and below by some uniform

constants.

Let αq resp. βq be flat geodesic representatives in the free homotopy class of ασ resp.

βσ. By Proposition 3.14 there is a constant c which only depends on the topology of X

so that for any simple closed curve γ in Y

clq([γ]) ≥ λ(Y )lσ([γ]) ≥ c−1lq([γ]),

We define a constant m

m :=
2c · lq(βq)
λ(Y )

+ 4

m is bounded from above and below by constants which only depend on the topology of

X.

The hyperbolic length of ασ is bounded from above and below by some uniform constants.

By the Collar Lemma, there exists a hyperbolic convex collar Cα around ασ which

satisfies the following properties.

• The hyperbolic length of the shortest arc in Cα which connects different boundary

components has a universal positive upper and lower bounds which only depend

on the length of ασ.

• The hyperbolic area of Cα is bounded from below by some positive constant which

only depends on the topology of X as well.

• Moreover, there exists some s0 > 0, which depends on m and on the hyperbolic

length of ασ, so that each hyperbolic geodesic gσ : [0, s0] → Cα, of length at least

s0 intersects βσ at least m times.

At each point x in Cα we choose a maximal set of directions Ix ⊂ T 1
xX so that for every

point v ∈ Ix the hyperbolic geodesic

gσ : [0, s0] → X, gσ : t 7→ τ(gt(v))

is entirely contained in Cα.

We call this set of directions the direction collar CDα, see Figure 5. One can uniformize

Cα in the hyperbolic plane and observe that the Lebesgue measure of each fiber Ix has

a positive lower bound which depends on s0 and the length of ασ, consequently on the

topology of X. Therefore, the volume of CDα has a positive lower bound which only

depends on the topology of X.
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Figure 5: One sees the configuration of α and β on the surface. We uniform Cα such that the

identification map is z 7→ az, a > 0. At each point in Cα we choose two intervals of directions

Ix, such that the geodesic flow in this direction twists a fixed amount of times in the collar Cα.

We use CDα as a tool to estimate the quotient of hyperbolic and flat lengths of geodesic

arcs, which follows from the following Lemma

Lemma 5.2. Let gσ : [0, T ] → X be a geodesic arc for the hyperbolic metric and let

gq be the q-geodesic representative of the homotopy class with fixed endpoints [gσ]. Let

tj > 0, j = 1, . . . , nCD which satisfy the following properties:

i) tj < tj+1 − s0 < T − 2s0

ii) g′σ(tj) ∈ CDα

Then there is a constant c > 0 which only depends on the topology of X and k > 0 which

depends on the flat metric but not on gσ so that

lq(gq) ≥ c−1λ(Y )(nCD − 2k)

Proof. If the number of such nCD is at most 2k the Lemma is obvious. So, assume that

nCD > 2k.

The main line of the argument is the following: For each t, so that g′σ(t) ∈ CDα the

geodesic subarc g̃σ|[t,t+s0]
twists in the collar Cα. We expect that there is a corresponding

subarc of gq which has the same behavior. The length of this flat subarc is easy to

estimate. It is comparable to the length of αq multiplied with the number of twists.

The main difficulty is to synchronize the behavior of the flat and the hyperbolic geodesic
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g∗, ∗ = q, σ.

That is why we go over to the universal cover. Let g̃∗ be lifts of g∗, ∗ = q, σ to the

universal cover with common endpoints x̃, ỹ.

Let β̃σ,i, i = 1, . . . , nint be the complete lifts of βσ which intersect g̃σ. The lifts are

ordered by their distance to x̃. Let β̃q,i be the complete lifts of βq which share their

endpoints at infinity with β̃σ,i.

Each line β̃σ,i separates the endpoints x̃ and ỹ. This is not necessarily true for β̃q,i.

However, we claim that there is a bound k > 0, which only depends on the flat metric,

so that β̃q,i separates x̃, ỹ for all k < i < nint − k.

The line β̃q,i is a (L,L)-quasi-geodesic in the Poincaré disc where L only depends on the

flat metric. (L,L)-quasi-geodesics with common endpoints have universally bounded

Hausdorff distance H(L). Therefore, for each geodesic line β̃σ,i which has distance

greater than H(L) to x̃, ỹ, the corresponding quasi-geodesic β̃q,i also separates x̃ and ỹ.

Since β is simple and of uniformly bounded length, we conclude from the Collar Lemma

that any two geodesic lines β̃σ,i, β̃σ,i+1 are disjoint and their distance is bounded from

below by some uniform constant which only depends on the hyperbolic length of βσ. So,

there is a bound k > 0 which depends on the quasi-isometric constant L and the length

of βσ such that β̃σ,i is of distance at least H(L) to x̃, ỹ for all k ≤ i ≤ nint − k. So, the

corresponding flat geodesic line β̃q,i separates x̃ and ỹ .

The geodesic lines β̃q,i, βσ,i admit a coarse synchronization of the geodesics gq, gσ in the

following way: To each subarc of gσ that connects two lines βσ,i, βσ,j , k < i, j < nint − k

we associate the shortest subarc of gq that connects the corresponding lines βq,i, βq,j .

After projecting the subarcs to the base surface they can be closed up with a piece of

βσ, resp. βq to closed curves which are in same free homotopy classes up to attaching

multiples of β.

Let tj , k ≤ j ≤ nCd − k so that g′σ(tj) ∈ CDα. g̃σ|[tj ,tj+s0]
intersects at least m lifts

β̃σ,ij , . . . , β̃σ,ij+m.

Moreover, the lines β̃q,ij . . . β̃q,ij+m intersect g̃q. Let b̃j ⊂ g̃q be the shortest subarc of g̃q

connecting β̃q,ij with β̃q,ij+m.

For different times tj, the subarcs b̃j are disjoint up to endpoints and therefore

lq(g̃q) ≥
nCD−k∑

j=k

lq(b̃j)

It remains to show that each arc b̃j is of length at least c−1λ(Y ). Let ãj ⊂ g̃σ be the

corresponding subarc of g̃σ connecting β̃σ,ij with β̃σ,ij+m.

One can close π(ãj) up along βσ to a closed curve aj which is in the free homotopy class
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[
αm−2

]
. As βq and βσ are freely homotopic, we can close π(b̃j) up along a piece of βq

to a closed curve bj which is in the free homotopy class
[

αm′

βl
]

, |m′ − (m− 2)| ≤ 1 and

therefore not necessarily simple. Let bq,j be the flat geodesic representative of the free

homotopy class
[

αm′

βl
]

.

We can remove a subarc of bq,j so that the resulting arc is a loop in the free homotopy

class
[

αm′

]

or
[

αm′

β
]

. Since lq([α
m′

β]) ≥ lq([α
m′

]) − lq([β]) = m′lq(αq) − lq(βq) we

conclude

lq
(
bq,j
)
≥ lq

([

αm′

])

− lq ([β]) ≥ (m− 3)lq(αq)− lq(βq)

It follows from Proposition 3.14 that there exists a uniform constant c > 0 so that

lq(bj) ≥ lq
(
bj
)
− lq(β) ≥ c−1λ(Y )(m− 3)− 2lq(βq) ≥ c−1λ(Y )

We return to proof of the theorem. Let v ∈ T 1X be a m-typical point. Since gt acts

ergodically on T 1X, there is some bound T0 > 0 so that the geodesic gt(v), 0 < t < T

spends at least some proportional amount of time rT in CDα for all T > T0. r depends

only on the area of CDα and the area of T 1X and therefore only on the topology of X.

So there are at least rT
s0

times tj so that gtj (v) ∈ CDα, 0 < tj < tj − s0 < T − 2s0 .

By Lemma 5.2

T−1F0,T (v) ≥ T−1c−1λ(Y )

(
rT

s0
− 2k

)

= c−1λ(Y )

(
r

s0
− 2k

T

)

Recall that c, s0, r > 0 only depend on the topology of X and k > 0 is independent of

T .

It remains to show the Theorem in the case that Y is a pair of pants.

Let ασ, βσ the intersecting hyperbolic geodesics as in Figure 6. The hyperbolic length of

both closed curves is bounded from above by some uniform constant. Since the Theorem

of Rafi only compares the length of simple closed curves, we have to show that the flat

length of the geodesic representatives αq, βq is uniformly bounded. For both cases the

line of argument is identical, so we only show this fact for αq. We slightly homotope

αq such that it has exactly one point of self-intersection and the length only changes

by some small factor. One can decompose αq in two simple closed curves α1,α2 which

are both in the homotopy class of boundary components. Therefore, the flat length of

the geodesic representative α1,q, α2,q is at most λ(Y ). By Theorem 3.14 the diameter

of Yq, with respect to the flat metric, is less than cλ(Y ) for some constant uniform

constant c. Since αq is the length-minimizing representative in the free homotopy class,

lq(αq) ≤ 2λ(Y )(1 + c).
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Figure 6: A pair of pants is homeomorphic to a twice-punctured disc. Since the boundary

components are uniformly short, it is a consequence of hyperbolic geometry that the geodesics

ασ, βσ are uniformly short.

We choose the 4-sheeted cover π : Y ′ → Y of the thick piece, so that up to passing

through ασ, βσ twice, the lifts α′
σ, β

′
σ are simple closed and intersecting. We can lift the

hyperbolic metric to Y ′. The hyperbolic length of α′
σ, β

′
σ is twice the length of ασ, βσ.

We show, that the remaining part of the argument is analogous to the one in the first

case:

Since the length of α′
σ is the uniformly bounded, there exists some hyperbolic collar

Cα ⊂ Y ′ around α′
σ which has some definite width. As in the first case we choose the

collar of directions CDα′ so that for each v ∈ CDα′ the flow gt(v), 0 < t < s0 remains in

Cα′ and intersects β′
σ a certain number of times m. We can choose CDα that the volume

of CDα′ has some definite amount. The projection of the collar of directions to the unit

tangent bundle of the base surface T 1X has hyperbolic measure at least one fourth the

hyperbolic measure of CDα′ .

Let v ∈ π(CDα′) ⊂ T 1X be a point. We can choose a lift of the flow τ(gt(v)), 0 < t < s0

to T 1Y ′. The lifted geodesic winds through the collar Cα′ and can be closed up with a

piece of β′
σ to a closed curve which is freely homotopic to α′m′

β′l′ . The situation on the

base surface is equal. For v ∈ π(CDα′) the geodesic flow τ(gt(v)), 0 < t < t0 remains in

π(Cα′) and intersects βσ at least m times. One closes up the piece with βσ and obtains

a closed curve which is freely homotopic to αm′

βl, l ∈ N, |m′ − (m− 2)| < 1.

The remaining part of the argument is analogous to the one in the first case.

5.3 Geodesic flow

We investigate how the typical geodesic ray winds through the flat surface. Therefore,

we define the geodesic flow with respect to the flat metric.

Similar constructions have already been made by Kaimanovich [Kai94] in the case of

Gromov hyperbolic spaces with additional conditions, by Bourdon [Bou95] for Cat(−1)
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spaces and by Coornaert and Papadopoulos [CP94], [CP97] for metric trees resp. graphs.

5.3.1 Construction of the geodesic flow

The main work will be to define an appropriate measure for the geodesic flow.

We recall the necessary concepts and results from section 3.

