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Summary

We present a categorical setting for noncommutative geometry in the sense of Connes.
This is done by introducing a notion of morphism for spectral triples. Spectral triples are
the unbounded cycles for K-homology ([11]), and their bivariant generalization are the
cycles for Kasparov’s KK-theory ([32]). The central feature of KK-theory is the Kasparov
product

KKi(A, B)⊗KKj(B, C)→ KKi+j(A, C).

Here A, B and C are C∗-algebras, and the product allows one to view KK as a category.
The unbounded picture of this theory was introduced by Baaj and Julg ([4]). In this
picture the external product

KKi(A, B)⊗KKj(A′, B′)→ KKi+j(A⊗B, A′⊗B′),

is given by an algebraic formula, as opposed to Kasparov’s original approach, which is
more analytic in nature, and highly technical.

In order to describe the internal Kasparov product of unbounded KK-cycles, we in-
troduce a notion of connection for unbounded cycles (E , D). This is a universal connection

∇ : E → E⊗̃BΩ1(B),

in the sense of Cuntz and Quillen ([20]), such that [∇, D] extends to a completely bounded
operator. The topological tensor product used here is the Haagerup tensor product for
operator spaces. Blecher ([7]) showed this tensor product coincides with the C∗-module
tensor product, in case both operator spaces are C∗-modules. His work plays a crucial role
in our construction. The product of two cycles with connection is given by an algebraic
formula and the product of connections can also be defined. Thus, cycles with connection
form a category, and the bounded transform

(E , D,∇) 7→ (E , D(1 + D2)−
1
2 ),

defines a functor from this category to the category KK.
We also describe a general construction for obtaining KK-cycles from real-valued

groupoid cocycles. If G is a locally compact Hausdorff groupoid with Haar system and
c : G → R a continuous closed cocycle, we show that pointwise multiplication by c in the
convolution algebra Cc(G), extends to an unbounded regular operator on the completion
of Cc(G) as a C∗-module over C∗(H), where H is the kernel of c. It gives a KK-cycle for
(C∗(G), C∗(H)). In case the groupoid H is unimodular with respect to a quasi-invariant
measure, or more general, if C∗(H) carries a trace, this KK-cycle gives rise to an index
map K1(C∗(G))→ C.

This result is general enough to be applied in a wide variety of examples. We use it
to obtain the noncommutative torus as a smooth quotient (in the above categorical sense)
of the irrational rotation action on the circle. In the last chapter we sketch the promising
range of applications the above categorical setting and cocycle construction may have in
the noncommutative geometry of limit sets.
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Chris DeGarmo





Introduction

Noncommutative geometry can be described as the study of operator algebras
using methods originating in geometry, topology and homotopy theory. Connes
both pioneered and established the basic tools for noncommutative geometry in [11].
In that paper, cyclic cohomology, a cohomology theory for algebras generalizing
classical DeRham theory on manifolds is developed, and a Chern character map

Ch : K∗(A )→ HP ∗(A ),

from K-homology to periodic cyclic cohomology HP of a suitable topological alge-
bra A is constructed. A is usually taken to be a dense Fréchet subalgebra of some
enveloping C∗-algebra A. This should be viewed in analogy to the inclusion of the
smooth functions C∞(M) ⊂ C(M) in the continuous functions on some smooth
manifold M . In K-theory (and K-homology, for that matter), this inclusion is ”in-
visible”: the K-groups of C∞(M) and C(M) are isomorphic, and the isomorphism
is induced by the inclusion of the algebras. It should be mentioned here that this
invariance fails in cyclic cohomology, but we will not be concerned with this issue
presently.

From the Gel’fand-Naimark theorem we know that commutative C∗-algebras
are dual to locally compact Hausdorff spaces, and thus, arbitrary C∗-algebras can
be viewed as quantized spaces. However, quantizing manifolds is a different issue
than quantizing spaces. In [12] Connes argues that a noncommutative metric space
should be given by a spectral triple (A,H , D). The triple consists of a Z/2Z-graded
C∗-algebra A, represented on a likewise graded Hilbert space H , together with an
odd unbounded operator D in H , with compact resolvent, such that the graded
commutators [D, a] extend to bounded operators in H , for all a in some dense
subalgebra A of A. Such triples are also the cycles for the K-homology groups
of A. The motivation for this definition of noncommtuative manifold stems from
the fact that Connes was able to recover the Riemannian distance function on a
compact spin manifold from the Dirac operator on this manifold.

In recent years, many noncommutative spectral triples have been constructed,
at first in settings related to physics and geometry, and later also in the realm of
analytic number theory and arithmetic. The latter examples were the starting point
for the work in this thesis. The papers by Manin-Marcolli ([40], [41]) consider the
action of finite index subgroups Γ, of the modular group PSL(2,Z) on the boundary
of the upper half plane. This boundary is isomorphic to P1(R), and Γ acts on it with
dense orbits. TheK-theory of the crossed product algebra C(P1(R))oΓ turns out to
be closely related the homology of the modular curve XΓ uniformized by Γ. In [14]
and [17], unformization of curves by Schottky groups is considered, both for classical
Kleinian Schottky groups, and in the p-adic setting. Spectral triples for the action
of such groups on the limit set of its Bruhat-Tits tree are constructed, and shown
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2 INTRODUCTION

to contain information about the original curve. The Patterson-Sullivan measure,
a special measure on the limit set, is a vital ingredient in these constructions.

The common denominator of the above situations is that they are both exam-
ples of a group acting on a space H that is hyperbolic in the sense of Gromov ([24]).
Such spaces admit a natural compactification by adding the Gromov boundary ∂H.
The action of the group on H extends to ∂H and the set of accumulation points
of orbits is the limit set ΛΓ, on which Γ acts with dense orbits. The analogue of a
Patterson-Sullivan measure always exists for these groups [15], and the properties
of this measure on ΛΓ ⊂ ∂H reflect the geometry of the interior space H. The
construction of spectral triples in [17] depends heavily on the fact that Schottky
groups are free. The original purpose of the research presented in this thesis was
to construct spectral triples for general groups acting on limit sets of hyperbolic
spaces.

Relations given by inclusions of groups and orbit equivalence should give rise
to relations between the corresponding noncommutative geometries. An inclusion
of groups Γ ⊂ Γ′ gives rise to an inclusion of limit sets ΛΓ ⊂ ΛΓ′ . An orbit equiv-
alence is given by a (partial) endomorphism σ : Λ → Λ, that generates the same
orbits as the Γ-action. The appropriate setting to consider these relations is that
of groupoids. The crossed product algebra C(Λ) o Γ can be obtained from the
transformation groupoid Λ o Γ of the action, and an inclusion of groups gives an
inclusion of transformation groupoids, but not a homomorphism of algebras. An or-
bit equivalence also gives a homomorphism of groupoids, but not a homomorphism
of algebras.

Instead of algebra homomorphisms, groupoid homomorphisms give rise to bi-
modules over the respective groupoid algebras. The Patterson-Sullivan measure
gives rise to a homomorphism from the transformation groupoid Λ o Γ to the real
numbers R. The kernel of such a homomorphism is again a groupoid, and thus
gives rise to a bimodule again. This bimodule comes equipped with extra structure
similar to that of a spectral triple but more general. It will be a cycle of Kasparov’s
bivariant K-theory [32].

Kasparov’s theory associates to a pair of C∗-algebras (A,B) a Z/2Z-graded
abelian group KK∗(A,B). It comes equipped with the structure of a category by
the intricate Kasparov product

KK∗(A,B)⊗KK∗(B,C)→ KK∗(A,C),

where A,B and C are C∗-algebras. It unifies K-theory and K-homology in the
sense that there are natural isomorphisms

KK∗(C, A) ∼= K∗(A), KK∗(A,C) ∼= K∗(A).

Viewed as such, elements of KK∗(A,B) in particular induce homomorphisms

K∗(B)→ K∗(A) and K∗(A)→ K∗(B).

The cycles for the KK-theory of (A,B) are given by bivariant spectral triples. Here
the notion of a C∗-module over B is important, which is a right B-module with a
B-vlaued inner product. These objects behave very much like Hilbert spaces. In
particular, the notion of unbounded operators with compact resolvent makes sense
in this setting. A C∗-B-module E carrying a representation of A, together with an
unbounded operator D in E , with compact resolvent and such that [D, a] is bounded
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for all a in some dense subalgebra A of A, defines an element in KK∗(A,B). These
objects are called unbounded bimodules.

It turns out that by equipping the cycles (E , D) for KK-theory with the extra
structure of a universal connection ∇ : E → E⊗̃Ω1(A) in the sense of Cuntz-Quillen
[20], satisfying certain analytic properties, is enough to create a category of spectral
triples, in which morphisms are given by such cycles. Composition of morphisms,
after KK-equivalence, corresponds to the Kasparov product. The construction
of this functor is the topic of chapter 1. It gives a new way of thinking about
morphisms of spectral triples, and probably even of Riemannian manifolds. It also
allows for considering things in a relative setting, where the objects are not spectral
triples, but unbounded bimodules (without connection).

In chapter 2 we explore groupoids G equipped with a homomorphism c : G → R,
as in the case of the Patterson-Sullivan measure. We show that under certain
analytic conditions, this yields an unbounded bimodule for (C∗(G), C∗(Hc)). Here
Hc is the kernel of the homomorphism c, a subgroupoid of G. In many cases
of interest, the groupoid algebra C∗(Hc) comes equipped with a canonical trace,
giving a homomorphism K0(C∗(Hc))→ C. Combined with the Kasparov product
this gives a homomorphism K1(C∗(G))→ C.

In the last chapter, we return to the subject of limit sets. Most of the results
discussed there are work in progress at the moment this thesis is written. The
bimodules given by orbit equivalences and inclusions of groups can be used to relate
the different index homomorphisms obtained in the above way. For hyperbolic
manifolds, the index maps associated to different Patterson-Sullivan measures can
be globalized to give a map from a slghtly more sophisticated K-group to the
functions on the manifold M uniformized by the group Γ. Finally, we explore the
group SL(2,Z) and its action on both its tree and the projective line P1(R) as
morphisms in noncommutative geometry.





CHAPTER 1

Unbounded bivariant K-theory

In order to obtain a more transparant description of the external product struc-
ture in Kasparov’s bivariant K-theory, Baaj and Julg [4] gave a description of the
cycles of this theory in terms of unbounded operators on C∗-modules. Later on,
Kucerovsky [35] gave necessary conditions for an unbounded cycle to represent the
internal Kasporov product of two given cycles. In this chapter we construct a cat-
egory of unbounded cycles, on which the bounded transform induces a functor to
the category KK. In particular, this allows for computing the Kasparov product
of two KK-elements as the composition of their unbounded representatives in the
newly constructed category. Furthermore, we present a way to view this category
as a category of spectral triples.

1. C∗-modules

From the Gelfand-Naimark theorem we know that C∗-algebras are a natural
generalization of locally compact Hausdorff topological spaces. In the same vein,
the Serre-Swan theorem tells us that finite projective modules are analogues of lo-
cally trivial finite-dimensional complex vector bundles over a topological space.The
subsequent theory of C∗-modules, pioneered by Paschke and Rieffel, should be
viewed in the light of these theorems. They are like Hermitian vector bundles over
a space.

1.1. C∗-modules and their endomorphism algebras. In the subsequent
review of the established theory, we will assume all C∗-algebras and Hilbert spaces
to be separable, and all modules to be countably generated. This last assumption
means that there exists a countable set of generators whose algebraic span is dense
in the module.

Definition 1.1.1.1. Let B be a C∗-algebra. A right C∗-B-module is a complex
vector space E which is also a right B-module, equipped with a bilinear pairing

E × E → B

(e1, e2) 7→ 〈e1, e2〉,
such that

• 〈e1, e2〉 = 〈e2, e1〉∗,
• 〈e1, e2b〉 = 〈e1, e2〉b,
• 〈e, e〉 ≥ 0 and 〈e, e〉 = 0⇔ e = 0,
• E is complete in the norm ‖e‖2 := ‖〈e, e〉‖.

We use Landsman’s notation ([37]) E � B to indicate this structure.

For two such modules, E and F , one can consider operators T : E → F . As
opposed to the case of a Hilbert space (B = C), such operators need not always

5



6 1. UNBOUNDED BIVARIANT K-THEORY

have an adjoint with respect to the inner product. As a consequence, we consider
two kinds of operator between C∗-modules.

Definition 1.1.1.2. Let E ,F be C∗-B-modules. The Banach algebra of con-
tinuous B-module homomorphims from E to F is denoted by HomB(E ,F ). Fur-
thermore let

Hom∗B(E ,F ) := {T : E → E : ∃T ∗ : E → E , 〈Te1, e2〉 = 〈e1, T
∗e2〉}.

Elements of Hom∗B(E ,F ) are called adjointable operators.

Similarly we let EndB(E) and End∗B(E) denote the continuous, respectively
adjointable endomorphisms of the C∗-module E .

Proposition 1.1.1.3. Let T ∈ Hom∗B(E ,F ). Then End∗B(E) is a closed subal-
gebra of EndB(E), and it is a C∗-algebra in the operator norm and the involution
T 7→ T ∗.

The concept of unitary isomorphism of C∗-modules is the obvious one: Two
C∗-modules E and F over B are unitarily isomorphic if there exists a unitary
u ∈ Hom∗B(E ,F ). E and F are said to be merely topologically isomorphic if there
exists an invertible element S ∈ HomB(E ,F ). An isometric isomorphism is a
topological isomorphism that is isometric. The following remarkable result is due
to M.Frank.

Theorem 1.1.1.4 ([22]). Two countably generated C∗-modules are unitarily
ismorphic if and only if they are isometrically isomorphic if and only if they are
topologically isomorphic.

End∗B(E) contains another canonical C∗-subalgebra. Note that the involution
on B allows for considering E as a left B-module via be := eb∗. The inner product
can be used to turn the algebraic tensor product E ⊗B E into a ∗-algebra:

e1 ⊗ e2 ◦ f1 ⊗ f2 := e1〈e2, f1〉 ⊗ f2, (e1 ⊗ e2)∗ := e2 ⊗ e1.

This algebra is denoted by FinB(E). There is an injective *-homomorphism

FinB(E)→ End∗B(E),

given by e1⊗ e2(e) := e1〈e2, e〉. The closure of FinB(E) in the operator norm is the
C∗-algebra of B-compact operators on E . It is denoted by KB(E).

Example 1.1.1.5 (Free modules). For each n ∈ N, the module Bn+1 becomes
a C∗-module in the inner product

〈(a0, · · · , an), (b0, · · · , bn)〉 :=
n∑
i=0

a∗i bi.

There is a natural isomorphism KB(An) ∼= Mn(A).

A grading on a C∗-algebra B is a self-adjoint unitary γ ∈ AutB. If such a
grading is present, B decomposes as B0 ⊕ B1, where B0 is the C∗-subalgebra of
even elements, and B1 the closed subspace of odd elements. We have BiBj ⊂ Bi+j
for i, j ∈ Z/2Z. For b ∈ Bi, we denote the degree of b by ∂b ∈ Z/2Z. From now on,
we assume all C∗-algebras to be graded, possibly trivially, i.e. γ = 1.

Definition 1.1.1.6. A C∗-module E � B is graded if it comes equipped with
a selfadjoint unitary γ ∈ Aut∗B(E) such that
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• γ(eb) = γ(e)γ(b),
• 〈γ(e1), γ(e2)〉 = γ〈e1, e2〉.

In this case E also decomposes as E0 ⊕ E1, and we have E iBj ⊂ E i+j for
i, j ∈ Z/2Z. The algebras EndB(E),End∗B(E) and KB(E) inherit a natural grading
from E by setting γφ(e) := φ(γ(e)). For e ∈ E i, we denote the degree of e by
∂e ∈ Z/2Z.From now on we assume all C∗-modules to be graded, possibly trivially.

1.2. Tensor products. For a pair of C∗-modules E � A and F � B, the
vector space tensor product E ⊗ F (over C, which will be always supressed in the
notation) can be made into a C∗-module over the minimal C∗-tensor product A⊗B.
The minimal or spatial C∗-tensor product is obtained as the closure of A ⊗ B in
B(H ⊗ K ), where H and K are graded Hilbert spaces that carry faithful graded
representations of A and B respectively. In order to make A⊗B into a graded
algebra, the multiplication law is defined as

(1.1) (a1 ⊗ b1)(a2 ⊗ b2) = (−1)∂b1∂a2a1a2 ⊗ b1b2.
The completion of E ⊗ F in the inner product

〈e1 ⊗ f1, e2 ⊗ f2〉 := 〈e1, e2〉 ⊗ 〈f1, f2〉,
is a C∗-module denoted by E⊗F . It inherits a grading by setting γ := γE ⊗ γF .

The graded module so obtained is the exterior tensor product of E and F . The
graded tensor product of maps φ ∈ End∗A(E) and ψ ∈ End∗B(F ) is defined by

φ⊗ ψ(e⊗ f) := (−1)∂(e)∂(ψ)φ(e)⊗ ψ(f),

gives a graded inclusion

End∗A(E)⊗End∗B(F )→ End∗A⊗B(E⊗F ),

which restricts to an isomorphism

KA(E)⊗KB(F )→ KA⊗B(E⊗F ).

A *-homomorphism A→ End∗B(E) is said to be essential if

AE := {
n∑
i=0

aiei : ai ∈ A, ei ∈ E , n ∈ N},

is dense in E . If a graded essential *-homomorphism A → End∗B(F ) is given, one
can complete the algebraic tensor product E ⊗A F to a C∗-module E⊗̃AF over B.
The norm in which to complete comes from the B-valued inner product

(1.2) 〈e1 ⊗ f1, e2 ⊗ f2〉 := 〈e1, 〈f1, f2〉e2〉.
There is a *-homomorphism

End∗A(E) → End∗B(E⊗̃AF )
T 7→ T ⊗ 1,

which restricts to a homomorphism KA(E)→ KB(E⊗̃AF ).

Example 1.1.2.1 (The standard module). The above constructions coincide
when A = C and the homomorphism C → End∗B(F ) is given by multiples of
the identity. If E = H , a graded separable Hilbert space, and F = B, then
HB := H⊗B ∼= H ⊗̃B is the standard C∗-module over B. We have KB(HB) = K⊗B,
where K is the algebra of compact operators on H .



8 1. UNBOUNDED BIVARIANT K-THEORY

The standard module HB absorbs any countably generated C∗-module. The
direct sum E ⊕ F of C∗-B-modules becomes a C∗-module in the inner product

〈(e1, f1), (e2, f2)〉 := 〈e1, e2〉+ 〈f1, f2〉.

Theorem 1.1.2.2 (Kasparov [32]). Let E � B be a countably generated graded
C∗-module. Then there exists a graded unitary isomorphism E ⊕ HB

∼−→ HB.

1.3. Correspondences. Noncommutative rings behave very differently from
commutative rings in many ways. In particular, a given noncommutative ring can
have very few ideals, or none at all. Mn(C) for instance, is a simple algebra, and
it is a not at all pathological object.The ordinary notion of homomorphism does
not give an adequate categorical setting for noncommutative rings, because of the
above mentioned lack of ideals. In pure algebra, a more flexible notion of morphism
is given by bimodules, whose composition is the module tensor product. We now
describe a category of such correspondences for C∗-algebras, taking into account the
topology of these objects. The resulting category is slightly different from the usual
category C∗, in which morphisms are essential ∗-homomorphisms. This structure is
well-suited for functoriality properties of groupoid algebras, which will be explored
in the next chapter.

Definition 1.1.3.1. Let A,B be C∗-algebras. A C∗-correspondence from A
to B consists of a C∗-B-module E together with an essential ∗-homomorphism
π : A→ End∗B(E), written A � E � B.
Two such correspondences are called isomorphic when there exists a unitary in
Hom∗B(E ,F ) intertwining the A-representations.

We can compose correspondences A � E � B and B � F � C via the
internal tensor product. Denote by CorC∗(A,B) the set of isomorphism classes of
correspondences from A to B. It is straightforward to check that the correpondences
A � A � A are units for the composition operation modulo unitary equivalence.

Proposition 1.1.3.2. Composition of correspondences as described above is as-
sociative on isomorphism classes of correspondences. Therefore the sets CorC∗(A,B)
are the morphism sets of a category CorC∗ , whose objects are all C∗-algebras.

The proof of this result is straightforward, as unitary equivalence provides
enough freedom for associativity and identity to hold. There is a functor C∗ →
CorC∗ , which is the identity on objects. To a *-homomorphism π ∈ C∗(A,B) it
associates the correspondence A � B � B ∈ CorC∗(A,B).

Definition 1.1.3.3. Let A,B be C∗-algebras. A and B are said to be strongly
Morita equivalent if there exists a correspondence A � E � B such that π : A→
End∗B(E) is an isomorphism onto KB(E).

Strong Morita equivalence is amongst the most important equivalence relations
for C∗-algebras. Two commutative C∗-algebras are strongly Morita equivalent if
and only if they are isomorphic. As such the relation can be viewed as an extension
(via the Gelfand-Naimark theorem) of the notion of homeomorphism for locally
compact Hausdorff spaces. The following result supports that view.

Theorem 1.1.3.4. Two C∗-algebras A,B are isomorphic in CorC∗ if and only
if they are strongly Morita equivalent.

The reader can consult [38] for a proof.
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1.4. Unbounded operators. Similar to the Hilbert space setting, there is a
notion of unbounded operator on a C∗-module. Many of the already subtle issues
in the theory of unbounded operators should be handled with even more care.
This is mostly due to the fact that closed submodules of a C∗-module need not be
orthogonally complemented. We refer to [3], [36] and [52] for detailed expositions
of this theory.

Definition 1.1.4.1 ([4]). Let E ,F be C∗-B-modules. A densely defined closed
operator D : DomD → F is called regular if

• D∗ is densely defined in F
• 1 +D∗D has dense range.

Such an operator is automatically B-linear, and DomD is a B-submodule of E .
There are two operators, r(D), b(D) ∈ Hom∗B(E ,F ) canonically associated with a
regular operator D. They are the resolvent of D

(1.3) r(D) := (1 +D∗D)−
1
2 ,

and the bounded transform

(1.4) b(D) := D(1 +D∗D)−
1
2 .

Proposition 1.1.4.2. If D : DomD → F is regular, then D∗D is selfadjoint
and regular. Moreover, DomD∗D is a core for D and Imr(D) = DomD.

It follows that D is completely determined by b(D), as r(D)2 = 1−b(D)∗b(D).
Due to this fact, selfadjoint regular regular operators share many properties with
selfdajoint closed operators on Hilbert space. In particular, they admit a functional
calculus.

Theorem 1.1.4.3 ([3],[36]). Let E � B be a C∗-module, and D a selfadjoint
regular operator in E. There is a *-homomorphism f 7→ f(D), from C(R) into the
regular operators on E, such that (x 7→ x) 7→ D and (x 7→ x(1 + x2)−

1
2 ) 7→ b(D).

Moreover, it restricts to a *-homomorphism C0(R)→ End∗B(E).

This theorem allows us to derive a useful formula for the resolvent of D. We
include it here for later reference.

Corollary 1.1.4.4. Let D be a selfadjoint regular operator on a C∗-module
E. Then the equality

r(D)2 = (1 +D2)−1 =
∫ ∞

0

e−x(1+D2)dx,

holds in End∗B(E).

Proof. We have to check convergence of the integral at x = 0 and for x→∞.
To this end, let s ≤ t and compute:

‖
∫ t

s

e−x(1+D2)dx‖ ≤
∫ t

s

‖e−x(1+D2)‖dx

≤
∫ t

s

sup
y∈R
|e−x(1+y2)|dx

=≤
∫ t

s

e−xdx

= e−t − e−s.
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Hence the integral converges for both t→ 0 and s→∞. �

Recall that a submodule F ⊂ E is complemented if E ∼= F ⊕ F ⊥, where

F ⊥ := {e ∈ E : ∀f ∈ F 〈e, f〉 = 0}.
Contrary to the Hilbert space case, closed submodules of a C∗-module need not be
complemented.

The graph of D is the closed submodule

G(D) := {(e,De) : e ∈ Dom(D)} ⊂ E ⊕ F .

There is a canonical unitary v ∈ HomB(E ⊕ F ,F ⊕ E), defined by v(e, f) :=
(−f, e).Note that G(D) and vG(D∗) are orthogonal submodules of E ⊕ F . The
following algebraic characterization of regularity is due to Woronowicz .

Theorem 1.1.4.5 ([52]). A densely defined operator D : E → F is regular if
and only if G(D)⊕ vG(D∗) ∼= E ⊕ F .

The isomorphism is given by coordinatewise addition. Moreover, the operator

(1.5) pD :=
(

r(D)2 Dr(D)2

Dr(D)2 D2r(D)2

)
satisfies p2

D = p∗D = pD, i.e. it is a projection, and pD(E⊕F ) = G(D). G(D), which
is naturally in bijection with Dom(D), inherits the structure C∗-module from E⊕F ,
and hence so does DomD. We denote its inner product by 〈·, ·〉1. Since D commutes
with r(D), D maps r(D)G(D) into G(D). We denote this operator by D1.

Proposition 1.1.4.6. Let D : DomD → E be a selfdajoint regular operator.
Then D1 : r(D)G(D)→ G(D) is a selfadjoint regular operator.

Proof. From proposition 1.1.4.2 it follows that

r(D)G(D) = r(D)2E = DomD2.

D1 is closed as an operator in G(D) for if r(D)2en → r(D)2e and Dr(D)2en → e′

in the topology of G(D), then it follows immediatley that

e′ = D(Dr(D)2e) = D2r(D)2e.

It is straightforward to check that D1 is symmetric for the inner product of G(D).
Hence it is regular, because (1 + D2)r(D)4E = r(D)2E . To prove selfadjointness,
suppose y ∈ DomD is such that there exists z ∈ DomD such that for all x ∈ r(D)2E
〈D1x, y〉1 = 〈x, z〉1. Then z = Dy, because

〈Dx, y〉1 = 〈Dx, y〉+ 〈D2x,Dy〉
= 〈Dr(D)2e, y〉+ 〈D2r(D)2e,Dy〉
= 〈r(D)2e,Dy〉+ 〈D2r(D)2e,Dy〉
= 〈e,Dy〉.

A similar computation shows that 〈x, z〉1 = 〈e, z〉. Since r(D)2 is injective this
holds for all e ∈ E , and hence z = Dy. Therefore

DomD∗1 = {y ∈ DomD : Dy ∈ DomD} = DomD2 = r(D)2E = DomD1,

so D1 is selfadjoint. �
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Corollary 1.1.4.7. A selfadjoint regular operator D : DomD → E induces a
morphism of inverse systems of C∗-modules:

· · · - Ei+1
- Ei - Ei−1

- · · · - E1
- E

· · · - Ei+1
-

D
i+

1

-

Ei -

D
i

-

Ei−1
-

D
i−

1

-

· · · -

D
i−

2

-

E1
-

D
1

-

E

D

-

Proof. Set Ei = G(Di−1). Then the maps Ei → Ei−1 are just projection on
the first coordinate, whereas the maps Di : Ei+1 → Ei are the projections on the
second coordinates. These maps are adjointable,and we have

D∗i (ei) = (Dir(Di)2ei, D
2
i r(Di)2ei), φ∗i (ei) = (r(Di)2, Dir(Di)2).

These are exactly the components of the Woronowicz projection 1.5. �

We will refer to this inverse system as the Sobolev chain of D.

To construct selfadjoint regular operators in practice, we include some remarks
and results on the extension of symmetric regular operators. This material is to
be found in [36]. A densely defined operator D in a C∗-module E is symmetric if,
for e, e′ ∈ DomD we have 〈De, e′〉 = 〈e,De′〉. Symmetric operators are closable,
and their closure is again symmetric. Hence we will tacitly assume all symmetric
operators to be closed.

Lemma 1.1.4.8 ([36]). Let D be a densely defined symmetric operator. Then
the operators D + i and D − i are injective and have closed range.

We can now define two isometries

u+(D) := (D + i)r(D), u−(D) := (D − i)r(D),

and the Cayley transform of D is

(1.6) c(D) := u−(D)u∗+(D).

In general, c(D) is a partial isometry, with closed range. D can be recoverd from
c(D) by the formulas

Dom(D) = Im(1− c(D))c∗(D)

D(1− c(D))c∗(D)e = i(1 + c(D))c∗(D)e.

Theorem 1.1.4.9 ([36]). The Cayley transform c furnishes a bijection between
the set of symmetric regular operators in E and and the set of partial isometries
c ∈ End∗B(E) with the property that (1− c)c∗ has dense range. Moreover, D′ is an
extension of D if and and only if c(D′) is an extension of c(D).

For a selfadjoint regular operator D, 1+D2 has dense range.Therefore by lemma
1.1.4.8, the operators D + i and D − i are bijective.

Corollary 1.1.4.10. A symmetric regular operator D is selfadjoint if and only
if c(D) is unitary.
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1.5. Approximate projectivity. The work of Blecher [7] provides a met-
ric description of C∗-modules which is useful in extending the theory to non C∗-
algebras. We will discuss some of his work on these extensions in section 3, whereas
in the present section we will discuss the characterization of C∗-modules as ”ap-
proximately projective” modules.

For a countably generated C∗-A-module E , the algebra KA(E) has a countable
approximate unit {uα}α∈N consisting of elements in FinA(E). Replacing uα by
u∗αuα if necessary, we may assume

uα =
nα∑
i=1

xαi ⊗ xαi .

For each nα we get operators φα ∈ KA(E , Anα), defined by

(1.7) φα : e 7→
nα∑
i=1

ei〈xαi , e〉,

where ei denotes the standard basis of Anα .We have

(1.8) φ∗α : x 7→
nα∑
i=1

xαi 〈ei, x〉,

and hence φ∗α ◦φα → idE pointwise. This structure determines the E completely as
a C∗-module.

Theorem 1.1.5.1 ([7]). Let A be a C∗-algebra and E be a Banach space which
is also a right A-module. E is a countably generated C∗-module if and only if there
exists a sequence {nα} of positive integers and contractive module maps

φα : E → Anα , ψα : Anα → E ,

such that ψα ◦ φα converges pointwise to the identity on E. In this case the inner
product on E is given by

〈e, f〉 = lim
α→∞

〈φα(e), φα(f)〉.

For this reason we can think of C∗-modules as approximately finitely generated
projective modules. Also note that the maps φα, ψα are by no means unique, and
that different maps can thus give rise to the same inner product on E .

2. KK-theory

Kasparov’s bivariant K-theory KK [32] has become a central tool in noncom-
mutative geometry since its creation. It is a bifunctor on pairs of C∗-algebras,
associating to (A,B) a Z/2Z-graded group KK∗(A,B). It unifies K-theory and
K-homology in the sense that

KK∗(C, B) ∼= K∗(B) and KK∗(A,C) ∼= K∗(A).

Much of its usefulness comes from the existence of internal and external product
structures, by which KK-elements induce homomorphisms between K-theory and
K-homology groups. In Kasparov’s original approach, the definition and computa-
tion of the products is very complicated. In order to simplify the external product,
Baaj and Julg [4] introduced another model for KK, in which the external product
is given by a simple algebraic formula. The price one has to pay is working with
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unbounded operators. We will describe both models, and their relation, together
with some results on the structure of KK as a category.

2.1. The bounded picture. The main idea behind Kasparov’s approach to
K-homology and KK-theory is that of a family of abstract elliptic operators. This
was an idea pioneered by Atiyah, in his construction of K-homology for spaces
and the family index theorem. We will consider bimodules A → E � B, without
assuming the action of A to be essential, nor the inner product being full.

Definition 1.2.1.1. For p ∈ N, denote by Cp the complex unital graded algebra
generated by symbols εj , j = 1, . . . , n, of degree 1, satisfying the following relations:

ε∗j = −εj , ε2
j = −1, [εi, εj ] = 0.

Here we assume i 6= j, and the commutator is graded.

The algebra Cp is generated by the 2n monomials εj1 . . . εjk , 0 ≤ k ≤ n and
j1 < · · · < jk. Considering these monomials as an orthonormal basis, the left
regular representation of Cp on itself equips it with a C∗-norm. It is a well known
fact that Cp+2

∼= M2(Cp). This is sometimes referred to as formal Bott periodicity.

Definition 1.2.1.2. Let A→ E � B be a graded bimodule and F ∈ End∗B(E)
an odd operator. (E , F ) is a Kasparov (A,B)-bimodule if, for all a ∈ A,

• [F, a], a(F 2 − 1), a(F − F ∗) ∈ KB(E).

We denote by Ej(A,B) the set of Kasparov modules for (A,B⊗̃Cj) modulo
unitary equivalence. Unitary equivalence is defined by the existence of a unitary
intertwining the action of the algebras and the operators. An ungraded C∗-module
E � B equipped with a left action of A and an operator F satisfying the relations
from definition 1.2.1.2 defines an element [(E ′, F )] ∈ E1(A,B). This is done by
setting

(1.9) E ′ := E ⊕ E , γ :=
(

1 0
0 −1

)
, F ′ :=

(
0 F
F 0

)
, ε1 7→

(
0 i
i 0

)
.