Let S = (X, dq) be a flat surface and π : S̃ → S the flat universal cover. Let νx̃ be

the Patterson-Sullivan measure on the compactification of S̃ with respect to some base

point x̃ ∈ S̃.

The set shỹ(U) denotes the shadow of a set U with respect to some base point ỹ in the

compactification of S̃. The set

∂shỹ(U) := ∂S̃ ∩ shỹ(U)

is defined as the restriction of the shadow to the boundary. Assume that shỹ(U) is Borel.

The Patterson-Sullivan measure is supported on the boundary and therefore

νx̃(shỹ(U)) = νx̃(∂shỹ(U))

If U is an open set, the shadow is open as well. Furthermore, if U is a singular point,

the boundary shadow is a closed set containing an open set.

S̃ is a δ-hyperbolic space. Therefore, there exists a family of Gromov metrics d∞,x̃ on

the boundary ∂S̃ which satisfy

ξ−(η·ζ)x̃ ≥ d∞,x̃(η, ζ) ≥ (1− ǫ(ξ))(ξ−(η·ζ)x̃)

It is our goal to understand the typical behavior of bi-infinite geodesics with respect to

some measure which is strongly connected to the Patterson-Sullivan measure. First we

show some criteria for non-typical boundary points.

Proposition 5.1. Let x̃ be a point in the universal cover S̃ and let Bx̃ be the set of points

η ∈ ∂S̃ such that [x̃, η] passes through finitely many singularities. Then νx̃(Bx̃) = 0.

Proof. Let Bx̃,0 ⊂ Bx̃ be the set of endpoints η ∈ ∂S̃ such that the connecting geodesic

[x̃, η] does not pass through any singularity.

Since shadows of points are closed, Bx̃,0 is the complement of countably many closed

sets and therefore Borel.

Let ΣS̃ be the set of singularities on S̃. Let L ≫ 0 and AL ⊂ ΣS̃ be the set of singularities

ς̃ of distance at most L to x̃ so that [x̃, ς] does not pass through any other singularity. It

was shown by [Mas90, Theorem 1] that there is some bound L0 > 0 such that for each
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L > L0 there are less than L3 such singularities.

Clearly

∂S̃ − ∂shx̃(AL) ⊃ Bx̃,0

Let kπ be the cone angle at x̃. On the circle of directions at x̃, we choose a base direction

θ0 and a clockwise ordering. For simplicity we assume that θ0 is the direction of the

geodesic [x̃, ς̃ ] for some point ς̃ ∈ AL.

To each point ỹ 6= x̃ in the compactification of S̃, we associate a well-defined angle

ϑ(ỹ) ∈ [0, kπ) which is the angle of [x̃, ỹ] at x̃ with respect to θ0 and the choice of

clockwise ordering. Let z̃ 6= x̃ be a point in [x̃, ỹ]. Clearly ϑ(z̃) = ϑ(ỹ). We order the

points ς̃i ∈ AL, i = 1, . . . , n by their angle ϑ. After enlarging L, by Lemma 3.4 we can

assume that

0 < ϑ(ς̃i+1)− ϑ(ς̃i) ≤ π/3, i ≤ n− 1

kπ − ϑ(ς̃n) ≤ π/3

We decompose B0,x̃ into sets

SL
i := {η ∈ B0,x̃|ϑ(ς̃i) < ϑ(η) < ϑ(ς̃i+1)}

SL
n := {η ∈ B0,x̃|ϑ(ς̃n) < ϑ(η)}

see Figure 7. We estimate the diameter of each set SL
i with respect to the Gromov

Figure 7: We cut out the shadows of all saddle connections of length at most L. The triangle

formed of x̃ and the endpoints of c̃L does not contain a singularity and therefore it is euclidean.

c̃L has distance at least L/3 to x̃.

metric dx̃,∞.
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Let η, ζ be points in SL
i so that ϑ(η) ≤ ϑ(ζ). We claim that

(η · ζ)x̃ ≥ L/3− 2δ

Consider the triangle △(x̃, [x̃, η](s), [x̃, ζ](s)), 0 < s < L. The geodesic [x̃, η](t) and

[x̃, ζ](t), 0 < t ≤ s do not pass through any singularity.

Denote by

c̃s := [[x̃, η](s), [x̃, ζ](s)], 0 < s < L

the third geodesic. [x̃, η] and [x̃, ζ] sweep out a sector so that the angle at x̃ is less than

π/3. The sector does not contain any singularity of distance less than L to x̃. c̃s, s < L

remains in the sector and therefore does not pass through any singularity.

In the interior of a triangle there is no singularity either and consequently the triangle

△(x̃, [x̃, η](s), [x̃, ζ](s)), 0 < s < L is isometric to a euclidean triangle and the inner angle

at x̃ is less than π/3. Therefore

d(c̃s, x̃) > s/3, 0 < s < L

We can estimate the Gromov product

([x̃, η](s) · [x̃, ζ](s))x̃ > d(x̃, c̃s)− 4δ > s/3− 2δ, 0 < s < L

and therefore

(η · ζ)x̃ ≥ L/3− 2δ ⇒ d∞(η, ζ) ≤ ξ−L/3+4δ

So

diam∞(SL
i ) ≤ ξ−L/3+4δ

So, for each L, the sets
⋃

SL
i , i = 1, . . . n(L) cover Bx̃,0. The diameter of SL

i is bounded

from above by a function diam(L). Since diam(L) decreases exponentially in L and

n(L) grows polynomially in L, the Hausdorff dimension of Bx̃,0 has to be 0. Since the

Hausdorff dimension of the whole boundary is at least 1, Bx̃,0 has measure 0 with respect

to each Patterson-Sullivan measure νỹ.

For each geodesic ray r̃ from x̃ to a point in Bx̃ there is a last singularity r̃ passes

through.

Therefore

Bx̃ ⊂
⋃

ς̃∈Σ
S̃

Bς̃ ,0 ∪Bx̃,0

Due to the fact that there are only countably many singularities, we deduce that

νx̃(Bx̃) = 0
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We need a stronger criterion for non-typical boundary points.

We recall that by Definition 3.3 and Remark 3.2 a geodesic ray r̃ ⊂ S̃ is called quasi-

straight if the sum of angles at one side is bounded:
∑

t>0

(ϑ+(r̃(t))− π) < ∞

A bi-infinite geodesic is quasi-straight if the induced ray in positive direction is quasi-

straight.

We called str∂ the set of quasi-straight boundary points of geodesic rays.

We show that quasi-straight boundary points are of measure 0 with respect to each

Patterson-Sullivan measure.

Proposition 5.2. νx̃(str∂) = 0

The following Lemma is needed.

Lemma 5.3. Let π : S̃ → S be the flat universal cover of a closed flat surface. There is

some positive function R : R+ → R+ such that the following holds: Let ς̃ ∈ S̃ be some

singularity and let I be a closed interval of directions of length l > 0 at ς̃. Let SI be the

set of boundary points η ∈ ∂S̃ such that the direction of [ς̃ , η] is contained in I.

Then the size of SI is bounded from below the size of R(l):

νς̃(SI) ≥ R(l)

Proof. We first have to show that is SI closed and therefore Borel. Let U be a standard

neighborhood of ς̃. Consider the continuous closest point projection prU : ∂S̃ → U .

Since SI = pr−1(V ), where V is a closed sector in U , SI is a closed subset of ∂S̃.

Let ς̃i ∈ ΣS̃ , i = 1 . . . n be finitely many singularities in the flat universal cover so that

every singularity ς̃ ∈ ΣS̃ is in the Γ-orbit of one ς̃i. We cover the circle of directions at ς̃i

with finitely many closed intervals Ii,j of length l/3. We define the boundary intervals

SIi,j ⊂ ∂S̃ as those points η so that the direction of [ς̃i, η] is contained in Ii,j.

SIi,j contains an open set and therefore has positive measure.

We define

R(l) := min
i,j

νς̃i(SIi,j) > 0

For every other singularity γ(ς̃i) in the Γ-orbit of ς̃i we can translate the covering of

directions with γ and obtain the same measure.

νγ(ς̃i)(Sγ(Ii,j)) = νς̃i(SIi,j )

Observe that each interval of directions I of length l at ς has to contain one of the smaller

intervals of length l/3.
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Proof of the Proposition. Recall that ∂str is the set of boundary points η of the universal

cover such that for any point x̃ ∈ S̃

∑

t>0

(ϑ+([x̃, η](t)) − π) < ∞

By Proposition 5.1 it suffices to consider only those quasi-straight points η such that

[x̃, η] passes through infinitely many singularities. Let Ax̃ ⊂ ∂S̃ be the set of those

quasi-straight endpoints η such that

∑

t>0

(ϑ+([x̃, η](t)) − π) ≤ π/3

For each n let Ax̃,n ⊂ ΣS̃ be the set of singularities ς̃n such that [x̃, ς̃n] passes through n

singularities and that at each singularity ς̃ ∈ [x̃, ς̃n], the smaller angle between the two

rays [x̃, ς̃ ] and [ς̃ , ς̃n] is between π and 4π/3, see figure 8.

For ς̃n+1 ∈ An+1 let ς̃n be the n-th singularity in [x̃, ς̃n+1].

Figure 8: For any singularity in Ax̃,1 the further points in Ax̃,2 are contained in the light gray

part. For the consecutive singularity in Ax̃,3 we see a splitting in two parts, hence a Cantor

construction.

[x̃, ς̃n] passes through n singularities and the angle properties at each singularity are

satisfied, so ς̃n ∈ Ax̃,n.

So we can define the mapping

φn : Ax̃,n+1 → Ax̃,n, φn : ς̃n+1 → ς̃n

Consequently

shx̃(Ax̃,n) ⊃ Ax̃,n+1

81



By definition of Ax̃ it follows that

shx̃(Ax̃,n) ⊃ Ax̃

Since shx̃(Ax̃,n) is a countable union of closed sets, it is Borel. By uniqueness of geodesics

it follows that the shadows are disjoint for two different points ς̃n 6= ς̃ ′n ∈ Ax̃,n.

shx̃(ς̃n) ∩ shx̃(ς̃
′
n) = ∅

Since the set of singularities is countable,

νx̃(shx̃(Ax̃,n)) =
∑

ς̃n∈Ax̃,n

νx̃(shx̃(ς̃n))

Let ς̃n+1 be a point in Aς̃0,n+1 and denote by ς̃n := φn(ς̃n+1) the last singularity on the

geodesic [ς̃0, ˜ςn+1].

A point ỹ is contained in shx̃(ς̃n+1) only if the two geodesics [x̃, ς̃n] and [ς̃n, ỹ] make angle

between π and 4π/3 at ς̃n. Therefore, the direction of [ς̃n, ỹ] is contained in two intervals

of direction I1, I2 at ς̃n which are both of length π/3.

On the other hand, the total angle at ς̃n is at least 3π. The set of points ỹ in the whole

shadow shx̃(ς̃n) defines an interval of direction at ς̃n of length at least π. Therefore, the

shadow shx̃(φ
−1
n (ς̃n)) misses a subinterval of directions of length at least π/3 at ς̃n.