Here ε1 is the generator of the Clifford algebra C1. Ungraded modules of this kind
are therefore referred to as odd Kasparov modules.

The set of degenerate elements consists of bimodules for which

∀a ∈ A : [F, a] = a(F 2 − 1) = a(F − F ∗) = 0.

Denote by ei : C[0, 1]⊗B → B the evalution map at i ∈ [0, 1]. Two Kasparov
(A,B)-bimodules (Ei, Fi) ∈ Ej(A,B), i = 0, 1 are homotopic if there exists a Kas-
parov (A,C[0, 1]⊗B)-module (E , F ) ∈ Ej(A,C[0, 1]⊗B) for which (E⊗ei B,F ⊗1)
is unitarily equivalent to (Ei, Fi), i = 0, 1. It is an equivalence relation, denoted ∼.
Define

KKj(A,B) := Ej(A,B)/ ∼ .
KKj is a bifunctor, contravariant in A, covariant in B, taking values in abelian
groups. It is not hard to show that KK∗(C, A) and KK∗(A,C) are naturally iso-
morphic to the K-theory and K-homology of A, respectively. Moreover, Kasparov
proved the following deep theorem.
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Theorem 1.2.1.3 ([32]). For any C∗-algebras A,B,C there exists an associa-
tive bilinear pairing

KKi(A,B)⊗Z KKj(B,C) ⊗B−−→ KKi+j(A,C).

Therefore, the groups KK∗(A,B) are the morphism sets of a category KK whose
objects are all C∗-algebras.

The standard module An, viewed as an (Mn(A), A)-bimodule, defines an invert-
ible element for the Kasparov product. Hence, in both variables, the KK-groups of
A and Mn(A) are isomorphic. Combining this with formal Bott periodicity yields a
natural isomorphism KKi(A,B) ∼−→ KKi+2(A,B). It follows that KK-theory can
be defined using just E0 and E1. Moreover KK1 can be defined using just odd (that
is, ungraded) Kasparov modules. Because of this result we will refer to elements of
E0(A,B) as even Kasparov modules. There also is a notion of external product in
KK-theory.

Theorem 1.2.1.4 ([32]). For any C∗-algebras A,B,C,D there exists an asso-
ciative bilinear pairing

KKi(A,C)⊗Z KKj(B,D) ⊗−→ KKi+j(A⊗B,C⊗D).

The external product makes KK into a symmetric monoidal category

The main result of this chapter is the construction of a category that lifts the
structure of the the above theorem to the level of cycles. This only works if one
works with unbounded cycles, which are to be introduced shortly.

2.2. The unbounded picture. Developing KK-theory using unbounded op-
erators has the advantage that the theory becomes more algebraic in nature. This
happens, of course, at the expense of the difficulties introduced by working with
regular operators. These problems can mostly be solved at a general level, and one
need not worry about them when dealing with concrete examples.

Definition 1.2.2.1. Let A→ E � B be a graded bimodule and D : DomD →
E an odd regular operator. (E , D) is an unbounded (A,B)-bimodule if, for all a ∈ A,
a dense subalgebra of A

• [D, a], extends to an adjointable operator in End∗B(E)
• ar(D) ∈ KB(E).

Denote the set of unbounded bimodules for (A,B⊗̃Ci) modulo unitary equiva-
lence by Ψi(A,B). An ungraded module equipped with an operator satisfying the
relations from definition 1.2.2.1 is called an odd unbounded (A,B)-bimodule. As
in the bounded case, they define elements in Ψ1(A,B), by replacing F with D in
1.9. As in the bounded case, we will refer to elements of Ψ0 as even unbounded
bimodules. In [4] it is shown that (E , b(D)) is a Kasparov bimodule, and that
every element in KK∗(A,B) can be represented by an unbounded bimodule. The
motivation for introducing unbounded modules is the following result.

Theorem 1.2.2.2 ([4]). Let (Ei, Di) be unbounded bimodules for (Ai, Bi), i =
1, 2. The operator

D1 ⊗ 1 + 1⊗D2 : DomD1 ⊗DomD2 → E ⊗ F ,
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extends to a selfadjoint regular operator with compact resolvent. Moreover, the
diagram

Ψi(A1, B1)×Ψj(A2, B2) - Ψi+j(A1⊗A2, B1⊗B2)

KKi(A1, B1)×KKj(A2, B2)

b

? ⊗- KKi+j(A1⊗A2, B1⊗B2)

b

?

commutes.

Consequently, we can define the external product in this way, using unbounded
modules, and this is what we will do. Note that lemma 1.1.4.4 can be used to show
that the resolvent of the operator D1 ⊗ 1 + 1 ⊗ D2 is compact. Indeed, writing
s = D1⊗̃1 and t = 1⊗̃D2, we have [s, t] = 0, i.e. s and t anticommute, and hence

Dom(s+ t) = Doms ∩Domt, 1 + (s+ t)2 = 1 + s2 + t2, [s2, t2] = 0.

Now

(2 + s2 + t2)−1 =
∫ ∞

0

e−x(2+s2+t2)dx =
∫ ∞

0

e−x(1+s2)e−x(1+t2)dx,

and e−x(1+s2)e−x(1+t2) = e−x(1+D2
1) ⊗ e−x(1+D2

2) is compact because both the
e−x(1+D2

i ) are. Hence by lemma 1.1.4.4, (2 + s2 + t2)−1 is a limit of compact
operators, which is compact.

In [35], Kucerovsky gives sufficient conditions for an unbounded module (E⊗̃AF , D)
to be the internal product of (E , S) and (F , T ). For each e ∈ E , we have an operator

Te : F → E⊗̃AF

f 7→ e⊗ f.
It’s adjoint is given by T ∗e (e′ ⊗ f) = 〈e, e′〉f . We also need the concept of semi-
boundedness which carries over from the Hilbert space setting.

Definition 1.2.2.3 ([35]). Let D be a symmetric operator in a C∗-module
E � B. D is semi-bounded below if there exists a real number κ such that 〈De, e〉 ≥
κ〈e, e〉. If κ ≥ 0, D is form-positive.

It is immediate that D is semibounded below if and only if it is the sum of an
operator in End∗B(E) and a form positive operator. Kucerovsky’s result now reads
as follows.

Theorem 1.2.2.4 ([35]). Let (E⊗̃AF , D) ∈ Ψ0(A,C). Supppose that (E , S) ∈
Ψ0(A,B) and (F , T ) ∈ Ψ0(B,C) are such that

• For e in some dense subset of AE, the operator[(
D 0
0 T

)
,

(
0 Te
T ∗e 0

)]
is bounded on Dom(D ⊕ T );

• DomD ⊂ DomS⊗̃1 ;
• 〈Sx,Dx〉+ 〈Dx, Sx〉 ≥ κ〈x, x〉 for all x in the domain.

Then (E⊗̃AF , D) ∈ Ψ0(A,C) represents the internal Kasparov product of (E , S) ∈
Ψ0(A,B) and (F , T ) ∈ Ψ0(B,C).
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2.3. Categorical properties of KK. As we have seen, the Kasparov product
makes KK into a category, and it is immediate that this category is additive. By
an extension of C∗-algebras we shall mean an exact sequence of *-homomorphisms

0→ A→ B → C → 0,

between C∗-algebras, such that the map B → C has a completely positive con-
tinuous linear splitting C → B. The extension is said to be split if their exists a
*-homomorphism C → B splitting it.

Theorem 1.2.3.1 ([32]). Let A,B,C,D be C∗-algebras and

0→ A→ B → C → 0,

an extension. There are natural exact sequences

· · · → KKi+1(D,C)→ KKi(D,A)→ KKi(D,B)→ KKi(D,C)→ KKi−1(D,A)→ · · · ,

and

· · · → KKi−1(A,D)→ KKi(C,D)→ KKi(B,D)→ KKi(A,D)→ KKi+1(C,D)→ · · · .

If the extension is split, both sequences

KKi(D,A)→ KKi(D,B)→ KKi(D,C),

and
KKi(C,D)→ KKi(B,D)→ KKi(A,D)

are split exact for all i.

This result is usually referred to as split-exactness of the functor KK. As with
Kasparov modules, we can define two C∗-algebras Aand B to be homotopic if there
exit *-homomorphisms f : A → B and g : B → A such that f ◦ g and g ◦ f are
homotopic to the identity. Two *-homomorphisms f, g : A → Bare homotopic if
there is a *-homomorphism F : A→ C([0, 1], B) such that F (0) = f and F (1) = g.
By definition, the functor KK is homotopy invariant. Recall that two separable
C∗-algebras A,B are strongly Morita equivalent if and only if K⊗A and K⊗B
are isomorphic. Moreover Morita equivalent C∗-algebras have isomorphic KK-
groups, the isomorphism being implemented by the operation of tensoring with the
equivalence bimodule. The is turn corresponds to taking the Kasparov product
with the KK-element defined by the equivalence bimodule. Let p ∈ K be a rank
one projection. We say a functor is stable, if the inclusion

A→ K⊗A
a 7→ p⊗ a,

induces an isomorphism in K-theory. Higson proved the following deep and striking
result.

Theorem 1.2.3.2 ([28]). Let F : C∗ → Ab be a split exact and stable functor
from C∗-algebras to abelian groups. Then F is homotopy invariant.

In this theorem, one could replace Ab with an arbitrary exact category. It turns
out that KK takes in a special place amongst the split exact stable functors. The
next result was anticipated by Cuntz in [18], and later proved by Higson.
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Theorem 1.2.3.3 ([29]). KK is the universal split exact stable functor. That
is, if F : C∗ → Ab is any such functor, then it factors uniquely through the category
KK. this means it determines a unique functor F̃ : KK → Ab making the diagram

C∗ - Ab

KK
?

-

commutative.

The most striking feature of the categoryKK is probably that it is triangulated.
This allwos for the development of homological algebra in KK, and sheds new light
on the assembly maps that occur in the study of the Baum-Connes conjecture. This
line of thought is pursued by Nest and Meyer [43].

3. Operator modules

When dealing with unbounded operators, it becomes necessary to deal with
dense subalgebras of C∗-algebras and modules over these. The theory of C∗-
modules, which is the basis of Kasparov’s approach to bivariant K-theory for C∗-
algebras, needs to be extended in an appropriate way. The framework of operator
spaces and the Haagerup tensor product provides with a category of modules over
operator algebras which is sufficiently rich to accomodate for the phenomana oc-
curring in the Baaj-Julg picture of KK-theory.

3.1. Operator spaces. We will frequently deal with algebras and modules
that are not C∗, and with operators that are not adjointable. In this section
we discuss the basic notions of the theory of operator spaces, in which all of our
examples will fit. The intrinsic approach presented here was taken from [26]. In
the classic literature, operator spaces are described using matrix norms. These are
globalized to yield the approach involving compact operators given here.

Definition 1.3.1.1. An operator space is a linear space X together with a
norm ‖ · ‖ on the algebraic tensor product K⊗X such that

• For all b ∈ B(H ) and v ∈ K⊗X, max{‖bv‖, ‖vb‖} ≤ ‖b‖‖v‖,
• For all orthogonal projections p, q ∈ K and v, w ∈ K⊗X, ‖pxp+ qyq‖ =

max{‖pxp‖, ‖qyq‖},
• For each rank one projection p ∈ K, X is complete in the norm ‖x‖ :=
‖p⊗ x‖.

A linear map φ : X → Y between operator spaces is called completely bounded,
resp. completely contractive, resp. completely isometric if the induced map

1⊗ φ : K⊗X → K⊗ Y,
is bounded, resp. contractive, resp isometric.

The following theorem is very important in identifying operator spaces in prac-
tice.

Theorem 1.3.1.2 ([48]). For every operator space X there exists a Hilbert
space H and and a complete isometry φ : X → B(H ).
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Hence an alternative definition of an operator space is that of a complete
normed space X that is isometrically isomorphic to a closed subspace of a C∗-
algebra. The (unique) C∗-tensor norm on K ⊗ X would then equip X with the
structure of an operator space in the sense of definition 1.3.1.1.

Example 1.3.1.3. Any C∗-module E over a C∗-algebra B is an operator space,
as it is isometric to K(E , B), which is a closed subspace of K(B ⊕ E).

Example 1.3.1.4. Let (E , D) be an unbounded cycle for (A,B) and δ : A →
End∗B(E) the closed densely defined derivation a 7→ [D, a]. Then A can be made
into an operator space via

π : A →M2(End∗B(E))

a 7→
(

a 0
δ(a) a

)
.

Note that, actually A ⊂ EndB(G(D)), but that π is not *-homomorphism.
This example is tantamount in our discussion of the Kasparov product, and it is
also the main example of a non-selfadjoint operator algebra.

Definition 1.3.1.5. For operator spaces X,Y, Z, a bilinear map φ : X × Y →
Z is called completely bounded, resp. completely contractive, resp. completely
isometric if the operator

K⊗X ×K⊗ Y → K⊗ Z
(m⊗ x, n⊗ y) 7→ (mn⊗ φ(x, y)),(1.10)

is bounded, resp. contractive, resp. isometric.
An operator algebra is an operator space A with a completely contractive multi-
plication m : A × A → A. An operator module over an operator algebra A is an
operator space X with a completely contractive A-module structure X ×A → X.

Of course, C∗-algebras and -modules are examples that fit this definition. The
module G(D) ⊂ E ⊕ E from example 2.3.2.1 is a (left)-operator module over A.
The natural choice of morphisms between operator modules are the completely
bounded module maps. If E and F are operator modules over an operator algebra
A, we denote the set of these maps by Homc

A(E,F ).

3.2. The Haagerup tensor product. For operator spaces X and Y , one
can define their spatial tensor product X ⊗ Y as the norm closure of the algebraic
tensor product in the spatial tensor product of some containing C∗-algebras. This
gives rise to an exterior tensor product of operator modules.

The internal tensor product of C∗-modules is an example of the Haagerup ten-
sor product for operator spaces. This tensor product will be extremely important
in what follows.

Definition 1.3.2.1. Let X,Y be operator spaces. The Haagerup norm on
K⊗X ⊗ Y is defined by

‖u‖h := inf{
n∑
i=0

‖xi‖‖yi‖ : u = m(
∑

xi ⊗ yi), xi ∈ K⊗X, yi ∈ K⊗ Y }.

Here m : K⊗X ⊗K⊗ Y → K⊗X ⊗ Y is the linearization of the map 1.10.
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Theorem 1.3.2.2. The norm on X⊗Y induced by the Haagerup norm is given
by

‖u‖h = inf{‖x‖‖y‖ : x ∈ Xn+1, y ∈ Y n+1, u =
n∑
i=0

xi ⊗ yi},

and the completion of X ⊗ Y in this norm is an operator space.

This completion is denoted X⊗̃Y and is called the Haagerup tensor product
of X and Y . By construction, the multiplication in operator algebra A induces a
continuous map A⊗̃A → A. A similar statement holds for operator modules.

Now suppose M is a right operator A-module, and N a left operator A-module.
Denote by IA ⊂M⊗̃N the closure of the linear span of the expressions (ma⊗ n−
m⊗ an). The module Haagerup tensor product of M and N over A is

M⊗̃AN := M⊗̃N/IA,

equipped with the quotient norm, in which it is obviously complete. Moreover, if M
also carries a left B operator module structure, and N a right C operator module
structure, then M⊗̃AN is an operator B, C-bimodule. Graded operator algebras
and -modules can be defined by the same conventions as in definition 1.1.1.6 and
the discussion preceding it.. If the modules and operator algebras are graded, so
are the Haagerup tensor products, again in the same way as in the C∗-case, as in
the discussion around equation 1.1. The following theorem resolves the ambiguity
in the notation for the interior tensor product of C∗-modules and the Haagerup
tensor product of operator spaces.

Theorem 1.3.2.3 ([7]). Let E ,F be C∗-modules over the C∗-algebras A and
B respectively, and π : A→ End∗B(F ) a nondegenrate *-homomorphism. Then the
interior tensor product and the Haagerup tensor product of E and F are completely
isometrically isomorphic.

This result provides us with a convenient description of algebras of compact
operators on C∗-modules. The dual module of a C∗-module E is equal to E as a
linear space, but we equip it with a left C∗-A-module structure using the involution:

ae := ea∗, (e1, e2) 7→ 〈e1, e2〉∗.

Theorem 1.3.2.4 ([7]). There is a complete isometric isomorphism

KA(E⊗̃F ) ∼−→ E⊗̃AKB(F )⊗̃AE∗.

In particular KA(E) ∼= E⊗̃AE∗.