Let R be the function of Lemma 5.3. It follows that

νς̃n(shx̃(ς̃n)) > νς̃n(shx̃(φ
−1
n (ς̃n))) +R(π/3)

⇔ 1− R(π/3)

νς̃n(shx̃(ς̃n))
>

νς̃n(shx̃(φ
−1
n (ς̃n)))

νς̃n(shx̃(ς̃n))
=

νx̃(shx̃(φ
−1
n (ς̃n))

νx̃(shx̃(ς̃n))

The last equality is due to Corollary 2.1. Since νς̃n(shx̃(ς̃n)) is uniformly bounded by

exp(e(S̃,ΓS)diam), the left term has a uniform upper bound c < 1.

Therefore

νx̃(shx̃(φ
−1
n (ς̃n))) ≤ c · νx̃(shx̃(ς̃n))

and so

νx̃ (shx̃(Ax̃,n+1)) ≤ cνx̃ (shx̃(Ax̃,n))

Since

Ax̃ ⊂
⋂

n≥0

shx̃(Ax̃,n)

Ax̃ is a subset of a measure 0 set. As we extended the Patterson-Sullivan measure to a

complete measure, it follows that νx̃(Ax̃) = 0 and therefore

νỹ(Ax̃) = 0
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for any ỹ ∈ S̃.

It remains to show that the whole set ∂str has measure 0. Let η be a quasi-straight

point which passes through infinitely many singularities.

Since ϑ+([x̃, η](t)) − π is non-negative, there is a time t0 such that
∑

t>t0

(ϑ+([x̃, η](t)) − π) ≤ π/3

As [x̃, η] passes through infinitely many singularities, there is some singularity ς̃ ∈
[x̃, η](t0,∞).

So η is contained in Aς̃ for some singularity ς̃ where Aς̃ is defined as above. Therefore,

the union of sets
⋃

ς̃∈Σ
S̃

Aς̃ ⊃ str∂

covers the quasi-straight points up to measure 0.

Since the set of singularities Σ is countable, the covering has measure 0.

We are able to define the geodesic flow and an appropriate measure as in [Bou95],

[Hop71]. Since the flat metric is not smooth, we cannot make use of the unit tangent

bundle for the geodesic flow. On the other hand, a point in the unit tangent bundle of a

closed hyperbolic surface is in natural one-to-one correspondence with a parametrized bi-

infinite unit speed geodesic. So the space of bi-infinite parametrized unit-speed geodesics

plays the role of the unit tangent bundle.

Definition 5.2. Let π : S̃ → S be the flat universal cover of a closed flat surface.

Let GS̃ resp. GS be the set of all parametrized bi-infinite unit speed geodesics α̃ resp. α

in S̃ resp. S.

Both spaces are endowed with the metric:

dG(α̃, α̃
′) :=

∫ ∞

−∞
d(α̃(t), α̃′(t))exp(−|t|)dt

One observes that the space GS̃ is proper and GS is compact.

The group of Deck transformations Γ acts on GS̃ as

γ : α̃ 7→ γ(α̃)

Γ acts isometric properly discontinuously and freely on S. The same holds for the action

of Γ on GS̃. The natural mapping between the quotient space GS̃/Γ and the space GS
is a homeomorphism.

Furthermore, we define the geodesic flow gt acting on GS̃ resp. GS as

gt(α̃)(s) := α̃(t+ s)

83



Each geodesic α̃ ∈ GS̃ can be projected to its endpoints and therefore we define

τ : GS̃ → ∂2S̃ −△

By Proposition 2.5 τ is onto and equivariant with respect to Γ. gt acts on the fibers of

τ .

τ ◦ gt = τ

We will first define a measure on ∂2S̃ −△.

Let x̃ ∈ S̃ be a point and νx̃ the Patterson-Sullivan measure.

Let (η, ζ) ∈ ∂2S̃ − △ be a pair of boundary points. There always exists a geodesic

connecting η with ζ.

If the geodesic is unique up to reparametrization, we choose one such geodesic [η, ζ].

Otherwise, by Proposition 3.8 the projection of each connecting geodesic to the base flat

surface S is a core curve of the same maximal flat cylinder. So there are only countable

many of those pairs (η, ζ). For simplicity reasons we choose a connecting geodesic [η, ζ]

which projects to the central core curve of the maximal cylinder. Again [η, ζ] is uniquely

defined up to reparametrization.

Let ỹ be a point on [η, ζ].

We define

ιx̃ : (∂2S̃ −△) → R+, ιx̃(η, ζ) :=
dνỹ
dνx̃

(η)
dνỹ
dνx̃

(ζ)

It is a consequence of Corollary 2.1 that ιx̃ is independent of the choice of ỹ ∈ [η, ζ].

We define the following Borel measure on ∂2S̃ −△:

ν̃x̃ := ιx̃ ∗ ν2x̃

Proposition 5.3. ν̃x̃ satisfies the following properties:

i) ν̃x̃ is independent of the base point x̃.

ii) ν̃x̃ is Γ-invariant.

iii) ν̃x̃ is an infinite Radon measure without atoms.

Proof. Let νx̃ be the Patterson-Sullivan measure with respect to some base point x̃.

i) Let (η, ζ) ∈ ∂2S̃ −△ be some pair of boundary points and ỹ ∈ [η, ζ] some point.

The following equation holds:

dν̃x̃
dν̃ỹ

(η, ζ) =
dνx̃
dνỹ

(η)
dνx̃
dνỹ

(ζ)
dνỹ
dνx̃

(η)
dνỹ
dνx̃

(ζ) = 1
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Consequently, it follows for arbitrary z̃ ∈ S̃

dν̃x̃
dν̃z̃

(η, ζ) =
dν̃x̃
dν̃ỹ

dν̃ỹ
dν̃z̃

(η, ζ) = 1

Therefore, we can skip the index and abbreviate ν̃.

ii) γ∗νγ(x̃) = νx̃ and Γ preserves geodesics, so

γ∗ν̃γ(x̃) = ν̃x̃ = ν̃γ(x̃)

iii) ν̃ is absolutely continuous to ν2x̃ and by Corollary 2.1, ιx̃ can be compared with the

Busemann distance. Therefore, ιx̃ is locally bounded by positive constants from

above and below. Consequently, ν̃ is locally finite and atom free.

It remains to show that ν̃ is infinite. Let η ∈ ∂S̃ be a point on the boundary,

and let B := Bη(ǫ) ⊂ ∂S̃ be a metric ball about η of radius ǫ with respect to the

Gromov metric d∞,x̃. Up to making ǫ smaller we can assume that B is not dense

on the boundary.

Each element of Γ acts on the boundary with north-south dynamics and the at-

tracting fixed points are dense. Therefore, we can translate B with infinitely many

elements γi ∈ Γ, i ∈ N, so that γi(B)∩γj(B) = ∅,∀i 6= j. Since the νx is supported

on the whole boundary and ν̃ is absolutely continuous to ν2x̃, B × B − △ is of

positive ν̃-measure. Since ν̃ is Γ-invariant, ν̃ is infinite.

Let (η, ζ) ∈ ∂2S̃ − △ be a pair of distinct boundary points which is typical for ν̃

and so, η, ζ are not quasi-straight. Moreover, let [η, ζ] be a connecting geodesic. The

mapping t 7→ gt([η, ζ]) defines an R-parametrization of the fiber τ−1(η, ζ). We can pull

back the Lebesgue measure ℓ on R to the fiber. This fiber measure is independent of the

parametrization as the transition map is a translation.

Definition 5.3. We define a measure on µ̃ on GS̃

µ̃ := ν̃ × ℓ

µ̃ is a Γ- invariant Radon measure.

Definition 5.4. For each set U ⊂ S̃ we define:

GU := {α̃ ∈ GS̃, α̃(0) ∈ U}
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The set GU is open resp. closed resp. Borel if and only if U ⊂ S̃ is open resp. closed

resp. Borel.

Obviously γ(GU) = Gγ(U) for each γ ∈ Γ.

Let F ⊂ S̃ be a Borel fundamental domain of S̃/Γ i.e. F is a Borel set so that, ΓF =

S̃, γ(F ) ∩ F = ∅,∀γ 6= id. GF naturally forms a fundamental domain for GS̃/Γ.
We define the measure µ on GS:
Let U ⊂ GS be Borel

µ(U) := µ̃(π−1(U) ∩ GF )

Remark 5.1. µ is independent of F . One can also choose directly a Borel fundamental

domain in GS̃ for Γ and also obtain the same measure µ. On the other hand, we will

need special properties of the domain GF in section 5.3.2.

Since µ̃ is Radon and we can choose F ⊂ S̃ so that GF is bounded, µ is a finite Radon

measure.

Proposition 5.4. gt acts µ-ergodically on (GS, µ).

Proof. We refer to the so-called Hopf Argument [Hop71] which we sketch here.

Let f : GS → R be a continuous function. By Birkhoff Ergodic Theorem s−1
∫ s
0 f(gt)dt

converges a.e. to a measurable gt-invariant function f∗.

Recall that any two bi-infinite geodesics in the flat universal cover with a common

positive not-quasi-straight endpoint η are asymptotic.

Therefore, up to a subset of µ-measure 0, for any two bi-infinite parametrized geodesics

α,α′ in GS one finds parametrized geodesics α̃1, α̃1, so that each of the pairs (α̃, α̃1),

(α̃1, α̃2), (α̃2, α̃
′) are asymptotic in positive or negative direction. Consequently, f∗(α) =

f∗(α′) and so f∗ is constant a.e. As µ is finite, continuous function are dense in L1(GS, µ)

5.3.2 Typical behavior

On a flat surface, the infinite extension of a compact geodesic arc is typically not unique.

It turns out that the set of geodesics, which pass through such an arc, typically has

positive measure.

We estimate the size of shadows.

Definition 5.5. Let π : S̃ → S be the flat universal cover of a closed flat surface. Let

x̃ ∈ S̃ be a point and ς̃ be some singularity.

∂shx̃(ς̃) is closed and therefore measurable. We define

rx̃(ς̃) := νx̃ (shx̃(ς̃)) exp(e(S̃,ΓS)d(x̃, ς̃)) = νς̃(shx̃(ς̃))
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The equation follows from Corollary 2.1. It is the goal to show, that rx̃(ς̃) is nearly

constant and so one can roughly identify νx̃(∂shx̃(ς̃)) with exp(−e(S̃,ΓS)d(x̃, ς̃)).

Denote by diam(S) the diameter of S. Let c1, c2 be local geodesics in S so that c1 ends

at a singularity and c2 issues from some singularity. In Proposition 3.11 it was shown

that there exists a local geodesic c of length at most Cl(S) + l(c1) + l(c2) which first

passes through c1 and eventually passes through c2.

Lemma 5.4. Let S̃ be the flat universal cover of a closed flat surface S. The function

rx̃(ς) is bounded from above and below.

exp(e(S̃,ΓS)diam(S)) ≥ rx̃(ς) ≥ exp(−e(S̃,ΓS)(2Cl(S) + diam(S)))/4

Proof. The first inequality follows from

rx̃(ς) = νς̃(shx̃(ς̃)) ≤ νς̃(∂S̃) ≤ exp(e(S̃,ΓS)diam(S))

The last estimation is due to Lemma 2.4.

On the other hand, let ς̃0 ∈ S̃ be some singularity. By Lemma 3.5 and Proposition 3.11

there is a set of at most 4 saddle connections s̃1, . . . s̃4 with endpoint ς̃0. The length of

each s̃i is bounded by Cl(S) and the shadows of all s̃i cover the whole boundary. To be

more precise, let ς̃i be the starting point of s̃i.