The notion of direct sum of operator modules turns out to be a problematic
issue. In the C∗-module case, the existence of a canonical inner product on direct
sums prevents us from running into problems. This is one of the reasons to work
with a more restricted class of modules, resembling C∗-modules in many ways.

3.3. Rigged modules. Blecher’s characterization of C∗-modules as approxi-
mately finitely generated projective modules (theorem1.1.5.1) allows for a general-
ization of C∗-modules to non-selfadjoint operator algebras. The resulting theory is
only slightly more involved than that for the C∗-case, and is exposed in [6]. The
following definition is modelled on theorem1.1.5.1.
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Definition 1.3.3.1. Let A be an operator algebra and E a right A-operator
module. E is an A-rigged module if there exists a sequence of positive integers {nα}
and completely contractive A-module maps

ψα : E → Anα , φα : Anα → E,

such that

• ψα and ψα are compeltely contractive ;
• ψα ◦ φα → idE strongly on E ;
• ψα is A-essential ;
• ∀β : φβ ◦ ψα ◦ φα → φβ uniformly.

Subsequently define the dual rigged module of E by

E∗ := {e∗ ∈ Homc
A(E,A) : e∗ ◦ ψα ◦ φα → e∗},

and the algebra of A-compact operators as KA(E) := E⊗̃AE∗.

It is immediate from this definition that E∗ = KA(E, ,A). A rigged module
can be viewed as the direct limit of the spaces Anα , by letting the transition maps
tαβ : Anβ → Anα be defined as tαβ := ψα ◦ φβ . As such it has the following uni-
versal property: If completely contractive module maps gα : Anα → W into some
operator space are given, satisfying gαtαβ → gβ , then there is a unique completely
contractive morphism g : E →W .

Emphasizing both the absence of a genuine inner product and the similarites
with C∗-modules, Blecher choose to revive Rieffel’s terminology of rigged modules.
Instead of an inner product, we do have at our disposal the duality pairing E×E∗ →
A. By abuse of notation, we will denote this pairing by (e, e∗) 7→ 〈e, e∗〉. Rigged
modules can be characterized using this pairing, yielding a description that is closer
to the direct definition of a C∗-module.

Theorem 1.3.3.2. Suppose A,B are operator algebras, E a (B,A)-operator
bimodule and Ẽ an (A,B)-operator bimodule. Suppose there exist completely con-
tractive pairings E × Ẽ → B and Ẽ × E → A, such that 〈e, ẽ〉f = e〈ẽ, f〉 and
〈ẽ, e〉f̃ = ẽ〈e, f̃〉. If B has an approximate identity of the form

uβ =
nβ∑
i=0

〈xβi , x̃
β
i 〉, ‖(xβi )‖ ≤ 1, ‖(x̃βi )‖ ≤ 1.

Then E is a right A-rigged module, B ∼= KA(E), and Ẽ ∼= E∗. Moreover every
right A-rigged module arises in this way.

This description will be the one useful for us in dealing with unbounded bivari-
ant K-theory. There is an analogue of adjointable operators on rigged modules.
Their defintion is straightforward.

Definition 1.3.3.3. A completely bounded operator T : E → F between
rigged modules is called adjointable if there exists an operator T ∗ : F ∗ → E∗ such
that

∀e ∈ E, f∗ ∈ F ∗ : 〈Te, f∗〉 = 〈e, T ∗f∗〉.
The space of adjointable operators from E to F is denoted End∗A(E,F ).
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The compact and adjointable operators satisfy the usual relation End∗A(E) =
M (KA(E)), where M denotes the multiplier algebra. The direct sum of rigged
modules is canonically defined. If (E,ψEα , φ

E
α ) and (F,ψFα , φ

F
α ) are rigged modules,

(E ⊕ F,ψEα ⊕ ψFα , φEα ⊕ φEα ) equips E ⊕ F with the structure of a rigged module.
For the constrcution of general infinite direct sums, see [6]. As can be expected
from theorem 1.3.2.3, the Haagerup tensor product of rigged modules behaves like
the interior tensor product of C∗-modules.

Theorem 1.3.3.4. Let E be a right A-rigged module and F an (A,B) rigged
bimodule. Then E⊗̃AF is a B-rigged module and KB(E⊗̃AF ) ∼= E⊗̃AKB(F )⊗̃E∗.

If B = B happens to be a C∗-algebra, then E⊗̃AF is a C∗-module. The rigged
structure on E⊗̃AF can be implemented by the approximate unit

nα,nβ∑
i,j=1

eαi ⊗ f
β
j ⊗ f

β
j ⊗ ẽ

α
i ,

where
nα∑
i=1

eαi ⊗ ẽαi and
nβ∑
j=1

fβj ⊗ f
β
j ,

are approximate units for KA(E) and KB(F ), respectively. The inner product on
E⊗̃AF is then given by

〈e⊗ f, e′ ⊗ f ′〉 : = lim
α,β

nα,nβ∑
i,j=1

〈〈ẽαi , e〉f, f
β
j 〉〈f

β
j , 〈ẽ

α
i , e〉f〉

= lim
α

nα∑
i=1

〈〈ẽαi , e〉f, 〈ẽαi , e〉f〉.(1.11)

In this way one constructs C∗-modules from noninvolutive representations A →
End∗B(F ).

Example 1.3.3.5 (The standard module). Let H be an infinite dimensional
separable Hilbert space and A an operator algebra. Then the HA := H ⊗̃A is the
standard rigged module over A.

The Haagerup tensor product can be used to define a notion of projective rigged
module, which in the finitely generated case coincides with the usual algebraic
notion of projectivity. This notion is different from Connes topological projective
modules [11], but the definition is completely analoguous.

Definition 1.3.3.6. Let E be a rigged module over an operator algebra A. E
is a projective rigged module if there exists a Hilbert space space H such that E is
completely isometrically isomorphic to a direct summand in H ⊗̃A.

Such an E has the usual properties of a projective object in a category. We
will state one of them.
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Proposition 1.3.3.7. An A-rigged module P is projective if and only if any
diagram of completely bounded A-module maps

P

M
ψ - N

φ

?

such that ψ admits a completely bounded linear splitting, can be completed to a
diagram

P

M
ψ -

�

χ

N.

φ

?

Proof. ⇒ Let Q be such that P ⊕ Q ∼= H ⊗̃A and replace φ, ψ by φ ⊕ id :
P ⊕ Q → M ⊕ Q and ψ ⊕ id : M ⊕ Q → N ⊕ Q. Then the hypotheses on these
maps are still valid, and we can define

HA →M ⊕Q
eα 7→ ψ−1 ◦ φ(eα),

where eα is a basis for H . This fills in the diagram.
⇐ If any such diagram can be filled in, we chose N = P and M = H ⊗̃A, where
H = `2(X) , where X is a generating set for P . �

4. Smoothness

There are several definitions of smoothness to be found in the literature. We
adopt the philosophy that a smooth structure on a C∗-algebra should come from
a spectral triple (or, equivalently, from an unbounded bimodule). The most im-
portant features of a smooth subalgebra are stability under holomorphic functional
calculus, implying K-equivalence, and smooth functional calculus for selfadjoint
elements. We will show our smooth algebras satisfy these properties. Moreover, we
give sufficient conditions for an unbounded module to define a smooth structure.
Subsequently, we turn to the notion of a smooth C∗-module over a C∗-algebra
equipped with a smooth structure.

4.1. Smooth algebras. The following notion of smoothness will be used. It
is slightly more general than Connes’ notion of smoothness for spectral triples.

Definition 1.4.1.1. Let E be an unbounded (A,B)-bimodule and view the
Sobolev modules Ei as submodules of E . E is said to be (left) smooth if the subal-
gebra

A :=
∞⋂
i=0

{a ∈ A : [Di, a] ∈ End∗B(Ei)},

is dense in A.
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If A ⊂ Dom∞(adD), the bimodule will be referred to as being naively smooth.
Recall that Connes [12] calls a spectral triple (A ,H, D) smooth if both A and
[D,A ] are in Dom∞ad|D|.

Lemma 1.4.1.2. Let (E , D) be an unbounded (A,B)-bimodule. Then for (E , D)
to be smooth it suffices that it be naively smooth or smooth in the sense of Connes.

Proof. Since naive smoothness implies smoothness in the sense of Connes,
we show that the latter implies smoothness in the sense of definition 1.4.1.1. Note
that for any unbounded regular operator S, DomS = Dom|S| as C∗-modules, since
r(S) = r(|S|). Connes conditions assure that A → End∗B(Dom|D|i), and hence the
module is smooth in our sense. �

Denote by πi : A → End∗B(Ei) the representations

a 7→
(

a 0
[Di, a] a

)
.

Let Ai be the closure of A in the norm inherited via πi. It is clear that the Ai are
operator algebras and that A equals their inverse limit. Hence it carries a Fréchet
topology.

Proposition 1.4.1.3. The inclusions Ai+1 → Ai are completely contractive.

Proof. We have to show that for all a ∈ Ai, for all n, ‖πni (a)‖ ≤ ‖πni+1(a)‖ ,
where πni : Mn(Ai)→ End∗B(

⊕n
j=1 Ei) and

πni+1 : Mn(Ai+1)→ End∗B(
2n⊕
j=1

Ei)

(akn) 7→ (πi(akm)).

Denote by ι : Ei → Ei⊕Ei the inclusion in the first coordinate, and by p : Ei⊕Ei →
Ei the projection on the first coordinate. Set

ιn := ⊕nj=1ι :
n⊕
j=1

Ei →
2n⊕
j=1

Ei, pn := ⊕nj=1p :
2n⊕
j=1

Ei →
n⊕
j=1

Ei.

Then we have

‖πni (a)‖ = ‖pnπni+1(a)ιn‖ ≤ ‖p‖‖πni+1(a)‖‖ιn‖ = ‖πni+1(a)‖,

as desired. �

Now we turn to spectral invariance of the Ai. The following definition is a
modification of [5], definition 3.11:

Definition 1.4.1.4. Let A be an algebra with Banach norm ‖ · ‖. A norm
‖·‖α on A is said to be analytic with respect to ‖·‖ if for each x ∈ A, with ‖x‖ < 1
we have

lim sup
n→∞

ln ‖xn‖α
n

≤ 0.

The reason for introducing the concept of analyticity is that analytic inclusions
are spectral invariant.
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Proposition 1.4.1.5 ([5]). Let Aβ → Aα be a continuous dense inclusion of
unital Banach algebras. If ‖·‖β is analytic with respect to ‖·‖α, then for all a ∈ Aβ
we have Spβ(a) = Spα(a).

Proof. It suffices to show that if x ∈ Aβ is invertible in Aα, then x−1 ∈ Aβ .
To this end choose y ∈ Aβ with ‖x−1 − y‖ < 1

2‖x‖α . Then ‖2 − 2xy‖α < 1. By
analyticity, there exists n such that ‖(2−2xy)n‖β < 1, and hence 2 /∈ Spβ(2−2xy).
But then 0 /∈ Spβ(2xy), hence 2xy has an inverse u ∈ Aβ . Therefore x−1 = 2yu. �

In order to prove spectral invariance of the inclusions Ai+1 → Ai we need the
following straightforward result, whose proof we include for the sake of complete-
ness.

Lemma 1.4.1.6. Let A be a Banach algebra and δ : Aα →M a densely defined
closed derivation into a Banach A-module M . Then ‖a‖α := ‖a‖+‖δ(a)‖ is analytic
with respect to ‖ · ‖.

Proof. Let ‖x‖ < 1. We have ‖δ(xn)‖ ≤ n‖δ(x)‖, by an obvious induction.
Then

lim sup
n→∞

ln ‖xn‖α
n

= lim sup
n→∞

ln(‖xn‖+ ‖δ(xn)‖)
n

≤ lim sup
n→∞

ln(1 + n‖δ(x)‖)
n

≤ lim sup
n→∞

(
lnn
n

+
ln(1 + ‖δ(x)‖)

n
)

= 0.

�

Theorem 1.4.1.7. Let (E , D) be a smooth unbounded (A,B) bimodule. Then
all inclusions Ai+1 → Ai are spectral invariant, and hence A and all the Ai are
stable under holomorphic functional calculus in A.

Proof. Observe that

‖πi+1(a)‖ ≤ ‖πi(a)‖+ ‖πi(a)−
(
a 0
0 a

)
‖ ≤ 2‖πi(a)‖+ ‖πi+1(a)‖ ≤ 3‖πi+1(a)‖;

and ‖πi+1(a)−
(
a 0
0 a

)
‖ = ‖[Di, a]‖. Thus, by lemma 1.4.1.6, ‖ · ‖i+1 is equivalent

to a norm analytic with respect to ‖ · ‖i. �

In the sequel, by a smooth structure on a C∗-algebra A we shall mean an inverse
system of operator algebras

· · · → Ai+1 → Ai → · · · → A

where the maps are spectral invariant complete contractions with dense range. In
that case , denote A = lim←Ai. A smooth C∗-algebra shall be a C∗-algebra with
a smooth structure coming from a smooth unbounded bimodule.
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4.2. Smooth C∗-modules. In differential geometry, a finite dimensional topo-
logical vector bundle over a smooth manifold M can always be smoothened, i.e. it
can be equipped with a smooth structure. From the algebro-analytic perspective
this can be understood in terms of the spectral invariance of the algebra of smooth
functions C∞(M) ⊂ C(M). This spectral invariance passes to the matrix algebras,
and any projection p ∈ Mk(C(M)) is close to a smooth projection q. By a now
standard result, the bundles defined by p and q are isomorphic, giving the smooth
structure. For infinite dimensional bundles the situation is more complicated, and
I am not aware of any results of this kind in this setting. Thefore we will demand
our modules to be smooth.

Definition 1.4.2.1. Let B be a smooth C∗-algebra, with smooth structure
{Bi}. A C∗-B-module E is a Ck-B-module, if there is an approximate unit

uα :=
nα∑
i=0

xαi ⊗ xαi ∈ FinB(E),

such that for each α and 0 ≤ i, j ≤ nα, 〈xαi , xαj 〉 ∈ Bk, and ‖〈xαi , xαj 〉‖k ≤ 1. It is a
smooth C∗-module if there is such an approximate unit that makes it a Ck-module
for all k.

Proposition 1.4.2.2. Let B be a smooth C∗-algebra and E a smooth C∗-B-
module, with corresponding approximate unit uα :=

∑nα
i=0 x

α
i ⊗ xαi . Then

Ek := {e ∈ E : 〈xαi , e〉 ∈ Bk, sup
α
‖
nα∑
i=1

ei〈xαi , e〉‖k <∞},

is a rigged Bk-module. Moreover, the inclusions Ek+1 → Ek are completely con-
tractive with dense range, and Ek+1⊗̃Bk+1Bk ∼= Ek.

Proof. Recall the discussion before theorem 1.1.5.1. The maps φα, φ
∗
α of

1.7,1.8 restrict to maps

φkα : Anαi → Ek, ψkα : Ek → Bnαk .

These are completely contractive for the matrix norms on Ek given by

‖(eij)‖ := sup ‖(ψαk (eij))‖,

and Ek is (by definition) complete in these matrix norms. It is straightforward
to check that Ek is a rigged-Bk-module in this way. For the last statement, the
isomorphism will be implemented by the multiplication map

m : Ek+1⊗̃Bk+1Bk → Ek

e⊗ b 7→ eb.

The inverse to this map is constructed via the direct limit property of Ek. Via the
identification Anαk ∼= A

nα
k+1⊗̃Ak+1Ak define maps

m−1
α : Anαk → Ek+1⊗̃Bk+1Bk

ei 7→ φk+1
α (ei)⊗ 1.

They obviously satisfy the compatibility condition mentioned after definition 1.3.3.1
and induce a map m−1 : Ek → Ek+1⊗̃Bk+1Bk, inverting m. �
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If B is a smooth C∗-algebra and (E , D) a left smooth unbounded (A,B)-
bimodule (E , D), the appropriate notion of smoothness is the following. For each
k, the Sobolev module Ei is smooth over B, and, denoting the associated inverse
system by {Eki }, the adjointable operator Di : Ei+1 → Ei restricts to an adjointable
operator Di,k : Eki+1 → Eki . We then require the algebra

Ai :=
∞⋂
i=0

{a ∈ Ai : [Di,j , a] ∈ End∗Bi(E
j
i )},

to be dense in Ai, for each i. We will call an unbounded bimodule smooth if it is
smooth in this sense. This can be visualized by a diagram

...
...

...
...

· · · - Ej+1
i+1

?
- Ej+1

i

?
- Ej+1

i−1

?
- · · · - Ej+1

?

· · · - Eji+1

?
- Eji

?
- Eji−1

?
- · · · - Ej

?