∂S̃ =
⋃

i≤4

∂shς̃i(ς̃0)

As νς̃0(S̃) ≥ exp(−e(S̃,ΓS)diam(S)), it follows that

∑

i≤4

νς̃0(shς̃i(ς̃0)) ≥ exp(−e(S̃,ΓS)diam(S))

Therefore, we can assume

rς̃1(ς̃0) = νς̃0(shς̃1(ς̃0)) ≥ exp(−e(S̃,ΓS)diam(S))/4

We showed the existence of at least one uniformly short saddle connection s̃1 with

starting point ς̃1 and endpoint ς̃0 such that rς̃1(ς̃0) is uniformly bounded from below.

Let x̃ be some point and let ς̃ be some singularity. There exists a geodesic c̃ which first

connects x̃ with ς̃ and eventually passes through γ(s̃1) for some γ ∈ Γ. We can choose

such a c̃ with length bounded from above by

l(c̃) ≤ Cl(S) + l(s̃1) + d(x̃, ς̃) ≤ 2Cl(S) + d(x̃, ς̃)
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Figure 9: The shadow of ς̃ with respect to x̃, marked light gray, contains the shadow of the

endpoint of γ(s̃1), here dark gray.

see Figure 9.

The shadow of ∂shx̃(ς̃) contains ∂shx̃(γ(ς̃0)), the shadow of the endpoint of γ(s̃1) with

respect to the base point x̃. Therefore

νx̃(∂shx̃(ς̃)) ≥ νx̃(∂shx̃(γ(ς̃0)))

Since

νx̃ (∂shx̃(γ(ς̃0)))

= νγ(ς̃0)(∂shx̃(γ(ς̃0)))exp(−e(S̃,ΓS)d(x̃, γ(ς̃0)))

= νγ(ς̃0)(∂shγ(ς̃1)(γ(ς̃0)))exp(−e(Γ)d(x̃, γ(ς̃0)))

= νς̃0(∂shς̃1(ς̃0))exp(−e(S̃,ΓS)d(x̃, γ(ς̃0)))

= rς̃1(ς̃0)exp(−e(S̃,ΓS)d(x̃, γ(ς̃0)))

≥ exp(−e(S̃,ΓS)diam(S) − e(S̃,ΓS)d(x̃, γ(ς̃0)))/4

We conclude

rx̃(ς̃) ≥ νx̃(shx̃(γ(ς̃0))) exp(e(S̃,ΓS)d(x̃, ς̃))

≥ exp(e(S̃,ΓS)(d(x̃, ς̃)− diam(S)− d(x̃, γ(ς̃0)))/4

= exp(−e(S̃,ΓS)(2Cl(S) + diam(S)))/4

As a side note, the developed tools allow to estimate the entropy.

Corollary 5.1. Let ς̃ ∈ S̃ be a singularity in the universal cover. Let Σς̃ ,0 be the set of

singularities ς̃ ′ 6= ς̃ so that the connecting geodesic [ς̃ , ς̃ ′] is a saddle connection. Denote
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by Cl(S) the constant as in Lemma 5.4. The entropy satisfies the following inequalities:

4 exp(e(S̃,ΓS)(2Cl(S) + diam)) ≥
∑

ς̃′∈Σς̃,0

exp(−e(S̃,ΓS)d(ς̃ , ς̃
′)) ≥ exp(−e(S̃,ΓS)diam)

Proof. We compute the Patterson-Sullivan measure νς̃ with respect to the orbit Γς̃. The

total measure νς̃(∂S̃) is 1.

Let ς1 6= ς2 ∈ Σς̃,0. The shadows shς̃(ςi), i = 1, 2 are disjoint and the complement of all

the shadows of saddle connections has measure 0. It follows that

1 = νς̃(∂S̃) =
∑

ς̃′∈Σς̃,0

exp(−e(S̃,ΓS)d(ς̃ , ς̃
′))rς̃(ς̃

′)

By Lemma 5.4 rς̃(ς̃
′) is bounded by the constants,

exp(e(S̃,ΓS)diam) ≥ rς̃(ς̃
′) ≥ exp(−e(S̃,ΓS)(2Cl(S) + diam))/4

Remark 5.2. It is not clear if the first inequality is redundant, compare the example in

section 6.

We return to the geodesic flow.

Theorem 5.4. There is a constant C(S) > 0 which depends on the geometry of S such

that the following holds: For any local geodesic c : [0, s] → S in S of positive finite length,

let cext be the maximal extension of c with the property that the extension in unique. A

typical geodesic passes through the geodesic arc c with a frequency F which is bounded

from above and below by

C(S)−1exp(−e(S̃,ΓS)l(cext)) ≤ F ≤ C(S)exp(−e(S̃,ΓS)l(cext))

Proof. Let c : [0, s] → S, s > 0 be a local geodesic in S. Denote by Ac the set

Ac := {α ∈ GS : ∃0 < t ≤ 1 : gt(α)|[0,s] = c}

The set Ac is Borel.

As gt acts ergodically with respect to µ, for any typical geodesic α ∈ GS

lim
t

1

2t

∫ t

−t
1Ac(gt(α))dt =

µ(Ac)

µ(GS)

Choose some lift c̃ of c in the universal cover. Let F ⊂ S̃ be a Borel fundamental domain

of S. Furthermore, we can assume that F contains c̃(0) in its interior. Let F ′ ⊂ F be
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the subdomain of F with the removed sides.

There is some ǫ > 0 such that

α̃(0) = c̃(0), |t| < ǫ ⇒ α̃(t) ∈
◦
F

and

d(γ(c̃(0)), F ) > ǫ,∀γ ∈ Γ− id

For simplicity reasons we can choose ǫ so that ǫ−1 is an integer..

We decompose Ac ⊂ GS in sets

Ac,i := {α ∈ GS : gt(α)|[0,s] = c, iǫ < t ≤ (i+ 1)ǫ}

Since the geodesic flow translates the sets gǫ(Ac,i) = Ac,i+1, all the sets Ac,i have the

same measure.

Since Ac equals the disjoint union
◦⋃
i≤ǫ−1 Ac,i,

µ(Ac) =
s

ǫ
µ(Ac,0)

Let

Ãc̃,0 := {α̃ ∈ GS̃ : gt(α̃)|[0,s] = c̃, 0 < t ≤ ǫ}

One observes that π−1(Ac,0) ∩ GF ′ = Ãc̃,0.

Therefore

µ(Ac,0) = µ̃(Ãc̃,0)

Let x̃ := c̃(s/2) be the midpoint of c̃. Each geodesic in α̃ ∈ Ãc̃,0 has the property that

its endpoints are contained in the following shadow:

τ(α̃) ∈ shx̃(c̃(0)) × shx̃(c̃(s)) ⊂ ∂2S̃ −△

On the other hand, for each pair of points

(η, ζ) ∈ shx̃(c̃(0)) × shx̃(c̃(s))

the concatenation of [η, x̃] and [x̃, ζ] is locally geodesic outside x̃ and coincides with c̃

about x̃. Therefore, the concatenation is a geodesic passing through c̃. So

τ(Ãc̃,0) = shx(c̃(0))× shx(c̃(s))

Furthermore, for each pair of points (η, ζ) ∈ τ(Ãc̃,0) there exists a unique connecting

geodesic [η, ζ] which coincides with c̃ on the interval [0, s]. Consequently

gt([η, ζ]) ∈ Ãc̃,0 ⇔ t ∈ [0, ǫ]
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Therefore, the Lebesgue measure of the intersection of the fiber with Ãc̃,0 is ǫ. We deduce

µ(Ac) =
1

ǫ
µ̃(Ãc̃,0) = ν̃(shx̃(c̃(0))× shx̃(c̃(s)))

It remains to compute the measure of the shadow product of c̃.

Recall that νx̃ is the Patterson-Sullivan measure with respect to the base point x̃.

Let (η, ζ) ∈ ν̃(shx̃(c̃(0))× shx̃(c̃(s))) be a pair of not quasi-straight points.

Each geodesic connecting η with ζ has to pass through x̃ and so

ν̃(shx̃(c̃(0)) × shx̃(c̃(s))) = νx̃(shx̃(c̃(0))) ∗ νx̃(shx̃(c̃(s)))

Assume that the endpoint c̃(s) of c̃ is regular. Since geodesics are straight line segments

outside the singularities, there is locally only one possibility of extending c̃ in positive

direction so that it remains geodesic. On the other hand, at each singularity there is a

one-parameter family of locally geodesic extensions. We extend c̃ as far as possible in

positive as well as negative direction as long as the extension is unique, i.e. until the

extension either hits a singularity or tends to infinity. We call the extended geodesic

c̃ext.

If c̃ext is infinite, one of the two factors in the product shadow is a point and therefore

the product has ν̃-measure 0.

Assume that the extension is finite.

We parametrize the extended geodesic c̃ext : [−s1, s2] → S so that c̃ext|[0,s] = c̃. By

uniqueness of the extension

∂shx̃(c̃(0)) = ∂shx̃(c̃ext(−s1))

and

∂shx̃(c̃(s)) = ∂shx̃(c̃ext(s2))

Since the extension is finite, both endpoints of c̃ext are singularities. It follows from

Lemma 5.4 that there is a universal constant C(S) such that

C(S)−1exp(−e(S̃,ΓS)(s1 + s/2)) ≤ νx̃(shx̃(c̃ext(−s1))) ≤ C(S)exp(−e(S̃,ΓS)(s1 + s/2))

in the same way

C(S)−1exp(−e(S̃,ΓS)(s2 − s/2)) ≤ νx̃(shx̃(c̃ext(s2))) ≤ C(S)exp(−e(S̃,ΓS)(s2 − s/2))

since l(c̃ext) = s2 + s1

C(S)−2exp(−e(S̃,ΓS)l(c̃ext)) ≤ µ(Ac) ≤ C(S)2exp(−e(S̃,ΓS)l(c̃ext))
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Let be α ∈ GS be a µ-typical geodesic. It follows that the time α spends in c is pro-

portional exp(−e(S̃,ΓS)l(cext)). Consequently, the frequency α enters c is proportional

to

exp(−e(S̃,ΓS)l(cext))

.

6 Example branched cover of the torus

We estimate the entropy and Hausdorff dimension for a family of well-studied examples.

It is the family of branched n-sheeted coverings over the standard unit torus T 2 = R2/Z2

which branches over one point with maximal ramification. The smallest example is the

so-called square tiled L-surface S3, see Figure 10.

It is a consequence of the Riemann Hurrewicz formula that such branched coverings

Figure 10: The figure indicates the square tiled L-surface. Each boundary side has length 1.

The dashed lines indicate that there is a 3-sheeted branched covering map from S3 to the torus

with one branch point of maximal ramification.

only exist if the number of sheets is odd. Let π : Sn → T 2 be such an n-sheeted flat

branched covering. There is only one singularity ς ∈ Sn on the flat surface, which is the

branch point.