...

?
...

?
...

?
...

?

· · · - Ei+1

?
- Ei
?

- Ei−1

?
- · · · - E .

?

Here each Eji is a rigged (Aji ,Bj)-bimodule. The bottom row is just the Sobolev
chain of D.

4.3. Inner products and stabilization. For any operator algebra A, a dual
algebra A∗ is defined, obtained via its realization as a non selfadjoint subalgebra of
some C∗-algebra. A∗ is the algebra of adjoints in this C∗-algebra. In general, A and
A∗ are not completely isometrically isomorphic. Ck-algebras do have this property,
which makes working with rigged modules over them very similar to working with
C∗-modules.

Proposition 1.4.3.1. Let A be a smooth C∗-algebra with smooth structure
{Ai}. For i, Ai ∼= A∗i completely isometrically. In particular, the involution on Ai
induces an anti-isomorphism of Ai with itself.

Proof. The operator algebra structure of A∗i is given by

a 7→
(
a −[D, a]
0 a

)
.
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This means that A∗ = vAv∗ ⊂ End∗B(E), where v is the unitary (x, y) 7→ (−y, x).
This isomorphism clearly extends to matrix algebras over A∗. �

Since the Ai are anti isomorphic to themselves, any right rigged Ai-module
has a canonically associated left rigged Ai-module E. As a linear space, this is
just E with the left module structure ae := ea∗. The rigged structure comes from
considering the modules Anα as left modules via the same trick. The structural
maps φα, ψα then become left-module maps having the desired properties.

Corollary 1.4.3.2. Let E be a smooth C∗-module over a smooth C∗-algebra
B with smooth structure {Bi}. There is an isomorphism of rigged modules E ∼= E∗

given by restrcition of the inner product pairing on E.

Proof. The inner product on E induces an injection Ei → E∗i . Conversely,
for f∗ ∈ E∗i we have

f∗(e) = lim
α

nα∑
i=0

f∗(xαi 〈xαi , e〉).

Thus, if we define f := limα

∑nα
i=0 x

α
i f
∗(xαi ), it satifies f∗(e) = 〈f, e〉. �

As a consequence, Ck-modules over a Ck-algebra can be constructed similarly
to C∗-modules, by defining a nondegenerate innerproduct pairing satisfying all the
properties of definition 1.1.1.1 and then completing. Stability under holomorphic
functional calculus assures us that many properties of C∗-modules carry over to
the smooth setting. In particular we can think of adjointable operators in the same
way as we do in C∗-modules, and also the notion of unbounded regular operator
makes perfect sense. Kasparov’s stabilization theorem is a key tool in C∗-modules
and KK-theory. There is no such result for general rigged modules over operator
algebras, see [6], but in the case of smooth C∗-algebras the result does hold.

Theorem 1.4.3.3. Let B be a smooth graded C∗-algebra, and E a countably
generated smooth graded C∗-module. Then E ⊕ HB is smoothly isomorphic to HB.
That is, there is an isomorphism of graded inverse systems

· · · - Ei+1 ⊕ HBi+1
- Ei ⊕ HBi - · · · - E ⊕ HB

· · · - HBi+1

?
- HBi

?
- · · · - HB

?

Proof. The proof is based on the method of almost orthogonalization as de-
scribed in [21]. We incorporate it in the proof. For simplicity we ignore the grad-
ings, but note that the proof can be adapted as to respect all gradings involved. Let
uα :=

∑nα
i=0 x

α
i ⊗ xαi be an approximate unit for KB(E) implementing the smooth

structure. The xαi form a generating set for E . Denote by {ei} the standard basis
of HB . Let {xn} ⊂ {en} ∪ {xαi } be a sequence which meets all the en, and all the
xαi infinitely many times. We proceed by induction. Suppose that orthonormal
ellements h1, ..., hn and the number m(n) have been constructed in such a way that

• {h1, ..., hn} ⊂ spanA {x1, ..., xn, e1, ..., em(n)}
• d(xk, spanA {h1, ..., hn}) ≤ 1

k , k = 1, ..., n.
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There exists m′ > m(n) such that em′ ⊥ {xn+1, h1, ..., hn}. Let

x′ := xn+1 −
n∑
i=1

hi〈hi, xn+1〉, x′′ = x′ +
1

n+ 1
em′ .

Then 〈x′′, x′′〉 = 〈x′, x′〉 + 1
(n+1)2 > 0, and hence this element is invertible in A ,

and 〈x′′, x′′〉− 1
2 ∈ A by 1.4.1.7. Set hn+1 := x′′〈x′′, x′′〉− 1

2 . Then

hn+1 ∈ spanA {x′, em′} ⊥ {h1, ..., hn}.

Thus {h1, ..., hn+1} is an orthonormal set. Moreover,

x+
1

n+ 1
em′ ∈ spanA {h1, ..., hn+1},

so

d(xn+1, spanA {h1, ..., hn+1}) ≤
1

n+ 1
.

Thus, by setting m′ = m(n+1) we complete the induction step. The sequence {hi}
thus constructed is orthonormal and its A span is dense in each of the modules
Ei ⊕ HBi . �

5. Universal connections

In differential geometry, connections on Riemannian manifolds are a vital tool
for differentiating functions and vector fields over the manifold. Cuntz and Quillen
[20] developed a purely algebraic theory of connections on modules, which is gives
a beautiful characterization of projective modules. They are exactly those modules
that admit a universal connection. We review their results, but will recast every-
thing in the setting of operator modules. This is only straightforward, because
the Haagerup tensor product linearizes the multiplication in an operator algebra
in a continuous way. We then proceed to construct a category of modules with
connection, and finally pass to inverse systems of modules.

5.1. Universal forms. The notion of universal differential form is widely used
in noncommutative geometry, especially in connection with cyclic homology [11].
For topological algebras, their exact definition depends on a choice of topological
tensor product. The default choice is the Grothendieck projective tensor prod-
uct, because it linearizes the multiplication in a topological algebra continuously.
However, when dealing with operator algebras, the natural choice is the Haagerup
tensor product.

Definition 1.5.1.1. Let A be an operator algebra. The module of universal
1-forms over A is defined as

Ω1(A) := ker(m : A⊗̃A → A).

By definition, there is an exact sequence of operator bimodules

0→ Ω1(A)→ A⊗̃A m−→ A → 0.

When A is graded, Ω1(A) inherits a grading from A⊗̃A. The map

d : A → Ω1(A)

a 7→ 1⊗ a− (−1)∂aa⊗ 1
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is a graded bimodule derivation. Ω1(A) carries a natural involution, defined by

(1.12) (adb)∗ := −(−1)∂bdb∗a∗.

Lemma 1.5.1.2. The derivation d is universal. For any completely bounded
graded derivation δ : A → M into an A operator bimodule, there is a unique
completely bounded bimodule homomorphism jδ : Ω1(A)→M such that the diagram

A
δ - M

Ω1(A)

j δ

-

d
-

commutes.

Proof. Set jδ(da) = δ(a). This determines jδ because da generates Ω1(A) as
a bimodule. �

Any derivation δ : A →M has its associated module of forms

Ω1
δ := jδ(Ω1(A)) ⊂M.

The inner product on E induces a pairing

E × E⊗̃AΩ1(A)→ Ω1(A)

(e1, e2 ⊗ ω) 7→ 〈e1, e2〉 ⊗ ω.

By abuse of notation we write 〈e1, e2 ⊗ ω〉 for this pairing. A pairing

E⊗̃AΩ1(A)× E → Ω1(A),

is obtained by setting 〈e1 ⊗ ω, e2〉 := 〈e2, e1 ⊗ ω〉∗.

Definition 1.5.1.3. Let δ : A → M be a derivation as above, and E a right
operator A-module. A δ-connection on E is a completely bounded linear map

∇δ : E → E⊗̃AΩ1
δ ,

satifying the Leibniz rule

∇(ea) = ∇(e)a+ e⊗ δ(a).

If δ = d, the connection will be denoted∇, and referred to as a universal connection.
If moreover E is a C∗-module, a connection is Hermitian if

〈e1,∇(e2)〉 − 〈∇(e1), e2〉 = d〈e1, e2〉.

Note that a universal connection ∇ on a module E gives rise to δ-connections
for any completely bounded derivation δ, simply by setting ∇δ := 1⊗ jδ ◦∇. If δ is
of the form δ(a) = [S, a], for S ∈ EndC(X,Y ), where X and Y are left A-operator
modules, we write simply ∇S for ∇δ.

Not all modules admit a universal connection. Cuntz and Quillen showed that
universal connections characterize algebraic projectivity. Their proof shows that
projective rigged modules admit universal connections, but the class of modules
admitting a connection might be larger. for our purposes however, this is sufficient.
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Proposition 1.5.1.4 ([20]). A right A operator module E admits a universal
connection if and only if the multiplication map m : E⊗̃A → E is A-split.

Proof. Consider the exact sequence

0 - E⊗̃AΩ1(A)
j- E⊗̃A

m - E - 0,

where m is the multiplication map and j(s⊗ da) = sa⊗ 1− s⊗ a. A linear map

s : E → E⊗̃A
determines a linear map

∇ : E → E⊗̃AΩ1(A)
by the formula s(e) = e⊗ 1− j(∇(e)), since j is injective. Now

s(ea)− s(e)a = j(∇(e)a+ e⊗ da−∇(ea)),

whence s being an A-module map is equivalent to ∇ being a connection. �

Corollary 1.5.1.5. A C∗-module E � A admits a Hermitian connection.

Proof. By the stabilization theorem 1.1.2.2 E is an orthogonal direct sum-
mand in HA = H ⊗̃A, i.e. E = pHa, with p2 = p∗ = p ∈ End∗(HA). Observe that
HA⊗̃AΩ1A ∼= H ⊗̃Ω1(A).The Levi-Cevita connection

∇ : HA → H ⊗̃Ω1(A)
h⊗ a 7→ h⊗ da,

is clearly Hermitian, and since p is a projection, so is p∇p : E → E⊗̃AΩ1(A). �

5.2. Inverse systems and smoothness. As we have seen in corollary 1.1.4.7,
an unbounded operator can be viewed as a morphism of inverse systems of C∗-
modules, namely its Sobolev chain.

Definition 1.5.2.1. Let {Ei, φi} be an inverse system of A rigged modules. A
connection on {Ei, φi} is a family of connections ∇i : Ei → Ei⊗̃Ω1(A) such that
φi+1 ⊗ 1 ◦ ∇i+1 = ∇i ◦ φi+1.

Definition 1.5.2.2. Let (E , D) be an unbounded bimodule and ∇ : E →
E⊗̃BΩ1(B) a Hermitian connection. ∇ is said to be a D-connection if [∇, D]
extends to a completely bounded operator E :→ E⊗̃BΩ1(B). ∇ is said to be a
smooth D -connection if it is a Di-connection, for all i, where we view the Sobolev
modules Ei as dense submodules of E .

Proposition 1.5.2.3. Let (E , D) be an unbounded (A,B)-bimodule and ∇ :
E → E⊗̃BΩ1(B) a smooth D-connection. Then ∇ induces a connection {∇i} on
the Sobolev chain of D.

Proof. We apply the usual trick. Define {∇i} inductively by

∇i+1 :=
(
∇i 0

[Di,∇i] ∇i

)
.

By definition of smoothness this defines a connection on the Sobolev chain of D. �

Using the smooth stabilization theorem 1.4.3.3, we get:

Corollary 1.5.2.4. A smooth C∗-module E � A admits a Hermitian connec-
tion.
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A smooth D-connection is said to be simply a smooth connection if it restricts
to a Di−1,k-connection ∇i,k : Eki → Eki ⊗̃BkΩ1(Bk).

5.3. Product connections. We now proceed to connections on tensor prod-
ucts of projective modules. Anticipating the use of connections on unbounded
bimodules, a category of modules with connection is constructed.

Proposition 1.5.3.1. Let P be a right projective rigged A-module with a uni-
versal connection ∇, P ′ a right projective rigged (A − B)-bimodule with universal
connection ∇′. Then P ⊗A P ′ is B-projective, and ∇ and ∇′ determine a universal
B-connection on P ⊗AP ′. If both connections are Hermitian, then so is the induced
connection.

Proof. Let, Q,Q′ be such that P ⊕Q ∼= H ⊗̃A, P ′ ⊕Q′ ∼= H ′⊗̃B. Then:

P ⊗̃AP ′ ⊕Q⊗̃AP ′ ⊕ H ⊗̃Q′ ∼= H ⊗̃H ′⊗̃B.

Thus P ⊗̃AP ′ is projective. Consider the derivation

δ : A → EndB(P ′, P ′⊗̃BΩ1(B))

a 7→ [∇′, a].

By universality there is a unique map

jδ : Ω1(A)→ Ω1
δ ,

intertwining d and δ. Thus, ∇ induces a connection

∇δ : P → P ⊗̃AΩ1
δ ,

by composing with jδ. Subsequently define

∇⊗̃A∇′ : P ⊗̃AP ′ → P ⊗̃AP ′⊗̃BΩ1(B)

p⊗ p′ 7→ ∇′(p′) +∇δ(p)p′,

which is a connection. It is a straightforward calculation to check that this connec-
tion is Hermitian if ∇ and ∇′ are. �

We will refer to the connection of proposition 1.5.3.1 as the product connection.
Taking product connections is associative up to isomorphism.

Theorem 1.5.3.2. Let P, P ′, P ′′ be right projective rigged A,B and C-modules
respectively, with universal connections ∇,∇′,∇′′. Suppose P ′, P ′′ are left A and
B modules, respectively. The natural isomorphism

P ⊗̃A(P ′⊗̃BP ′′)
∼−→ (P ⊗̃AP ′)⊗̃BP ′′

intertwines the product connections ∇⊗̃A(∇′⊗̃B∇′′) and (∇⊗̃A∇′)⊗̃B∇′′
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Proof. The two product connections on M = P ⊗̃AP ′⊗̃BP ′′ correspond to
splittings of the universal exact sequence given by the follwing diagram:

0 - ker(1⊗B m) - MA⊗̃P ′′ ⊗ C
1⊗B m-� MA⊗̃BP ′′ - 0

0 - M⊗̃CΩ1(C)
?

j - M⊗̃C
?

m - M

∼
6

- 0

0 - ker(m⊗A 1)

6

- P ⊗̃MB⊗̃C

6

1⊗A m-� P ⊗̃AMB

∼

?
- 0.

Here MA = P ⊗̃AP ′ and MB = P ′⊗̃BP ′′. To show that this diagram commutes,
observe that the given connections induce natural splittings for the maps

P ⊗̃P ′⊗̃P ′′ → P ⊗̃AMB and P ⊗̃P ′⊗̃P ′′ →MA⊗̃BP ′′.

They correspond to the decompositions

P ⊗̃P ′⊗̃P ′′ ∼= P ⊗̃AMB ⊕Q⊗̃AMB ⊕ P ⊗̃Q′⊗̃BP ′′,

and
P ⊗̃P ′⊗̃P ′′ ∼= MA⊗̃BP ′′ ⊕QA⊗̃BP ⊕Q⊗̃AP ′⊗̃P ′′,

where Q,Q′ and QA are such that

P ⊕Q ∼= P ⊗̃A, P ′ ⊕Q′ ∼= P ′⊗̃B, MA ⊕QA ∼= MA⊗̃B.

That is, Q and Q′ come from ∇ and ∇′ respectively, and QA from ∇⊗̃A∇′.
Therefore, the given connections induce natural splittings for the maps

P ⊗̃P ′⊗̃P ′′ → P ⊗̃AMB and P ⊗̃P ′⊗̃P ′′ →MA ⊗B P ′′.

These splittings correspond to the factorizations

P ⊗̃P ′⊗̃P ′′

MA⊗̃P ′′
�

P ⊗̃MB

-

P ⊗̃AP ′⊗̃BP ′′
�

-

of the map P ⊗̃P ′⊗̃P ′′ → P ⊗̃AP ′⊗̃BP ′′. These factorizations are exactly the ones
that give rise to the product connections ∇⊗̃A(∇′⊗̃B∇′′) and (∇⊗̃A∇′)⊗̃B∇′′.
Therefore the different splittings in the first diagram coincide under the intertwining
isomorphisms. �
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The upshot of theorems 1.5.3.1 and 1.5.3.2 is that there is a category whose
objects are operator algebras, and whose morphisms Mor(A,B) are given by pairs
(P,∇B) consisting of an (A,B)-bimodule with a universal B connection (whence by
proposition 1.5.1.4 P is B-projective). The identiy morphisms are the pairs (1A, d)
consisiting of the trivial bimodule 1A and the universal derivation d : A → Ω1(A).
Of course this category is described equivalently as the category of pairs (P, s) of
bimodules together with a splitting s of the universal exact sequence.