The distance of any point to ς is at most
√
2
2 and therefore the diameter is bounded

diam(Sn) =
√
2

It follows that δinf (S̃n), the minimal Gromov hyperbolic constant of the flat universal

cover, can be estimated. √
2 ≥ δinf (S̃n) ≥

1

2
√
2
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Therefore, the base ξ for the Gromov metric d∞,x̃ on the boundary of the flat universal

cover ∂S̃n is bounded from above

ξ :=
1

2
ξ(δinf (S̃)) ≤ 2

√
2

Let c1,c2 be any two locally geodesic arcs on Sn so that c1 ends at ς and c2 issues

from ς. One observes that any seperatrix emanating from the singularity in vertical

resp. horizontal direction is a saddle connection of length 1. Moreover, there exists

one of these vertical, resp. horizontal saddle connections s such that the concatenation

c1 ∗ s ∗ c2 is geodesic. Therefore, the constant Cl(S) from Proposition 3.11 is bounded

from above by 1.

On the other hand, any saddle connection has length at least 1 and therefore Cl(S) = 1.

We make use of the formula in Corollary 5.1 to compute the entropy e(S̃n,ΓSn) of Sn

which we abbreviate:

e(Γn) := e(S̃n,ΓSn)

Let ς̃ be a singularity in the universal cover. Denote by Σς̃,0 the set of singularities ς ′

on S̃ so that [ς̃ , ς̃ ′] is a saddle connection. We showed that

4 exp(e(Γn)(2Cl(Sn) + diam(Sn)))

≥
∑

ς̃′∈Σς̃,0

exp(−e(Γn)d(ς̃ , ς̃
′)

≥ exp(−e(Γn)diam(Sn))

Therefore, we have to compute the length of each saddle connection.

Let x0 ∈ T 2 be the image of the branch point. Since the isometric universal cover of

the flat torus can be identified with R2, we can choose the unit square as a fundamental

domain of T 2 such that the origin projects to x0.

Every saddle connection s in Sn projects to a straight line l on T 2. It connects the x0

with itself and meanwhile never runs through x0.

We can lift l to a straight line l̃ in R2 which emanates from the origin. l̃ ends at a point

in Z2 and never passes through a point in Z2 in the meantime. Therefore, the endpoint

has coordinates (p, q) ∈ Z2 which are relatively prime, denoted as p ⊥ q.

On the other hand, let l̃ be a straight line in R2 which emanates at the origin and ends

at a point (p, q) ∈ Z2, such that p ⊥ q. l̃ projects a geodesic line l on T 2 which starts

and ends at x0 and does not pass through x0 in the meantime. For each of these lines l,

there are n distinct lifts in Sn. Therefore, there is an n-to-1 map of saddle connections

on Sn to points (p, q) ∈ Z2, p ⊥ q. This map is length-preserving.
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We make use of mirror symmetries in R2 along the coordinate axes and the diagonal.

There is a length-preserving 8-to-1 map from relatively prime points.

{
(p, q) ∈ Z2 − {−1, 0, 1}2 , p ⊥ q

}
→
{
(p, q) ∈ N2, 1 ≤ p < q, p ⊥ q

}

Consequently, for any pair of points (p, q) ∈ N2, 1 ≤ p < q, p ⊥ q, there exist 8n

corresponding saddle connections in Sn of the same length. Additionally, we have to

count the n horizontal and n vertical saddle connections and the 2n diagonal saddle

connections in Sn.

We apply the values of Cl and diam to the formula.

4 exp
(

e (Γn)
(

2 +
√
2
))

≥
∑

ς̃′∈Σς̃,0

exp
(
−e (Γn) d

(
ς̃ , ς̃ ′

))
≥ exp

(

−e (Γn)
√
2
)

Therefore

exp
(

−e (Γn)
√
2
)

≤ 2n
(

exp (−e (Γn)) + exp
(

−e (Γn)
√
2
))

+ 8n
∑

2≤p<q,p⊥q

exp
(

−e (Γn)
√

p2 + q2
)

The inequality is redundant. So we cannot find an upper bound for e(Γn).

On the other hand,

4 exp
(

e (Γn)
(

2 +
√
2
))

≥ 2n
(

exp (−e (Γn)) + exp
(

−e (Γn)
√
2
))

+ 8n
∑

2≤p<q,p⊥q

exp
(

−e (Γn)
√

p2 + q2
)

We find lower bounds for the entropy and Hausdorff dimension

n e(Γn) dim > e(Γn)√
2log(2)

3 > 0.64 > 0.65

5 > 0.72 > 0.73

7 > 0.77 > 0.78

9 > 0.82 > 0.84

11 > 0.86 > 0.88

13 > 0.89 > 0.91

15 > 0.92 > 0.94

17 > 0.94 > 0.96

19 > 0.96 > 0.98

21 > 0.98 > 1

23 > 1 > 1.02
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Since the Hausdorff dimension is always at least 1, this is only remarkable for n ≥ 23.

Moreover, in this family the entropy grows logarithmically in the combinatorics of the

covering i.e. in n. We already showed in section 4.2 that the entropy cannot grow faster

and therefore the formula is asymptotically sharp.

Recall that the area of Sn is n. We already showed in Remark 2.1 that the Hausdorff

dimension of the boundary is invariant under scaling the metric on the flat surface Sn.

7 Periodic points of the Arnoux-Yoccoz diffeomorphism

After analyzing geometric properties of flat metrics, we investigate the behavior of a

special affine diffeomorphism. The methods used here evolve from symbolic dynamics

and therefore differ from the ones in the previous sections. We introduce new notations.

7.1 Basic concepts

Definition 7.1. Let S be some set and f : S → S be some self-map.

A point x ∈ S is called f -periodic if fk(x) = x for some k > 0. We call x f -preperiodic

if the f -orbit of x contains a periodic point.

The set of periodic resp. preperiodic points is denoted by Per(f) resp. PPer(f).

For a finite alphabet A, we denote by An the set of words of length n with letters in

A. If n = N resp. n = Z, An is the set of one-sided infinite resp. bi-infinite words.

There exists the right shift map s acting on the set of one-sided infinite as well as on

the set of bi-infinite words, independent of the alphabet.

s : ((wi)i) 7→ (wi+1)i

Definition 7.2. We call a word w ∈ An, n = N,Z periodic resp. preperiodic if it is

periodic resp. preperiodic under the shift map. We call the set of all periodic resp.

preperiodic words Per(A) resp. PPer(A).

Convention: We require that 0 ∈ N. An interval I ⊂ R is called half-open if it is

closed to the left and open to the right.

Let u = (ui)i ∈ An be a finite word and v = (vi)i be a one-sided infinite or finite

word. We introduce the notation w = uv as the concatenation of u and v, wi := ui, i ≤
n,wi := vi−n, i > n.

If u, v ∈ AN are both one-sided infinite, the concatenation w = uv ∈ AZ is defined as

wi := u−i+1, i < 0, wi := vi, i ≥ 0.
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On the set of one-sided infinite words there is a family of metrics, so-called word metrics,

defined via a bijective map: en : A → {1, . . . , |A|}

d(u, v) :=
∑

i

|en(ui)− en(vi)|2−i

Two different metrics evolving from different choices of en are bilipschitz. The distances

of any two infinite words u, v is small if and only if the first letters of u, v equal.

We are interested in words arising from expansions. So we introduce the term of (A, f)-

expansions:

Let Sa, a ∈ A be a finite partition of some set S and let f : S → S be some self-map.

We define df,A : S → AN, an expansion of a point, as a word with letters in A. The

letter ai corresponds to the set where f i(x) is situated.

df,A : S → AN, x 7→ (ai)i ⇔ f i(x) ∈ Sai ,∀i ∈ N

f acts on the (f,A)-expansion as a shift map s.

df,A ◦ f = s ◦ df,A

In our case S = [0, 1) is the half-open unit interval. Furthermore, the partitioning sets

Sa are half-open intervals. f is always a right continuous mapping, and therefore df,A
is right continuous with respect to each word metric.

Let α ∈ [0, 1) be some fixed number. We construct two kinds of partitions:

We define the binary partition as B = {0, 1}, S0 = [0, α), S1 = [α, 1) and M as some

refinement which meets combinatorial properties i.e. it is Markov with respect to f . As

the M-partition is a refinement of the B-partition, there exists a projection

τ : M → B, τ(m) = b ⇔ Sm ⊂ Sb

τ extends to τn : Mn → Bn where n is finite, N or Z. Whenever n is clear from the

context, we skip the index and abbreviate τ .

Remark 7.1. In the literature there is an ambiguity for the notation. A point whose orbit

is finite under some map f is commonly denoted as f -preperiodic, whereas f -periodic

points are characterized by the property that they are fixed points of some iterate of f .

On the other hand, what we call a preperiodic resp. periodic expansion appears in the

literature as a periodic resp. purely periodic expansion.
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7.2 Geometrical setting

Convention: Let g ∈ N, g ≥ 3 be a fixed constant for the rest this work.

Let α be the real root of 1−
g∑

i=1
xi.

Following [Arn88], [AY81] and [Bow09] there is a fundamental domain F of a flat surface

S of genus g.

F = [0, 1)2 ∩






(x, y) : x ≥

n∑

i=1

αi ⇒ y <

g−n
∑

j=1

αj






∩






(x, y) : y ≥

n∑

i=1

αi ⇒ x <

g−n
∑

j=1

αj







We have an explicit description of the Arnoux-Yoccoz diffeomorphism Φ acting on S.

We describe Φ as a map on F .

Φ : (x, y) 7→







(α−1x− 1, α(y + 1)) if x ≥ α

(α−1(x+ 1/2) − 3/2, αy) if α > x ≥ (3α − 1)/2

(α−1(x+ 1/2) − 1/2, αy) if (3α− 1)/2 > x ≥ 0

Let π1, π2 : F → [0, 1) be the canonical projections of the fundamental domain onto the

Figure 11: The gluing sequence indicates how the Arnoux Yoccoz diffeomorphism acts on F.

coordinate axes and let

Φi := πi ◦Φ : F → [0, 1)

We consider Φ1 : F → [0, 1]. By definition of Φ, the projection Φ1 is independent of the

vertical coordinate and therefore descends to

Φ1 : [0, 1) → [0, 1), x 7→







α−1x− 1 if x ≥ α

α−1(x+ 1/2) − 3/2, if α > x ≥ (3α − 1)/2

α−1(x+ 1/2) − 1/2 if (3α − 1)/2 > x ≥ 0
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7.3 Expansion

Let

B := {0, 1}, S0 := [0, α), S1 := [α, 1)

be a partition of the unit interval. We consider the following maps:

Tα :→ [0, 1) : x 7→ α−1x mod 1

and the map Φ1 : [0, 1) → [0, 1) as described in the previous section. With respect to

both mappings we define the expansions of the interval: The standard α-expansion:

d := dTα,B : [0, 1) → BN

and the (Φ1,B)-expansion
dΦ1,B : [0, 1) → BN

We define the σ-expansion σ : F → BZ of the whole fundamental domain F which is the

concatenation of the words d(y) and dΦ1,B(x).

σ : F → BZ : (x, y) 7→ d(y)dΦ1,B(x)

The σ-expansion is not arbitrary. With respect to σ, one observes that the action of the

Arnoux-Yoccoz diffeomorphism Φ commutes with the shift map s.

σ ◦ Φ = s ◦ σ

Therefore, a point (x, y) is periodic under Φ only if σ(x, y) is a periodic word.

So we have to investigate the expansions d and dΦ1,B.