5.4. Induced operators and their graphs. One can proceed to enrich this
category by considering triples (P,∇, T ) consisting of rightprojective bimodules
with connection and a distinguished endomorphism T ∈ EndB(P ). Denote by 1⊗̃∇T
the operator

1⊗∇ T (p⊗ p′) := (−1)∂T∂p(p⊗ T (p′) +∇T (p)p′),

which is well defined on P ⊗̃AP ′. The composition law then becomes

(P,∇, S) ◦ (P ′,∇′, T ) := (P ⊗̃BP ′,∇⊗̃B∇′, S⊗̃1 + 1⊗̃∇T ).

Associativity of this composition is implied by the following proposition.

Proposition 1.5.4.1. Let P be a right projective rigged A-module, P ′ a right
projective rigged (A,B)-bimodule and ∇,∇′ universal connections. Furthermore let
E,F be (B, C)-bimodules, and D ∈ EndC(E,F ). Then

1⊗̃∇1⊗̃∇′D = 1⊗̃∇⊗̃A∇′D,
under the intertwining isomorphism.

Proof. Recall the formula for the product connection

∇⊗̃A∇′(p⊗ p′) := p⊗∇′(p′) +∇δ(p)p′.
Morevoer, write ∇D for ∇∇′D . It is straightforward to check that

(∇⊗̃A∇′)D(p⊗ p′) = p⊗∇′D(p′) +∇D(p)p′.

Therefore we have
1⊗∇⊗̃A∇′ D(p⊗ p′ ⊗ e) = p⊗ p′ ⊗De+∇⊗∇′(p⊗ p′)e

= p⊗ p′ ⊗De+ p⊗∇′D(p′)e+∇D(p)(p′ ⊗ e).
On the other hand

1⊗̃∇1⊗̃∇′D(p⊗ p′ ⊗ e) = p⊗ (1⊗̃∇′D)(p′ ⊗ e) +∇1⊗̃∇′D(p)(p′ ⊗ e)
= p⊗ p′ ⊗De+ p⊗∇′D(p′)e+∇1⊗̃∇′D(p)(p′ ⊗ e),

thus, it suffices to show that ∇D = ∇1⊗̃∇′D. To this end, observe that

[1⊗̃∇′D, a] = [∇′D, a] : P ⊗A P ′ → P ⊗A P ′,

which gives a natural isomorphism Ω1
∇′D

∼−→ Ω1
1⊗̃∇′D

intertwining the derivations.
By universality this gives a commutative diagram

Ω1(A)

Ω1
1⊗̃∇′D

∼ -
�

Ω1
∇′D

,

-
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which shows that ∇D = ∇1⊗̃∇′D. �

As we have seen, a connection ∇ : E → E⊗̃Ω1(B) can be used to trans-
fer operators on F to E ⊗B F . We now show that this algebraic procedure is
well behaved for selfadjoint regular operators T in F , and describe the graph
G(1⊗̃∇T ) ⊂ E⊗̃BF ⊕ E⊗̃BF as a topological C∗-module, in terms of the graph of
T .

Lemma 1.5.4.2. Let E ,F be C∗-modules over B and C respectively, and ∇ :
E → E⊗̃Ω1(B) a Hermitian connection. Suppose F is a left B-module and T :
Dom(T ) → F a selfadjoint regular operator such that [T, b] ∈ End∗B(F ) for all
b ∈ B1 ⊂ B, a dense subalgebra of B. If ∇ and E are C1 with respect to B1, then
the operator 1⊗̃∇T is selfadjoint and regular. The map

E1⊗̃B1G(T )→ G(1⊗̃∇T )

e⊗ (f, Tf) 7→ (e⊗ f, 1⊗̃∇T (e⊗ f))

is a topological isomorphism of C∗-modules.

Proof. Observe that E1⊗̃B1F ∼= E⊗̃BF , since E = E1⊗̃B1B. To see that
t := 1 ⊗∇ T is selfadjoint regular, stabilize E , and denote by ∇̃ the Levi-Civita
connection on HB . Then, via the stabilization isomorphism ∇′ := ∇⊕ ∇̃ defines a
Hermitian connection on HB ∼= E ⊕HB . Since the difference ∇′−∇̃ is a completely
bounded module map, it suffices to prove regularity of t when ∇ is the Levi-Civita
connection on HB . But in that case, for e =

∑∞
i=1 ei ⊗ bi,

t : HB1⊗̃B1F → HB1⊗̃B1F

e⊗ f 7→
∞∑
i=1

ei ⊗ T (bif),

which is clearly selfadjoint regular. For the statement on the topological type of
G(t), it again suffices to consider the Levi-Civita connection HB. We have R :=
∇′T − ∇̃T ∈ End∗C(E⊗̃BF ) and hence

G(t) ∼−→ G(t+R)

(x, tx) 7→ (x, (t+R)x)

topologically, due to the fact that (i+ t+ R)(i+ t)−1 ∈ Aut∗C(E⊗̃BF ). Note that
the standard orthonormal basis {ei}i∈N of HB defines a C1-approximate unit for
KB(HB). The inner product on HB1⊗̃B1G(T ) is thus given by

〈e⊗ (f, Tf), e′ ⊗ (f ′, T f ′)〉 : = lim
n→∞

n∑
i=1

〈〈ei, e〉(f, Tf), 〈ei, e′〉(f ′, T f)〉

=
∞∑
i=1

〈(bif, T bif), (b′if
′, T bif)〉

=
∞∑
i=1

〈bif, b′if ′〉+ 〈Tbif, T b′if ′〉.

Therefore the map

HB1⊗̃B1G(T )→ G(t)

e⊗ (f, Tf) 7→ (e⊗ f, t(e⊗ f)),
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is unitary. �

If the module E comes equipped with a regular operator S, the operators S⊗̃1
and 1⊗̃∇T almost anticommute. That is, they anticommute up to a bounded
operator. This implies that their sum is well defined as a regular operator.

Proposition 1.5.4.3. Let A,B,C be C∗-algebras, (E , S) and (F , T ) be (A,B)-
and (B,C)-bimodules equipped with selfadjoint regular operators S and T , respec-
tively, such that [T, b] ∈ End∗B(F ) for all b ∈ B1 ⊂ B, a dense subalgebra of B. If
∇ : E → E⊗̃BΩ1(B) is a C1- connection, then the operator

S ⊗ 1 + 1⊗∇ T

is selfadjoint and regular.

Proof. It is a well known fact that s := S⊗1 is a regular operator on E⊗B F
and we saw that t := 1 ⊗∇ T is regular. Thus, s and t are selfadjoint regular
operators whose domains intersect densely, and the graded commutator [s, t] is an
adjointable operator. To show that s + t is regular we have to show that G(s +
t) ⊕ vG(s + t) ∼= E⊗̃BF ⊕ E⊗̃BF . Write ri(s) := (s + i)−1 and consider the
endomorphism

g :=
(

ri(s)ri(t) −(s+ t)ri(t)∗ri(s)∗

(s+ t)ri(s)ri(t) ri(t)∗ri(s)∗

)
∈M2(EndB(E ⊗B F )).

The maps (s+ t)ri(t)∗ri(s)∗ and (s+ t)ri(s)ri(t) are well defined because [s, ri(t)∗]
and [t, ri(s)] are bounded. This follows from the fact that [s, t] is bounded:

0 = [s, 1]

= [s, ri(t)∗(t− i)]
= ri(t)∗[s, (t− i)] + [s, ri(t)∗](t− i)
= ri(t)∗[s, t] + [s, ri(t)∗](t− i),

hence [s, ri(t)∗](t− i) is bounded and so is [s, ri(t)∗]. Computing g∗g gives(
ri(t)∗r(s)2ri(t) 0

0 ri(s)r(t)2ri(s)∗

)

+
(

ri(t)∗ri(s)∗(s+ t)2ri(s)ri(t) 0
0 ri(s)ri(t)(s+ t)2ri(t)∗ri(s)∗

)
.

The operator

r =
(

ri(t)∗r(s)2ri(t) 0
0 ri(s)r(t)2ri(s)∗

)
is positive and has dense range, and r ≤ g∗g, so g∗g has dense dense range, and
hence g does so too. Since g maps E ⊗B F 2 into G(s + t) ⊕ vG(s + t), this is a
dense and closed submodule, hence all of E ⊗B F ⊕E ⊗B F . Selfadjointness follows
from the fact that s and t anticommute up to an adjointable operator. Hence
Dom(s+ t) = Doms ∩Dom(t), and s and t are selfadjoint. �

Of course the case of unbounded bimodules is contained in this theorem. It
will be the case we focus on the next section.
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Corollary 1.5.4.4. Let A,B,C be C∗-algebras, (E , S) an unbounded (A,B)
bimodule and (F , T ) an unbounded (B,C)-bimodule. Let ∇ : E → E⊗̃BΩ1(B) be a
C1-connection on E. Then the operator

S ⊗ 1 + 1⊗∇ T
is selfadjoint and regular.

The product construction preserves selfadjointness and regularity. On the level
of the graphs of the operators, we now show it can be viewed as a pull-back con-
struction of topological C∗-modules. By Frank’s theorem 1.1.1.4, this yields a
unitary isomorphism of the modules involved. This suggests the product construc-
tion might be defined intrinsically, without reference to the connection. However,
the pull back need not be the graph of an operator.

Theorem 1.5.4.5. Let A,B,C be C∗-algebras, (E , S) and (F , T ) be (A,B)- and
(B,C)-bimodules equipped with selfadjoint regular operators S and T , respectively.
Suppose that [T, b] ∈ End∗B(F ) for all b ∈ B1 ⊂ B, a dense subalgebra of B. Let
∇ : E → E⊗̃BΩ1(B) be a C1- connection, and G the universal solution to the
diagram

G - G(S)⊗̃BF

E1⊗̃B1G(T )
?

- E⊗̃BF .
?

Then the natural map
G(S⊗̃1 + 1⊗̃∇T )→ G ,

is a topological isomorphism of C∗-modules.

Proof. As usual, write s = S⊗̃1 and t = 1⊗̃∇T . Since G(S)⊗̃BF ∼= G(
√

2s)
and E1⊗̃B1G(T ) ∼= G(

√
2t), we may replace G by the pull back of the diagram

G - G(
√

2s)

G(
√

2t)
?

- E⊗̃BF .
?

Thus
G = {((x,

√
2sx), (x,

√
2tx)) : x ∈ Dom(s+ t)},

and

〈((x,
√

2sx), (x,
√

2tx)), ((x′,
√

2sx′), (x′,
√

2tx′))〉 = 2(〈x, x′〉+ 〈sx, sx′〉+ 〈tx, tx′〉).
Using

g :=
(

r(s+ t)2 −(s2 + t2)r(s+ t)2

(s2 + t2)r(s+ t)2 r(s+ t)2

)
∈M2(EndB(E ⊗B F )),

it follows that s2 + t2 is selfadjoint regular by the same reasoning as in proposition
1.5.4.3. Since the operator (i+ |s2 + t2| 12 )(i+ s+ t)−1 ∈ Aut∗(E⊗̃BF ), the result
follows. �
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If the module F is smooth, i.e. induces a smooth structure {Bi} on B, and E is a
smooth C∗-module for this smooth structure, the Sobolev chain ofD = S⊗̃1+1⊗̃∇T
can be computed from the Sobolev chains of S and T by the following diagram:

...
...

...
...

· · · - G(D2)
?

- G(t)D1

?
- G(t1)D

?
- E3⊗̃F3

?

· · · - G(s)D1

?
- G(D1)

?
- G(t)D

?
- E2⊗̃F2

?

· · · - G(s1)D
?

- G(s)D
?

- G(D)
?

- E1⊗̃F1

?

· · · - E3⊗̃F
?

- E2⊗̃F
?

- E1⊗̃F
?

- E⊗̃F
?

The Sobolev chain of D is on the diagonal, that of s = S⊗̃1 is the bottom row, and
that of t = 1⊗̃∇T is the right vertical row. The upper triangular part consists of the
Sobolev chains of t viewed as an operator in G(Di), and the lower triangular part
of the Sobolev chains of s viewed as an operator in G(Di). Moreover, all squares
all pull back squares.

6. Correspondences

Universal connections can be employed to give a transparent construction of the
Kasparov product, on the level of unbounded bimodules. This observation leads to
the construction of a category of spectral triples and even of unbounded bimodules
themselves. They give a notion of morphism of noncommutative geometries, in
such a way that the bounded transform induces a functor from correspondences
to KK-groups. By considering several levels of differentiability and smoothness
on correspondences, one gets subcategories of correspondences of Ck- and smooth
C∗-algebras.

6.1. The Trotter-Kato formula. When dealing with addition of noncom-
muting unbounded operators s and t, on a Hilbert space H , several subtleties arise.
First of all one needs to check closability and density of the domain of s + t. If
these things are in order, one would like to obtain information about e−x(s+t), the
one parameter group generated by s + t, and its resolvent. These questions can
be tantalizingly difficult and involve some deep analysis. Under favourable condi-
tions, though, a satisfactory description of e−x(s+t) can be given in terms of e−xs

and e−xt. It is quite striking that one might as well use other functions of s and
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t instead of exponentials. For our purposes it is enough to consider the function
f(s) = (1 + s)−1.

Theorem 1.6.1.1 ([31]). Let f be either one of the functions s 7→ e−s or
s 7→ (1 + s)−1. Suppose s and t are nonnegative selfadjoint operators on a Hilbert
space H , such that their sum s+ t is selfadjoint on Dom(s) ∩Dom(t). Then

lim
n→∞

(f(
xs

2n
)f(

xt

n
)f(

xs

2n
))n = e−x(s+t),

in norm for x in compact intervals in (0,∞). If s + t is strictly positive, the
convergence holds for x ∈ [ε,∞) for any ε > 0.

We now argue that a similar result holds for unbounded operators in C∗-
modules. Let s and t be nonnegative regular operators in a C∗-B-module E , such
that their sum s + t is densely defined and regular. By representing B faith-
fully and nondegenerate on a Hilbert space H ′, one obtains a second Hilbert space
H := E⊗̃BH ′ and operators s⊗ 1, t⊗ 1 and (s+ t)⊗ 1 = s⊗ 1 + t⊗ 1. Moreover,
End∗B(E) is faithfully represented on H , and f(s)⊗1 = f(s⊗1) for any f ∈ C0(R).
Also, s⊗ 1, t⊗ 1 and (s+ t)⊗ 1 are positive whenever s, t, s+ t are. Therefore we
have

Corollary 1.6.1.2. Let f be either one of the functions s 7→ e−s or s 7→
(1 + s)−1. Suppose s and t are nonnegative selfadjoint regular operators on a C∗-
module E, such that their sum s+ t is selfadjoint and regular on Dom(s)∩Dom(t).
Then

lim
n→∞

(f(
xs

2n
)f(

xt

n
)f(

xs

2n
))n = e−x(s+t),

in norm for x in compact intervals in (0,∞). If s + t is strictly positive, the
convergence holds for x ∈ [ε,∞) for any ε > 0.

The Trotter-Kato formula in C∗-modules will be a crucial tool in what follows.

6.2. The KK-product. Everything is in place now to establish that compact
resolvents are preserved under taking products. Then we will see that the product
operator satisfies Kucerovsky’s conditions for an unbounded Kasparov product.
Thus, if two unbounded bimodules are compatible in the sense that there exists a
C1-connection for them, the KK-product of these modules is given by an explicit
algebraic formula. Let us put the pieces together.

Lemma 1.6.2.1. Let s, t be selfadjoint regular operators on a C∗-module E,
and R ∈ End∗B(E) be a selfadjoint element. If (1 + s2)−1(t + i)−1 ∈ KB(E), then
(1 + s2)−1(t+R+ i)−1 ∈ KB(E).

Proof. One has the identity

(1 + s2)−1(i+ t+R)−1 = (1 + s2)−1(i+ t)−1(1−R(t+ i)−1),

which is a compact operator. �

We now employ the Trotter-Kato formula from the previous section to show
that the product of cycles is a cycle. Note that this result is a generalization of
the stability property of spectral triples proved in [10]. There it was shown that
tensoring a given spectral triple by a finitely generated projective module yields
again a spectral triple.
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Proposition 1.6.2.2. Let A,B,C be C∗-algebras, (E , S) an unbounded (A,B)
bimodule and (F , S) an unbounded (B,C)-bimodule. Let ∇ : E → E⊗̃BΩ1(B) be a
C1-connection on E. Then the operator

S ⊗ 1 + 1⊗∇ T

has compact resolvent.

Proof. The operator s2 + t2 is selfadjoint and regular, as we saw in the proof
of theorem 1.5.4.5. Moreover, since s2 + t2 is positive we have

s2 + t2 = |s2 + t2|.

Since (s+t)2 is a bounded perturbation of s2+t2, for s+t to have compact resolvent
it is sufficient that (1 + s2 + t2)−1 be compact. By applying lemma 1.1.4.4 to the
operator |s2 + t2| 12 , we get the identity

(2 + s2 + t2)−1 =
∫ ∞

0

e−x(2+s2+t2)dx.

By this same lemma it suffices to show that the integrand e−x(2+s2+t2) is compact
for x > 0. The Trotter-Kato formula 1.6.1.2 gives the equality

e−x(2+s2+t2) = lim
n→∞

((1 +
x

2n
s2)−1(1 +

x

n
t2)−1(1 +

x

2n
s2)−1)n.

Therefore it suffices to show that (1 + 1
2s

2)−1(i+ t)−1 is compact. By the previous
lemma, we only have to check this in case ∇ is the Levi-Civita connection on HB .
In that case

(1 +
1
2
s2)−1(i+ t)−1 =

∞∑
i=0

(1 +
1
2
S2)−1ei ⊗ (i+ T )−1 ⊗ ei,

which is a norm convergent series in KC(HB⊗̃F ) = HB⊗̃KC(F )⊗̃HB . �

At this point, we would like to note that for a given pair of cycles (E , S) and
(F , T ), the existence of a C1-connection is not guaranteed. In the presence of such
a connection, we have the follwoing result.

Theorem 1.6.2.3. The diagram

Ψ0(A,B)×Ψ0(B,C)
(S, T ) 7→ S ⊗ 1 + 1⊗∇ T- Ψ0(A,C)

KK0(A,B)⊗KK0(B,C)

b

? ⊗B - KK0(A,C)

b

?

commutes, whenever the composition in the top row is defined.

Proof. We just need to check that the unbounded bimodules (E , S), (F , T )
and (E⊗̃BF , S⊗̃1 + 1 ⊗∇ T ) satisfy the conditions of theorem 1.2.2.4. If we write
D for S ⊗+1⊗∇ T , we have to check that

J :=
[(
D 0
0 T

)
,

(
0 Te
T ∗e 0

)]
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is bounded on Dom(D ⊕ T ). This is a straightforward calculation:

J

(
e′ ⊗ f ′
f

)
=
(

Se⊗ f + (−1)∂e∇T (e)f
〈e, Se′〉f + [T, 〈e, e′〉]f + (−1)−∂e

′〈e,∇T (e′)〉f

)
=
(
Se⊗ f + (−1)∂e∇T (e)f
〈Se, e′〉f + 〈∇T (e), e′〉f

)
.

This is valid whenever e ∈ E1
1 , which is dense in E .

The second condition Dom(D) ⊂ Dom(S⊗̃1) is obvious, so we turn the semibound-
edness condition

(1.13) 〈S⊗̃1x,Dx〉+ 〈Dx, S⊗̃1x〉 ≥ κ〈x, x〉,

must hold for all x in the domain. The expression 1.13 is equal to

〈[D,S⊗̃1]x, x〉 = 〈[s, t]x, x〉 ≥ −‖[s, t]‖〈x, x〉,

and the last estimate is valid since [s, t] is in End∗C(E⊗̃BF ). �

6.3. Formal Bott periodicity. We obtained a description of theKK-product
of even unbounded bimodules, in the presence of a connection. This construction
can be lifted to Ψi(A,B) for each i. The way to go is indicated by the following
result of Kasparov.

Theorem 1.6.3.1 ([32]). For all j, the map

Ψi(A,B)→ Ψi+j(A⊗̃Cj , B)

(E , D) 7→ (E⊗̃Cj , D⊗̃1),

induces an isomorphism KKj(A,B)→ KKi+j(A⊗̃Cj , B).

Using this, we can define the composition of two unbounded bimodules with
connection as the composition

Ψi(A,B)×Ψj(B,C)→ Ψi(A,B)×Ψi+j(B⊗̃Ci, C)→ Ψi+j(A,C).

From theorem 1.6.2.3 we directly obtain the analoguous result in all degrees, when-
ever a connection for two given cycles exists.

Theorem 1.6.3.2. The diagram

Ψi(A,B)×Ψj(B,C)
(S, T ) 7→ S ⊗ 1 + 1⊗∇ T- Ψi+j(A,C)

KKi(A,B)⊗KKj(B,C)

b

? ⊗B - KKi+j(A,C)

b

?

commutes, whenever the composition in the top row is defined.

In order to obtain a useful formula in the case of odd modules, we only have to
delve a little deeper into formal Bott periodicity. Recall that elements of Ψi(A,B)
by definition equals Ψ0(A,B⊗̃Ci). Hence its elements are given by unbounded
(A,B⊗̃Ci) bimodules (E , D). Thus, D is an operator that commutes with the
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action of B and the action of Ci. From (E , D) we can construct (E ′, D′) in the
following way (cf.[30], appendix A.3):

E ′ := E ⊕ E , D′ :=
(

0 D
D 0

)
,

as in 1.9. The action of Ci+2 is given by

εj :=
(
εj 0
0 εj

)
, εi+1 :=

(
0 1
−1 0

)
, εi+1 :=

(
0 i
i 0

)
.

Here j = 1, . . . , i. In view of 1.9 we could denote the set of odd Kasparov modules by
Ψ−1(A,B). The map Ψi(A,B) → Ψi+2(A,B) so defined is the formal periodicity
map, and induces an isomorphism KKi(A,B) → KKi+2(A,B). It’s inverse, on
the level of unbounded bimodules (E , D) ∈ Ψi+2(A,B), with i ≥ 1, is given by
compressing the operator D to the +1 eigenspace of the involution −iεi+1εi+2. For
i = −1, one compresses to the +1 eigenspace of ε1. Applying this procedure to the
case of two composable odd modules (E , S,∇) and (F , T ) yields that the product
operator is

(1.14)
(

0 S⊗̃1− i⊗̃∇T
S⊗̃1 + i⊗̃∇T 0

)
,

on the module E⊗̃BF ⊕ E⊗̃BF .

6.4. The nonunital case. So far, we have only been working with unital
C∗-algebras. In this section we show that this restriction, imposed for the sake of
clarity, is harmless. In [42] it is shown that any operator algebra is contained in a
unital operator algebra, and that the operator norms on the unization are uniquely
defined.

Definition 1.6.4.1. Let A be an operator algebra and A → B(H ) a com-
plete isometry. Its unitization A+ is the algebraic unitization A⊕ C with product
(a, z)(b, w) = (ab+ aw + zb, zw). Identifying A+ with

{a+ λ · 1 : a ∈ A, λ ∈ C},
A+ becomes an operator algebra.

This definition is independent of the choice of complete isometry [42].The stan-
dard C∗-unitization is a special case of this. Now note that a rigged module over A
is automatically a rigged module over A+. Hence for a smooth C∗-algebra A, with
smooth structure {Ai}, any smooth C∗-module E is a direct summand in HA+ .
Hence a smooth Hermitian connection ∇ : E → E⊗̃AΩ1(A+) always exists. Since

Ei⊗̃A+
i+1
A+
i = Ei,

and the modules Ei ⊂ E are Ai-essential, the property Ei+1⊗̃A+
i+1
A+
i = Ei of

proposition 1.4.2.2 remains valid:

Ei = EiAi ∼= Ei+1⊗̃A+
i+1
A+
i Ai = Ei+1⊗̃Ai+1Ai.

A smooth connection on a smooth KK-cycle (E , D) for (A,B) is now a connec-
tion ∇ : E → E⊗̃B+Ω1(B+), such that [∇, Di] is completely bounded for all i. If B
was already unital, then B+ decomposes as B ⊕ C, so Ω1(B) is a direct summand
in Ω1(B+) in this case. A connection ∇+ : E → E⊗̃+

BΩ1(B+) therefore induces a
connection ∇ : E → E⊗̃BΩ1(B) and vice versa. Although this is not a bijective
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correspondence, the ambiguity is irrelevant, as the subsequent discussion shows.

Let (E , S,∇) and (F , T,∇′) be nonunital unbounded bimodules, with connec-
tions. The tensor product E⊗̃AF equals E⊗̃A+F , by definition. To show that the
product of nonunital cycles is again a cycle, only the compact resolvent property
needs some care. Thus we have to show that a(S⊗̃1 + 1⊗̃∇T ) is compact, using
compactness of a(1 + S2)−1 and b(1 + T 2)−1, for a ∈ A, b ∈ B. The argument
in proposition 1.6.2.2 carries through up to the reduction of the necessity to show
that a(1 + 1

2s
2)−1(i + t)−1 is compact for a ∈ A. To achieve this, one employs an

approximate unit eα for B. The operators a(1 + 1
2s

2)−1eα(i+ t)−1 are shown to be
compact in the the same way as before. Then, a(1 + 1

2s
2)−1(i+ t)−1 is their norm

limit, hence compact. The validity of theorem 1.6.2.3 follows readily from this.

6.5. A category of spectral triples. Let A and B be smooth C∗-algebras.
The results from 5.4 suggest that triples (E , D,∇) consisting of a smooth (A,B)-
bimodule equipped with a smooth regular operator D and a smooth connection ∇
form a category, in which the composition law is

(E , D,∇) ◦ (E ′, D′,∇′) := (E⊗̃F , D⊗̃1 + 1⊗̃∇D′,∇⊗̃B∇′).

An essential piece for this statement to hold is missing, and we will prove it now.

Proposition 1.6.5.1. Let A,B,C be C∗-algebras, (E , S,∇) and (F , T,∇′) be
(A,B)- and (B,C)-bimodules equipped with selfadjoint regular operators S and T ,
and C1-connections ∇ and ∇′, respectively. Suppose that [T, b] ∈ End∗B(E) for all
b ∈ B1 ⊂ B, a dense subalgebra of B. Then the product connection ∇⊗̃B∇′ is an
S⊗̃1 + 1⊗̃∇T -connection.

Proof. Since

[∇⊗̃B∇′, S⊗̃1 + 1⊗̃∇T ] = [∇⊗̃B∇′, S⊗̃1] + [∇⊗̃B∇′, 1⊗̃∇T ],

and [∇⊗̃B∇′, S⊗̃1] = [∇, S]⊗̃1, which is completely bounded, we compute

(−1)∂e[∇⊗̃B∇′, 1⊗̃∇T ](e⊗ f)

to find

e⊗ [∇′, T ]f +∇∇′(e)Tf +∇⊗̃B∇′(∇T (e)f)−∇T (e)∇′(f)− 1⊗̃∇T (∇∇′(e)f).

The first term is completely bounded, and in working out the last four terms write
∇(e) =

∑
ei ⊗ dbi. Then

∇∇′(e)Tf =
∑

ei ⊗ [∇′, bi]Tf,(1.15)

∇T (e)∇′(f) =
∑

ei ⊗ [T, bi]∇′(f),(1.16)

∇⊗̃B∇′(∇T (e)f) =
∑

ei ⊗∇′[T, bi]f +∇∇′(ei)[T, bi]f,(1.17)

1⊗̃∇T (∇∇′(e)f) =
∑
i

ei ⊗ T [∇′, bi]f +∇T (ei)[∇′, bi]f.(1.18)

Combining 1.15,1.16 and the first terms on the right hand sides of 1.17 and 1.18
give a term ∑

i

ei ⊗ [[∇′, T ], bi]f = ∇[∇′,T ](e)f,
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and the terms remaining from 1.17 and 1.18 give a term

(∇∇′∇T −∇T∇∇′)(e⊗ f).

Thus, we have shown that

[∇⊗̃B∇′, 1⊗̃∇T ] = 1⊗̃∇[∇′, T ] + [∇∇′ ,∇T ],

which is a completely bounded map E⊗̃BF → E⊗̃BF ⊗̃CΩ1(C). �

Definition 1.6.5.2. Let A and B be C∗-algebras, and (H , D) and (H ′, D′) be
smooth spectral triples for A and B respectively. A Ck-correspondence (E , S,∇) be-
tween (H , D) and (H ′, D′) is an unbounded Ck-(A,B)-bimodule with Ck-connection
, such that [S,Ai+1] ⊂ End∗Bi(E

i) and H ∼= E⊗̃BH ′ and Di = (S⊗̃1 + 1⊗̃∇D′)i for
i = 0, ..., k under this isomorphism. The correspondence is smooth if it is Ck for
all k. Two correspondences are said to be equivalent if they are Ck- or smoothly
unitarily isomorphic such that the unitary intertwines the operators. The set of iso-
morphism classes of such correspondences is denoted by Cork(D,D′) or Cor(D,D′)
in the smooth case.

The requirement [S,Ai+1] ⊂ End∗Bi(E
i) can be viewed as a transversality con-

dition.

Theorem 1.6.5.3. There is a category whose objects are Ck-spectral triples and
whose morphisms are the sets Cork(D,D′). The bounded transform b(E , D,∇) =
(E , b(D)) defines a functor Cork → KK.

Proof. Composition of correspondences (E , S,∇) and (F , T,∇′) is defined by

(E⊗̃BF , S⊗̃1 + 1⊗̃∇T,∇⊗̃B∇′).

This is associative by theorem 1.5.3.2 and proposition 1.5.4.1, and defines a corre-
spondence again by by propositions 1.5.4.3 and 1.6.2.2. That the composite of two
Ck-correspondences is again a Ck-correspondence, follows by examining the dia-
gram the diagram after theorem 1.5.4.5 and using the transversality condition. �

As mentioned in the introduction, a category with unbounded cycles as ob-
jects can be constructed in a similar way. A morphism of unbounded cycles
A → (E , D) � B and A′ → (E ′, D′) � B′ is given by a correspondence A →
(F , S,∇) � A′ and a bimodule B → F ′ � B′, where B is represnted by compact
operators. The bounded transform functor then takes values in the morphim cate-
gory KK2.

Furthermore, we would like to note that the category of spectral triples con-
structed is a 2-category. A morphism of morphisms f : (E , D,∇) → (E ′, D′∇′) is
given by an element F ∈ Hom∗B(E ,F ), commuting with the left A-module struc-
tures and making the diagrams

E
F - E ′ E

F - E ′

E

D

? F - E ′

D′

?
E⊗̃BΩ1(B)

∇

?
F- E ′⊗̃BΩ1(B),

∇′

?
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commutative.

The external product of correspondences is defined in the expected way:

(E , D,∇)⊗ (E ′, D′∇′) := (E⊗E ′, D⊗1 + 1⊗D′,∇⊗1 + 1⊗∇).

In this way, Cor becomes a symmetric monoidal category.

Definition 1.6.5.4. Let (E , S) and (F , T ) be unbounded (A,B)-bimodules.
They are said to be weakly equivalent if there exists a unitary in u ∈ Hom∗B(E ,F )
with the property that u∗Tu − S is densely defined and extends to a bounded
operator in End∗B(E).

Weak equivalence is an equivalence relation. On the level of correspondences,
all compatible connections (if they exist) become equivalent. The resulting category
WCor, is the category of weak correspondences of spectral triples (or unbounded
bimodules). The functor Cor → KK factors through the quotient map Cor →
WCor. When one is merely interested in obtaining K-theoretic information of
some sort, working in WCor can be much easier than working in Cor.



CHAPTER 2

Groupoids

Since its inception, one of the most important areas of appliciation for non-
commutative geometry has been the realm of group actions. If a group Γ acts on
a topological space X, it is natural to look at the orbit space X/Γ. The topology
of this space depends heavily on properties of the action of Γ on X. If the action
is free and proper, many properties of X, such as local compactness, or being a
manifold, carry over to X/Γ. However, if this hypothesis is not satisfied, X/Γ can
be far from a nice space. An extreme case is when the orbits are dense, and the
topology of X/Γ is trivial. A now well known result due to Rieffel states that for
a free and proper action, the C∗-algebras C0(X/Γ) and C0(X) o Γ are strongly
Morita equivalent. The latter C∗-algebra continues to have good properties in case
of a bad action. Another issue is that of orbit equivalence. In favourable cases,
the orbits of the action of a discrete countable group Γ are generated by a single
(partial) endomorphism σ : X → X. Since σ need not be invertible, we can view
this only as an action of the semigroup N of natural numbers. There is however a
notion of semigroup crossed product, and the algebras C(X) oσ N can be viewed
as generalizations of Cuntz-Krieger algebras. Both types of crossed products can
be obtained as groupoid C∗-algebras. It is expected that, from the groupoid point
of view, the relation of orbit equivalence can, in favourable cases, be realized as a
correspondence of groupoids. These groupoid correspondences yield C∗-bimodules
over the groupoid C∗-algebras, thus making contact with the material discussed in
chapter 1. Moreover, we show that a closed 1-cocycle c : G → R induces an odd
unbounded (C∗(G), C∗(H))-bimodule, where H = ker c. Again, in favourable cases,
the kernel algebra C∗(H) carries a trace, inducing an index map K1(C∗(G))→ C.