The standard α-expansion d was studied extensively. We deal with the situation that α

is a pisot unit.

Definition 7.3. Let n be a finite number, N or Z. A word b ∈ Bn is admissible if and

only if it does not contain the subword 1 . . . 1
︸ ︷︷ ︸

g

.

We recall standard facts about standard α-expansions and refer to [Aki98], [Sch80].

Proposition 7.1. i) The image d([0, 1)) ⊂ BN is the set of admissible words.

ii) d is injective. Moreover, d(x) = (bi)i ⇔ x =
∑

i≥0
biα

i+1.

iii) PPer(Tα) = Q[α] ∩ [0, 1) where Q[α] denotes the polynomial ring over α with ra-

tional coefficients. Equivalently, the set of preperiodic admissible one-sided infinite

words equals the set d(Q[α] ∩ [0, 1)).
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iv) d(αx) = 0d(x), where 0d(x) denotes the concatenation. In the same way, d(αx +

α) = 1d(x) if αx+ α < 1.

Lemma 7.1. If y is an algebraic integer, then the standard α-expansion of a point

y ∈ [0, 1) − {0} is not periodic .

On the other hand, if y is rational and smaller than some constant c > 0, then the

standard α-expansion of y is periodic.

Proof. [Aki98, Theorem 1, Theorem 2]

Statement ii) of Proposition 7.1 is central. It implies that for any admissible periodic

word b ∈ BN one can explicitly compute its preimage d−1(b). In section 7.4 we will use

this fact to give an Algorithm for computing Φ-periodic points.

Lemma 7.1 allows to associate number theoretical properties to the vertical coordinate of

Φ-periodic points. By definition of σ, and the fact that Φ commutes with the shift map,

one observes, that there is no Φ-periodic point (x, y) so that y is an algebraic integer.

On the other hand, a rational numbers y < c may occur as second coordinate of a Φ-

periodic point (x, y). We will show that this is indeed true for all but a finite set of such

rational numbers.

7.3.1 Non-standard Expansion

The standard α-expansion d is well-understood. In this section we show that the (Φ1,B)-
expansion shares various properties with the standard α-expansion.

Namely, there exists a partition Sm,m ∈ M which is a refinement of the binary partition

[0, α), [α, 1) and which satisfies the Markov-property. Such a partition is called Markov.

The Markov partition is obtained directly from the construction of the Arnoux-Yoccoz

diffeomorphism [Arn88]. The (Φ1,M)-expansion of a Markov partition dΦ1,M, a so-

called Markov-expansion, was already studied extensively. The action of Φ1 on the

Markov partition induces a subshift of finite type.

Since the Markov partition is a refinement of the binary partition, we are able to pull

back properties of the Markov-expansion to the (Φ1,B)-expansion.
We state the main results and refer for the computations to the appendix.

i) We explicitely construct a countable set of words

D(B,Φ1) ⊂ BN

which contains only finitely many periodic words. We call a word b ∈ D(B,Φ1)

exceptional.
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ii) As in the case of standard α-expansions, we call a word b ∈ Bn admissible if and

only if it does not contain the subword 1 . . . 1
︸ ︷︷ ︸

g

.

We show that the (Φ1,B)-expansion misses at most a set of exceptional words and is

injective. Moreover, we connect periodic words to Φ1-periodic points.

Corollary (Corollary 7.2). dΦ1,B is injective.

Proposition (Proposition 7.7). Denote by D(B,Φ1) the set of exceptional words.

i) The image dΦ1,B([0, 1)) consists of admissible words. On the other hand, each

admissible word, which is not the (Φ1,B)-expansion of some point, is contained in

the set of exceptional words D(B,Φ1).

ii) Let x ∈ [0, 1) and let (bi)i = dΦ1,B(x) be the (Φ1,B)-expansion of x. Then

x >

n∑

i=1

αi ⇔ bi = 1, i < n

Lemma (Lemma 7.6). Each admissible periodic word which is not contained in D(B,Φ1)

is the (Φ1,B)-expansion of some Φ1-periodic point x.

We characterize the points which are Φ1-preperiodic and indicate an invariant for

finite Φ1-orbits.

Proposition (Proposition 7.4). Denote by Q[α] the polynomial ring over α with rational

coefficients.

• PPer(Φ1) = Q[α] ∩ [0, 1)

• Let x ∈ Q[α] ∩ [0, 1) be a point. x can be uniquely written as

x =

g
∑

i=1

aiα
i, ai ∈ Q

Let q be the greatest common denominator of ai. Let

x′ := Φn
1 (x), x

′ =
g
∑

i=1

a′iα
i, a′i ∈ Q

and let q′ be the greatest common denominator of a′i. Then q′ is a divisor of 2q.
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7.3.2 Expansion of the fundamental domain

The information about the expansions d and dΦ1,B allow to compute Φ-periodic points

(x, y) ∈ F .

Let σ : F → BZ be the σ-expansion as defined in section 7.1.

σ : F → BZ, (x, y) 7→ d(y)dΦ1,B(x)

Φ acts on the bi-infinite word as the right shift.

σ ◦ Φ = s ◦ σ

As Φ is bijective, a point is periodic under Φ if and only if it is preperiodic under Φ.

Recall, that we defined a word b ∈ BZ to be admissible if and only if it does not contain

the subword 1 . . . 1
︸ ︷︷ ︸

g

.

Proposition 7.2. The σ-expansion satisfies the following properties:

i) Each image under σ is an admissible word in BZ.

Moreover, let b = (bi)i ∈ BZ be an admissible word. If there exists some x ∈
d−1
Φ1,B((bi)i≥0), then there exists some (x, y) ∈ σ−1(b).

ii) σ is injective.

iii) (x, y) ∈ F is periodic under Φ if and only if σ(x, y) is periodic.

iv) For all but a finite set of periodic admissible words b ∈ BZ there is a Φ-periodic

preimage in F .

Proof. The proofs follow directly from the results in the previous section.

i) Let (bi)i := σ(x, y) be the image of some point (x, y) ∈ F . It suffices to show that

bi = . . . = bg+i 6= 1 . . . 1
︸ ︷︷ ︸

g

,∀i ∈ Z.

For i < −g and i ≥ 0 this is a consequence of Proposition 7.7 and Proposition

7.1. For −g < i < 0 observe that σ(Φg(x, y)) = sg(σ(x, y)). So, if σ(x, y) contains

such a subword, σ(Φg(x, y)) contains the subword at some position i ≥ 0 what is

impossible.

One the other hand, let b be an admissible word and x ∈ d−1
Φ1,B((bi)i≥0). By

Proposition 7.1 there exists some y ∈ d−1(b−i+1)i≥0.

So, (x, y) ∈ [0, 1)2. It remains to show that (x, y) ∈ F which follows from of

Proposition 7.7 and Proposition 7.1.
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ii) Follows from Proposition 7.1 and Corollary 7.2.

iii) Follows from ii and the fact that Φ commutes with the shift map.

iv) Let b = (bi)i ∈ BZ be a periodic admissible word. The truncated one-sided infinite

word (bi)i≥0 ∈ BN is also admissible and periodic. By Lemma 7.6, for all but a

finite number of such truncated (bi)i≥0, there exists some

x ∈ d−1
Φ1,B((bi)i≥0) ⊂ [0, 1)

Furthermore, since (b−i−1)(i≥0) is admissible, there exists some y ∈ d−1((b−i−1)i≥0).

Since the concatenated word is admissible, (x, y) ∈ F .

Due to ii) (x, y) is Φ-periodic.

Characterization of periodic points We showed that periodic points (x, y) ∈ Per(Φ)

are closely connected to periodic admissible bi-infinite words under the map σ.

We show an easier connection: The projection π1 : F → [0, 1), (x, y) 7→ x preserves the

property to be periodic for Φ resp. Φ1. We explicitly describe the inverse mapping which

maps a Φ1-periodic point x to a Φ-periodic point (x, y).

Theorem 7.1. i) Let x ∈ [0, 1) be a point which is periodic under Φ1.

Then there exists exactly one point y ∈ [0, 1) such that (x, y) ∈ Per(Φ). Precisely,

denote by dΦ1,B(x) = b1b2 . . . bn the (Φ1,B)-expansion of x. We define

y :=

n∑

i=1
bn−i+1α

i

1− αn+1

Then the point (x, y) is periodic under Φ.

ii) The map d◦π2 : Per(Φ) → BN, (x, y) 7→ d(y) projects a periodic point to a periodic

admissible word. It misses only a finite set of periodic admissible words and is

injective.

Proof. i) Let x ∈ Per(Φ1) be a periodic point and let dΦ1,B(x) = b = b1 . . . bn be its

(Φ1,B)-expansion.
We define b̂ := bn . . . b1 and

y := d−1(b̂)
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Such a point y exists as b̂ is admissible if and only if b is admissible. (x, y) is

periodic under Φ as σ(x, y) = b̂b is periodic and x periodic under Φ1.

By Proposition 7.1

y =

n∑

i=1
bn−i+1α

i

1− αn+1

On the other hand, there is only one way of extending the one-sided infinite word

dΦ1,B(x) in backward direction such that the resulting bi-infinite word is periodic.

By Proposition 7.2, the expansion map σ is injective, so there exists at most one

point (x, y) ∈ σ−1(b̂b).

ii) Let y be a point so that the standard α-expansion d(y) =: b = b1 . . . bn is a peri-

odic admissible word. Again, there is exactly one word b̂ := bn . . . b1 so that the

concatenation bb̂ is periodic and admissible.

By Proposition 7.2 only a finite set of periodic admissible words b̂ is exceptional.

If b̂ is not exceptional, by Proposition 7.7 at least one such Φ1-periodic point

x ∈ d−1
B,Φ1

(b̂) exists. So, (x, y) is Φ-periodic. Again by injectivity of σ, x is unique.

Remark 7.2. Clearly no two Φ-periodic points can be contained on the same stable resp.

unstable leaf of a Pseudo-Anosov diffeomorphism Φ on compact surface. So, for any two

Φ-periodic points the horizontal coordinates in F are distinct.

This is not necessarily true, for the vertical coordinate. As one can see in figure 11,

F is endowed with vertical slits. So, points with same vertical coordinate in F are not

necessarily contained in the same stable leaf on the resulting surface.

Corollary 7.1. If y is an algebraic integer, then there is no x such that the point (x, y)

is Φ-periodic. For all but a finite set of rational numbers y which are smaller than some

constant c > 0, there exists an x such that (x, y) ∈ Per(Φ).

Proof. By Lemma 7.1 the standard α-expansion of y is not periodic if y is an algebraic

integer. Therefore, σ(x, y) cannot be periodic for any x.

On the other hand, by Lemma 7.1 the standard α-expansion of y is periodic if y is

rational and smaller than some constant c. By Theorem 7.1 for all but a finite set of

such points y, there exists some x so that (x, y) is Φ-periodic
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7.4 Algorithm

We give an algorithm to compute points which are Φ-periodic.

Take x ∈ Q[α]∩ [0, 1). By Proposition 7.4 the Φ1-orbit of x is finite so there exist k, l > 0

x̂ := Φk
1(x) = Φk+l

1 (x)

By Theorem 7.1 we can explicitly compute the Φ-periodic point (x̂, ŷ) ∈ F . We have to

find some criterion to ensure that different numbers x, x′ ∈ Q[α] ∩ [0, 1) do not lead to

the same periodic point (x̂, ŷ).

Each number x ∈ Q[α] ∩ [0, 1) can be uniquely written as x =
∑g

i=1 aiα
i, ai ∈ Q. Let q

be the greatest common denominator of ai.

Let x′ :=
∑g

i=1 a
′
iα

i, a′i ∈ Q be a different point so that the rational numbers a′i have

greatest common denominator q′ > q, where q is not a divisor of 2q′. By Proposition 7.4

the resulting Φ1-periodic number x̂′ is different from x̂.

7.5 Example genus 3

We explicitly compute the constants for genus g = 3. The set of exceptional words is

characterized as D(B,Φ1) = {b001} for all finite words b.

Infinite index subgroups of the Veech group It is a result of [HLM09] that the Veech

group of the Arnoux Yoccoz surface S in the case g = 3 is not virtually cyclic. There

exists a second pseudo-Anosov affine diffeomorphism Ψ : S → S with derivative

dΨ =

(

23 + 18α+ 12α2 −29− 24α− 16α2

74 + 62α+ 40α2 −95− 80α− 52α2

)

Proposition 7.3. There exist points (x, y) ∈ F which are periodic with respect to Φ but

not with respect to Ψ−1ΦΨ.

The proof is based on computer search. The algorithm in section 7.4 allows to find

Φ-periodic points. Let (x, y) be such a periodic point and let (x′, y′) := Ψ(x, y). To

show, that (x′, y′) is not Φ-periodic it suffices to show, that x′ is not Φ1-periodic.

Proof. Let (x, y) = (21+7α
44 , −63+96α+56α2

202 ) be a point in F . One computes that Φ21(x, y) =

(x, y). The image (x′, y′) = Ψ(x, y) has coordinates

x′ =
2707 + 1911α − 72α2

4444

y′ =
−366 + 1914α + 763α2

2222
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One computes that x′ is Φ1-preperiodic but not periodic with respect to Φ1. Therefore,

(x′, y′) cannot be Φ-periodic.

7.6 Appendix

We show the relevant facts for the (Φ1,B)-expansion dΦ,B : [0, 1) → BN.

Let Q[α] be the polynomial ring over α with rational coefficients .

As Φ1 is a piecewise affine mapping defined over Q[α], the preperiodic points of Φ1 are

necessarily contained in Q[α] ∩ [0, 1). We show that each point in Q[α] ∩ [0, 1) is in fact

Φ1-preperiodic.

Proposition 7.4. PPer(Φ1) = Q[α] ∩ [0, 1)

The methods to show the proposition are close to [Sch80]. We need some Lemmas.

We define the evaluation mapping eval : Cg → C which maps the standard basis element

bi to αi, i = 1, . . . g. It can also be written as

eval : v 7→< v, evalτ >, evalτ := (α,α2, . . . , αg)τ

eval−1([0, 1)) is situated between the two hyperplanes Kern(eval) and Kern(eval) +
1

||eval||2 eval
τ .

The matrix A naturally acts on Cg.

A =












1 1 0 0 . . . 0

1 0 1 0 . . . 0
. . .

1 0 0 0 . . . 1

1 0 0 0 . . . 0












The action of A commutes with the action of α−1 on C with respect to the evaluation

mapping, so A leaves the subspace Kern(eval) invariant.

The characteristic polynomial of A is xg −
g−1∑

i=0
xi which has only simple roots. All but

one eigendirection has absolute value of eigenvalue smaller than 1. The only eigenvalue

with absolute value larger than 1 is α−1.

Furthermore, the eigendirection corresponding to the eigenvalue α−1 is not contained in

Kern(eval).

We choose a basis e1, . . . , eg of unit eigenvectors for Cg. Let λi, 1 ≤ i ≤ g be the

eigenvalues of the direction ei where |λi| < 1 for all i > 1 and λ1 = α−1.

Let || ∗ ||A be the norm on Cg which is the pull-back of the standard norm on Cg under
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the endomorphism that maps the basis of eigenvectors {e1 . . . eg} to the standard basis

of Cg.

Lemma 7.2. A acts as a contraction on Kern(eval) with respect to || ∗ ||A with a

contraction factor 0 < λ < 1.

Proof. Since the eigenvalues of A are distinct and the eigenvectors form a basis, each A-

invariant subspace is the direct sum of eigenspaces. As e1 6∈ Kern(eval) and Kern(eval)

is a g − 1 dimensional subspace

Kern(eval) = span(e2, . . . , eg)

So, A acts as a contraction on Kern(eval) with respect to || ∗ ||A. The contraction factor

is not bigger than

λ := max
i>1

|λi|

We return to the original mapping Φ1 : [0, 1) → [0, 1).

Recall that Φ1 is a piecewise affine mapping with a stretching factor α−1 and a piecewise

translation by constants ci ∈ Z/2[α].

We can choose a lift of Φ1 to a map Ψ : eval−1([0, 1)) → eval−1([0, 1)) so that Ψ satisfies

the following properties:

• eval ◦Ψ = Φ1 ◦ eval

• Ψ is piecewise affine: There is some finite partition Si, i = 1, 2, 3 of eval−1([0, 1])

and a mapping v(x) = vi ⇔ x ∈ Si. Each vector vi has coordinates in (Z/2)g and

Ψ is of the form:

Ψ : x 7→ Ax+ v(x)

Lemma 7.3. For any point x ∈ eval−1([0, 1)) ∩ Qg, the Ψ-orbit of x is discrete and

bounded and therefore finite.

Proof. Let x ∈ eval−1([0, 1)) ∩Qg be a rational point and let 2q be a common divisor of

the coordinates. The image of x under Ψ is again contained in (Z/2q)g. Therefore, the

orbit of each point with rational coefficients is discrete.

It remains to show that the Ψ-orbit of each point is bounded in Cg with respect to the

norm || ∗ ||A.
Recall that for each point x ∈ eval−1([0, 1)) the distance between x and Kern(eval))

is uniformly bounded. We write x as a linear combination of eigenvectors x =
∑

aiei.
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Since Kern(eval) = span(e2, . . . , eg), there is uniform constant c′ > 0 so that |a1| < c′.

Let c := |α−1c′| + maxi ||Avi||A and let λ be the contraction factor for the action of A

on Kern(eval) as in Lemma 7.2.

We conclude

||Ψ(x)||A = ||Ax+ v(x)||A < λ||x||A + c

If ||x||A is larger than some uniform constant, ||Ψ(x)||A < ||x||A. One concludes that

the Ψ-orbit of each point x is bounded.

Proof of the Proposition. Observe that each point in [0, 1)∩Q[α] has a unique preimage

in y ∈ eval−1(x) ∩Qg.

We showed that the Ψ-orbit of y is finite. Since Ψ commutes with Φ1, x is Φ1-preperiodic.

Recall the binary partition of [0, 1)

B = {0, 1}, S0 = [0, α), S1 = [α, 1)

Let

dΦ1,B : [0, 1) → BN

be the (B,Φ1)-expansion.

We construct a finer partition which satisfies the Markov property.

Proposition 7.5. There exists a finite partition Sm,m ∈ M of [0, 1) in half-open in-

tervals. It meets the Markov property i.e. the image of each interval Sm under Φ1 is the

union of other intervals Sm′ . Moreover, it is a refinement of the binary partition.

Proof. The interval S1 = [α, 1) can be decomposed in the following half-open intervals:

[α, 1) =

g−1
⋃

k=1

S1,k, S1,k := [

k∑

i=1

αi,

k+1∑

i=1

αi)

We observe, that Φ1 acts on S1,k in descending order.

Φ1(S1,k) = S1,(k−1),Φ1(S1,1) = [0, α) = S0,Φ1(S0) = [0, 1)

So, the partition S0 together with S1,k form the Markov partition M of [0, 1). We define

M := {0, (1, 1), (1, 2) . . . (1, g − 1)}.

We also consider the (Φ1,M)-expansion or Markov-expansion.

dΦ1,M : [0, 1) → MN
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Definition 7.4. Let n be either a finite number N or Z.

• A word m = (mi)i ∈ Mn is called admissible if and only if

Φ1(Smi
) ∩ Smi+1 6= ∅,∀i

By the Markov property this is equivalent to Φ1(Smi
) ⊃ Smi+1 .

• As in the case of standard α-expansion, we call a word b = (bi)i ∈ Bn admissible

if and only if

bibi+1 . . . bi+g−1 6= 1 . . . 1
︸ ︷︷ ︸

g

,∀i ≥ 0

Proposition 7.6. The Markov-expansion has the following properties

i) dΦ1,M is injective.

ii)

dΦ1,M(Per(Φ1)) = Per(M) ∩ dΦ1,M([0, 1))

dΦ1,M(PPer(Φ1)) = PPer(M) ∩ dΦ1,M([0, 1)

Proof. i) is well-known since the action of Φ1 is induced by Pseudo-Anosov diffeomor-

phism. We refer to [Bow70].

ii) is a consequence of i

We show that dΦ1,B misses at most a countable set of admissible words.

Let Sa, a ∈ A be some partition of the half-open unit interval. A is either M or B. The
partitioning sets Sa, a ∈ A are half-open intervals. Moreover, Φ1 is right continuous and

consequently dΦ1,A is right continuous for some word metric.

We define the left limit expansion of a point x ∈ [0, 1).

Definition 7.5. Let xk ∈ [0, 1) be a strictly increasing sequence of points with limit

x ∈ [0, 1). We define the limit sequence

lΦ1,A(x) := lim
xkրx

dΦ1,A(xk)

which is independent of the sequence xk. We call lΦ1,A(x) the left limit expansion of x.

Denote by s the shift map acting on the set words.
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Definition 7.6. Let A be either M or B. Let D′ ⊂ [0, 1) be the discontinuities of Φ1

and the right boundary points of Sa, a ∈ A. We call

D(A,Φ1) =
⋃

d∈D′

⋃

i≥0

s−i(lΦ1,A(d))

the set of exceptional words.

Lemma 7.4. D(A,Φ1) contains at most a finite set of periodic words.

Proof. Observe that D(A,Φ1) consists of a finite set of one-sided infinite words concate-

nated with all finite words. Let a ∈ AN be some one-sided infinite word.

Assume first that a is not periodic. For any finite word u, the concatenation ua is not

periodic either.

Assume next that a is a periodic word. Consider the set of words ua arising from a

concatenation a with some finite word u. The subset of those words which are periodic

is finite.

As a consequence, D(A,Φ1) contains only a finite set of periodic words.

Remark 7.3. Recall the projection τ : MN → BN. One observes that τ(D(M,Φ1)) =

D(B,Φ1)

The following Lemma gives a sufficient criterion under which conditions an infinite

word is expansion of a point.

Lemma 7.5. Let Sa, a ∈ A be a partition of [0, 1) in half-open intervals. Let (ai)i,∈ AN

be a one-sided infinite word with the following properties:

There exists a strictly increasing sequence ki ∈ N, k0 = 0 and a sequence of sets Uki ⊂
Saki

so that

• each Uki is a finite disjoint union of half-open intervals.

•
Φt
1(Uki) ⊂ Sa(ki+t)

∀0 ≤ t < ki+1 − ki,Φ
k(i+1)−ki
1 (Uki) = Sak(i+1)

Then the word is either the (Φ1,A)-expansion of some point or contained in the excep-

tional set.

(ai)i ∈ dΦ1,A([0, 1)) ∪D(A,Φ1)

Proof. This is a consequence of the nested interval Theorem.

Denote by D′ the discontinuities of Φ1 together with the right boundary point of the

partitioning sets Sa, a ∈ A. One uses the sets Uki to construct a sequence of sets

Vki ⊂ Sa0 so that
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•
Φj
1(Vki) ⊂ Saj ,∀j < ki,Φ

ki
1 (Vki) = Saki

• Each set Vki is a finite union of half-open intervals. The Φ1-orbit of a right bound-

ary point of Vki contains a point in D′.

• The sequence Vki is nested Vki+1
⊂ Vki .

By the nested interval Theorem, there exists a point x in
⋂

i Vki . If x is already contained

in
⋂

i Vki , the claim is shown as

dΦ1,A(x) = (ai)i

On the other hand, assume that the point x is not contained in some Vki0
and so x is a

right boundary point for all Vkj , j ≥ i0. There is a sequence

xj ∈ Vkj , xj ր x

Again by construction

lim
j

dΦ1,A(xj) = (ai)i

Therefore, (ai)i is the left limit expansion of x. The Φ1-orbit of x contains a point in D′

and so

(ai)i ∈ D(A,Φ1)

We have to show that each admissible word with letters in B resp. M satisfies the

conditions of Lemma 7.5.

Proposition 7.7. With respect to the Markov partition as well as to the binary partition

any admissible word is the expansion of a point x ∈ [0, 1) or an element of the exceptional

set:

i) Each word in dΦ1,M([0, 1)) is admissible. On the other hand, each admissible word,

which is not the Markov-expansion of some point, is contained in D(M,Φ1).

ii) The same holds for the (Φ1,B)-expansion.

iii) Let x ∈ [0, 1) and (bi)i := dΦ1,B(x). Then

x >

n∑

i=1

αi ⇔ bi = 1,∀i < n
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Proof. i) Recall that a word (mi)i ∈ MN is called admissible if and only if

Φ1(Smi
) ∩ Smi+1 6= ∅

Therefore, each word appearing as a Markov-expansion of a point is admissible.

It remains to show that the image of the Markov-expansion map only misses a

subset of D(M,Φ1).

Let m = (mi)i be an admissible word and define

ki := i, Ui := Φ1(Sm(i+1)
)−1 ∩ Smi

The conditions of Lemma 7.5 are satisfied and therefore either (mi)i is contained

in D(M,Φ1) or (mi)i is the Markov-expansion of some point x.

ii) Recall that a word (bi)i is admissible if it does not contain the subword 1 . . . 1
︸ ︷︷ ︸

g

. We

defined the projection τ : MN → BN.

Φ1 acts on the Markov partition in the following way:

Φ1(S0) = [0, 1),Φ1(S1,k) = S1,(k−1),Φ1(S1,1) = S0

So, the Markov-expansion dΦ1,M(x) of a point x cannot contain the subword

m1 . . . mg
︸ ︷︷ ︸

g

,mi 6= 0. Since τ(dΦ1,M(x)) = dΦ1,B(x) each image of the map dΦ1,B(x)

is an admissible word.

It remains to show that any admissible word is either contained in D(B,Φ1) or is

the image of some point x under the (B,Φ1)-expansion map.

Let (bi)i ∈ BN be an admissible word. We define, k0 = 0, ki+1 := min{j > ki, bj =

0}.
One checks that there is a corresponding sequence of sets Uki so the conditions of

Lemma 7.5 are satisfied.

iii) Follows from the structure of the Markov partition and the fact, that Φ1 acts on

S1,k in descending order.

x >
n∑

i=1

αi ⇔ x ∈ S1,k, k ≥ n ⇔ Φi
1(x) 6∈ S0,∀i < n

Remark 7.4. In interval exchange transformations the existence of the set D(A, f) is a

well-known phenomena which is due to the fact, that at a discontinuity one might have

two expansions and only one is appropriate.
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We show that dΦ1,B is also injective. Recall the mapping τ : Mn → Bn, τ(0) =

0, τ((1, k)) = 1

Proposition 7.8. i) Let (bi)i ∈ Bn be a finite word and m ∈ M be some letter.

Then there exists at most one admissible word (mi)i ∈ τ−1((bi)i) with the property

that mn = m.

ii) Let (bi)i ∈ BN be a one-sided infinite word. Then the cardinality of admissible

words in τ−1((bi)i) is at most 1.

Proof. i) Recall that Φ1 maps S0 = [0, α) injectively into [0, 1). So for all letters

mi ∈ M there is at most one mi−1 ∈ τ−1(0) such that Φ1(Smi−1) ∩ Smi
6= ∅.

The same holds for S1 = [α, 1).

That is why for any letter mi there exists at most one letter mi−1 ∈ τ−1(bi−1)

such that mi−1mi is admissible. Consequently, there is at most one combinatorial

possibility to construct an admissible word (mi)i such that τ((mi)i) = (bi)i for

fixed last letter mn.

ii) Assume on the contrary that there are different admissible words (mi)i, (m
′
i)i ∈

τ−1((bi)i) ⊂ MN. Fix some i0 such that mi0 6= m′
i0
. There is some i ≥ i0 so

that bi = 0. So mi = m′
i = 0. But mi determines its predecessors what is a

contradiction.

Corollary 7.2. The map dΦ,B is injective.

Proof. Each image point of dΦ1,M is an admissible word and dΦ1,M is injective. There-

fore, the Corollary is a consequence of Proposition 7.8.

We show that all but a finite set of periodic admissible words in BN admit a periodic

preimage.

Lemma 7.6. Let τ : M → B be the canonical projection. For each admissible periodic

word b ∈ BN which is not contained in D(B,Φ1) there exists a periodic preimage x ∈
Per(Φ1) ∩ d−1

Φ1,B(b).

Proof. Let b ∈ BN, bi+n = bi be a periodic admissible word not contained in D(B,Φ1).

By Proposition 7.7, b is the (Φ1,B)-expansion of some point x ∈ [0, 1). Since dΦ1,B is

injective, x is Φ1-periodic.
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Summary

This thesis deals with the geometry of flat surfaces.

A flat surface is a Riemann surface which is endowed with a singular flat metric. Such

a metrics arises from a distinguished set of charts on X so that outside a finite set

of marked points, the transition maps are half-translations. In the marked points the

metric is of cone type with cone angle kπ, k ≥ 3.

For each flat metric on a Riemann surface X there exists a hyperbolic metric in the same

conformal class. It is the goal of the first part of this work to investigate the asymptotic

geometry and dynamics of flat metrics and to compare the structure of such metrics

with the corresponding hyperbolic metrics.

Therefore, we lift the singular flat metric to the universal cover X̃ of X which is a proper

geodesic Gromov hyperbolic space. The boundary of X̃ can be naturally endowed with

a Gromov metric. We investigate the volume entropy of the lifted metric on X̃ and

the Hausdorff dimension of the boundary. On a hyperbolic surface these quantities are

constant 1.

This does not hold in the case of flat surfaces. We estimate the volume entropy and

the Hausdorff dimension for a sequence of flat surfaces and show that both quantities

tend to infinity if and only if the flat surfaces degenerate in the moduli space of flat

structures.

Branched coverings form a central concept in the theory of Riemann surfaces. We claim

the compatibility of the covering with the metric, that means that the covering surface

and the base surface are both flat surfaces and away from the branch points the covering

map is a local isometry. We estimate the volume entropy of the covering surface by the

geometry of the covering map and by the volume entropy of the base surface.

For each flat metric, there is a unique hyperbolic metric σ in the same conformal class.

We measure the asymptotic length quotient between the hyperbolic and the flat geodesics

which are in the same homotopy class with fixed endpoints.

The geodesic flow gt on the unit tangent bundle of X acts ergodically with respect to

the Lebesgue measure defined by σ. For T > 0, v ∈ T 1X let c : [0, T ] → X, c′(0) = v

be a σ-geodesic arc of length T on X. The function F0,T (v) measures the length of the

shortest arc in the homotopy class of arcs with fixed endpoints [c] for the flat metric.

By ergodic theory the limit lim 1
T F0,T (v) converges to a constant F a.e. We show that

the volume entropy is an upper bound for F−1.

Let Y be a component of the hyperbolically thick part of the surface with respect to the

Margulis constant ǫ. [Raf07] compared the length of a free homotopy class [α] of simple

closed curves for the flat and hyperbolic metric in the same conformal class which can be
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realized in Y . There is a constant λ(Y ) so that the quotient of flat length and hyperbolic

length of [α] is comparable to λ(Y ). We show that F ≥ Aλ(Y ) for some constant A > 0

which only depends on the topology of X.

In addition we define a geodesic flow on a flat surface S. Each locally geodesic segment

which terminates at a cone point admits a one-parameter family of possible locally

geodesic extensions. Therefore, a definition similar to the one for Riemannian metrics

on the unit tangent bundle cannot be given.

Let GS be the set of all parametrized bi-infinite geodesics for the flat metric. The

geodesic flow gt acts as a reparametrization gtα(s) := α(t + s) on GS. We define a

natural measure on GS. Let c be a compact geodesic arc on S. Let cext be the maximal

extension of c with the property that the extension is unique.

Theorem. (Theorem 5.4) There is a constant C(S) > 0 which depends on the geometry

of S but not on c such that the following holds:

A typical geodesic passes through c with a frequency f which is bounded from above and

below by

C(S)−1exp(−e(S̃,ΓS)l(cext)) ≤ f ≤ C(S)exp(−e(S̃,ΓS)l(cext))

Finally we deal with a different object on a flat surface, the group of orientation

preserving affine diffeomorphisms. Away from the singularities, each diffeomorphism

descends to a differentiable mapping U ⊂ R2 → R2 with a constant derivative which

we interpret as a matrix A ∈ GL+(2,R). A is independent of the choice of charts

up to multiplication with ±id. Therefore, there is a well-defined map of each affine

diffeomorphism to its projectivized differential in PGL+(2,R) = PSL(2,R). The image

of the group of affine diffeomorphisms is the so-called Veech group which is a non-

cocompact fuchsian group.

We investigate one of the most prominent examples of flat surfaces with a non-trivial

Veech group, the family of Arnoux Yoccoz surfaces in all genera with a distinguished

affine diffeomorphism Φ. The flat surface arises from a so-called Markov partition F ⊂ R2

for Φ. The expansion factor α of Φ is a pisot number i.e. an algebraic number with all

complex conjugates having absolute value less than 1.

We make use of so-called α-expansions of points in the Markov partition, a technique

similar to continued fraction expansions, to compute periodic points under Φ. We can

show that the coordinates of periodic points meet number theoretical conditions:

For all but a finite set of rational points y there is a periodic point in F with vertical

coordinate y. On the other hand, there is no such periodic point if is y an algebraic

integer.
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[HLM09] showed that in the case of genus g = 3 the Veech group is not virtually cyclic.

In their work they explicitly found a second pseudo-Anosov element Ψ. We find points

which are periodic for Φ but not periodic for the conjugate of Φ with Ψ. Thus we

construct Veech groups which still contain the original pseudo-Anosov element up to

finite index but have infinite index in the original Veech group.
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