1. A category of groupoids

To account for the notion of Morita equivalence of groupoids, as well as the non-
functoriality of groupoid algebras with respect to the ordinary notion of groupoid
homomorphism, it is useful to broaden ones horizon and allow for a notion of
correspondence of groupoids. A correspondence between groupoids G and H will
be a space Z carrying suitable commuting left G- and right H-actions. This notion
of morphism was pioneered by Hilsum and Skandalis [27] in the case of smooth étale
groupoids. In later papers, other authors modified it to adapt to the general smooth
case ([37]) and to the locally compact case ([49]). Our applications consider locally
compact étale groupoids with Haar system. We do however obtain some results that
hold in the non-étale case.

1.1. Groupoid bundles. In general, topological groupoids can be viewed
as generalizations of both groups and topological spaces. Both of these occur as
extreme cases of the following definition.

45
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Definition 2.1.1.1. A groupoid G is a small category in which every morphism
is invertible. The set of morphisms of G is denoted G(1), and the objects G(0). We
identify G(0) with a subset of G(1) as identity morphisms. G is said to be a locally
compact Hausdorff groupoid if G(1) carries such a topology, and the domain and
range maps

d, r : G(1) → G(0) ⊂ G(1),

are continuous for this topology. G is said to be étale if r and d are local homeo-
morphisms.

Thus, a group can be regarded as a groupoid with just one object, and a
topological space as groupoid with only identity morphisms. We will tacitly assume
all groupoids to be locally compact and Hausdorff.

Example 2.1.1.2 (Crossed product groupoid). Let Γ be a locally compact
group acting on a space X. We associate to it the crossed product XoΓ of X by Γ.
As a set this is just the cartesian product X × Γ, and we identify X with X × {e}
as the unit space of X o Γ. The structural maps are

d(x, γ) := xγ, r(x, γ) := x, (x, γ) ◦ (xγ, δ) := (x, γδ).

As with groups, there is a notion of a groupoid action on a space. This in
turn can be used to define new groupoids from old. If φi : Xi → Y , i = 1, 2, are
continuous maps between topological spaces Xi and Y , we denote the pull back, or
fibered product, of the Xi over Y by

X1 ∗Y X2 := {(x1, x2) : φ1(x1) = φ2(x2)}.

X1 ∗Y X2 is the universal solution for commutative diagrams

X
ψ1 - X1

X2

ψ2

? φ2 - Y.

φ1

?

In case one of the Xi is a groupoid G and a map ρ : Z → G(0) is given, it is
convenient to write G nρ Z for the pull back with respect to d and ρ, and Z oρ G
for the pull back with respect to r and ρ.

Definition 2.1.1.3. Let Z be a topological space and G a groupoid. A left
action of G on Z consists of a continuous map ρ : Z → G(0), called the moment
map, and a continuous map

G nρ Z → Z

(ξ, z) 7→ ξz,

(the pull back is with respect to d : G → G(0)) with following properties:
• ρ(ξz) = r(ξ),
• ρ(z)z = z,
• If (ξ1, ξ2) ∈ G2 and (ξ2, z) ∈ G nρ Z → Z then (ξ1ξ2)z = ξ1(ξ2z).

The space Z is said to be a left G-bundle.
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A groupoid action gives a commutative diagram
Z � G nρ Z - Z

G(0)

ρ

?
� r

G
? d - G(0).

ρ

?

The notion of right action is obtained by switching r and d and considering Zoρ G.
The spaces ZoρG and GnρZ are groupoids over Z. We will describe the structure
for Z oρ G. The structure for G nρ Z is similar but transposed. We have

Z oρ G = {(z, ξ) ∈ Z × G : ρ(z) = r(ξ)},
and define

d(z, ξ) := zξ, r(z, ξ) = z, (z, ξ)−1 = (zξ, ξ−1), (z, ξ)(zξ, η) = (z, ξη).

This is well defined because Z is a G-bundle.If Z carries both a left G- and a right
H-action the actions are said to commute if

• ∀(ξ, z) ∈ G nρ Z, (z, χ) ∈ Z oσ H, (ξz)χ = ξ(zχ),
• ∀(z, χ) ∈ Z oσ H, ρ(zχ) = ρ(z),
• ∀(ξ, z) ∈ G nρ Z, σ(ξz) = σ(z).

Such a Z is called a G-H-bibundle. Moreover, the action is said to be (left- resp.
right-) proper if the map

G nρ Z → Z × Z
(ξ, z) 7→ (ξz, z),

is proper, that is, inverse images of compact sets are compact.

Definition 2.1.1.4. Let Z be a G-H -bibundle with moment maps ρ : Z → G(0)

and σ : Z → H(0). The G action is said to be left principal if the map
G nρ Z → Z ∗H(0) Z

(ξ, z) 7→ (ξz, z),

is a homeomorphism. This is equivalent to saying that the G-action is free, σ is an
open surjection and induces a bijection G\Z → H(0). If the bibundle is both left-
and right-principal, it is said to be an equivalence bibundle. Two groupoids G,H
are Morita equivalent if there exists an equivalence G-H-bibundle.

Example 2.1.1.5. If Γ is a locally compact group acting freely and properly on
the space X, it becomes an equivalence bibundle for the crossed product groupoid
X o Γ (example 2.1.1.2) and the trivial groupoid X/Γ. The moment map ρ is the
identity, and the action given by the action of Γ. For the right action, σ is the
quotient map, while the action itself is trivial.

1.2. Correspondences. There is an obvious notion of groupoid homomor-
phism, it being a proper map φ : G1 → G2 that respects all the structure. These
morphisms form a category G, with groupoids as objects. However, this notion
of morphism is not appropriate when one considers groupoid algebras or Morita
equivalence. As in the case of C∗-algebras, we can define correspondences which
accomodate for the analogue of Morita equivalence of groupoids. We will see later
that this extension is also well behaved with respect to taking groupoid C∗-algebras
and C∗-correspondences.
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Definition 2.1.2.1. Let G,H be locally compact Hausdorff groupoids. A cor-
respondence from G to H is a proper left principal G-H -bibundle Z. We tenta-
tively denote this data by G � Z � H. Two correspondences G � Z � H and
G � Z ′ � H are called isomorphic if there exists a homeomorphism Z → Z ′

intertwining all the relevant structures.

Groupoid correspondences can be composed, in the following way. Let G1 �
Z1 � H and H � Z2 � G2 with moment maps ρi, σi, i = 1, 2 be given. Form
the fiber product Z1 ∗H(0) Z2 with respect to the moment maps σi. There is an
H-action with respect to the moment map

σ : Z1 ∗H(0) Z2 → H(0)

(z1, z2) 7→ σi(zi).

H acts (from the left) by χ(z1, z2) := (z1χ
−1, χz2). Define

Z = Z1 ∗H Z2 := H\Z1 ∗H(0) Z2.

Z carries a left G1- and a right G2-action, which can be checked to be a corre-
spondence. The correspondence G � G � G is a unit for this composition up to
isomorphism. Denote by CorG(G,H) the set of isomorphism classes of correspon-
dences from G to H. We have the following straightforward result.

Proposition 2.1.2.2 ([38]). Composition of correspondences is associative and
unital up to isomorphism, and therefore the sets CorG(G,H) are the morphism sets
of a category CorG whose objects are all locally compact Hausdorff groupoids.

There is a canonical (contravariant) functor G → CorG which is the identity
on objects. To a proper groupoid homomorphism φ : G → H it associates the
correspondence

(2.1) Zφ := H ∗H(0) G(0) = {(χ, u) ∈ H × G(0) : d(χ) = φ(u)}.

The moment maps
ρ : Zφ → G(0), σ : Zφ → H(0),

are given by the coordinate projections and the actions by

((χ, u), ξ) 7→ (χφ(ξ), d(ξ)), (η(χ, u)) 7→ (ηχ, u).

Note that for the G-action to be proper it is crucial that φ be proper.

Theorem 2.1.2.3 ([38]). Let CorG be the category with objects all locally com-
pact Hausdorff groupoids and morphisms given by correspondences. Two groupoids
are Morita equivalent if and only if they are isomorphic as objects in CorG.

In fact, in [38] proposition 2.1.2.2 and theorem 2.1.2.3 are proved in the setting
of smooth groupoids, but these proofs carry over verbatim to the locally compact
case.

1.3. Equivariant KK-theory. In his second paper on the subject, [33], Kas-
parov developed a version of KK-theory for C∗-algebras acted upon by a locally
compact group G, and a version he called representable KK-theory, and denoted
RKK. This last version is defined for C0(X)-algebras, with X some locally com-
pact space. The notion will be defined below, and the intuition one should have
with it is that of a bundle of C∗-algebras over X. Both theories are extreme cases
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of the equivariant theory for groupoids, developed by LeGall in [23]. We will de-
scribe this theory here, even though we will only deal with the above mentioned
extreme cases. The action of a groupoid on a space was has been described in some
detail above. In this section, we are concerned with the action of a groupoid on a
C∗-algebra. Recall that he center of an algebra A is denoted by ZA.

Definition 2.1.3.1. Let A be a C∗-algebra and X a locally compact space. A
is said to be a C0(X)-algebra if there is a *-homomorphism C0(X)→ ZM (A) such
that, under this map C0(X)A = A.

If A is a C0(X)-algebra, we set Ax := A/CxA. Here Cx is the maximal ideal of
C0(X) consisting of functions vanishing at x. Ax is called the fiber of A at x. We
denote by πx : A→ Ax the quotient map. There is an injection A→

∏
x∈X Ax.

Definition 2.1.3.2. A C0(X)-algebra A is a continuous field of C∗-algebras if
for all a ∈ A the function x 7→ ‖ax‖ is continuous.

There is another way of defining a continuous field of C∗-algebras, as a con-
tinuous field of Banach spaces whose fibers are C∗-algebras. A continuous field of
Banach spaces over X is a set E together with a map π : E → X, such that every
fiber Ex := π−1(x) is a Banach space, and a subset S ⊂

∏
x∈X Ex of sections with

the following properties:
• For all x ∈ X, Ex = {s(x) : s ∈ S };
• for each s ∈ S the function x 7→ ‖s(x)‖ is continuous;
• S is locally uniformly closed : If t ∈

∏
x∈X Ex and for each ε > 0 and

x0 ∈ X there exists s ∈ S such that for all x in a neighbourhood of x0

we have ‖t(x)− s(x)‖ < ε, then t ∈ S .
One straightforwardly checks that the algebra of C0-sections of a continuous field of
Banach spaces whose fibers are C∗-algebras is a C0(X)-algebra with the norm con-
tinuity property. We will tacitly identify a continuous field of C∗-algebras with its
C∗-algebra of C0-sections. Similarly, one defines a continuous field of C∗-modules.
If E is a C∗-module over a C0(X)-algebra B, it decomposes into fibers. The fiber
at x is

Ex := E⊗̃BBx,
where we tensor over the fiber homomorphism B → Bx. Clearly, Ex is a C∗-module
over Bx. By identifying E with EB, we obtain a homomorphism of C0(X) into
Z(End∗B(E)), which makes KB(E) into a C0(X)-algebra. If B is a continuous field of
C∗-algebras, E is a continuous field of C∗-modules, and KB(E) is a continuous field
of C∗-algebras as well. End∗B(E) is not a C0(X)-algebra in general, as mentioned
before. However, the function x 7→ ‖Tx‖ is still continuous. This follows from the
description of the norm:

‖Tx‖ := sup
e∈Ex\{0}

‖Txe‖
‖e‖

,

and the fact that E is a continuous field.

Lemma 2.1.3.3. Let B be a continuous field of C∗-algebras, and E � B a
C∗-module. Then T ∈ KB(E) if and only if Tx ∈ KBx(Ex) for all x ∈ X.

Proof. The only if direction is trivial. So suppose T ∈ End∗B(E) and Tx ∈
KBx(Ex). We will use local uniform closure of the set of C0-sections of the contin-
uous field KB(E). Let x0 ∈ X and ε > 0. We can find ei,0, fi,0 ∈ Ex, i = 0, ..., n,
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such that

‖Tx0 −
n∑
i=0

ei,0 ⊗ fi,0‖x0 < ε.

Since the map E → Ex is surjective, we can lift the ei,0, fi,0 to elements ei, fi ∈ E .
The set

V := {x ∈ X : ‖Tx −
n∑
i=0

ei,x ⊗ fi,x‖x < ε},

is an open neighbourhood of x0, which by definition has the desired property. Hence
T ∈ KB(E). �

A morphism of C0(X)-algebras is a *-homomorphism that is also a morphism
of C0(X)-modules. Thus a morphism φ : A→ B of C0(X)-algebras induces a map∏
x∈X Ax →

∏
x∈X Bx, whose components are denoted φx. For locally compact X,

φ is injective, resp. surjective if and only if all its fiber maps φx are [23].
The notion of restriction of a C0(X)-algebra to a closed subset Y ⊂ X is

defined to be the C0(Y )-algebra AY := A/CYA, where CY is the ideal of functions
vansihing on Y . Given a continuous map p : Z → X the C0(Z)-algebra p∗A is the
restriction of the C0(Z × X)-algebra A⊗C0(Z) to the graph of p, a closed subset
of Z ×X. If d, r : G → G(0) are the domain and range maps of a locally compact
groupoid and A a C0(X)-algebra, there are natural identifications (d∗A)ξ = Ad(ξ)

and (r∗Aξ) = Ar(ξ). These constructions allow for the definition of C0(X) tensor
products. Given two C0(X)-algebras A and B, their tensor product A⊗̃C0(X)B is
the restriction of the maximal C∗-tensor product A⊗̃B, which is a C0(X × X)-
algebra, to the diagonal

{(x, x) ∈ x×X : x ∈ X}.
If E is a C∗-module over a C0(X)-algebra and p : Y → X a continuous map,
p∗E � p∗B denotes the C∗-module E⊗̃Bp∗B.

Definition 2.1.3.4. Let G be a locally compact groupoid and A a C0(G(0))-
algebra. An action of G on A is an isomorphism φ : d∗A→ r∗A of C0(G)-algebras,
such that for any pair of composable elements (ξ, η) we have φξη = φξφη. A is said
to be a G-algebra. Given a C∗-module E over a G-algebra A, an action of G on E
is given by a unitary u ∈ End∗B(d∗E , r∗E), such that uξuη = uξη for composable
pairs (ξ, η).

We will always consider C0(G) with the trivial grading. As such, an action of
G on a graded C∗-algebra is given by an isomorphism preserving the degree. A
representation π : A → End∗B(E) of a G-algebra A on a C∗-G-module E is said to
be equivariant if

∀ξ ∈ G,∀ad(ξ) ∈ Ad(ξ) : uξπd(ξ)(ad(ξ))u∗ξ = πr(ξ)(αξad(ξ)).

Definition 2.1.3.5 ([23]). LetA,B be two G-algebras, E an equivariant (A,B)-
bimodule, and F ∈ End∗B(E). (E , F ) is said to be an equivariant Kasparov module
if it is a Kasparov module in the ordinary sense and

∀a ∈ r∗A : π(a)(u(s∗F )u∗ − r∗F ) ∈ r∗KB(E).

Two such modules are said to be unitarily equivalent if there exists a degree 0
equivariant unitary intertwining the representations and the operators. We denote
the set of unitary equivalence classes of such bimodules by EG(A,B). A homotopy
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of such modules is an element of EG(A,B⊗̃C([0, 1])). The set of homotopy classes
of G-equivariant Kasparov modules is denoted KKG0 (A,B).

As in the ordinary case, one defines higher order Kasparov modules using
the Clifford algebras Ci (definition 1.2.1.1), i.e. KKGi (A,B) := KKG0 (A,B⊗̃Ci).
KKG(A,B) has the usual properties of a KK-bifunctor.

Theorem 2.1.3.6 ([23]). KKGi (A,B) is a group, and there exists an equivari-
ant Kasparov product

KKGi (A,B)⊗KKGj (B,C)→ KKGi+j(A,C),

for G-algebras A,B and C, making KKG into a category.

The Kasparov product is well behaved with respect to groupoid homomor-
phisms and even with respect to correspondences of groupoids. Since we will only
make use of the first case, we state Le Gall’s result in that setting.

Theorem 2.1.3.7 ([23]). Let G,H and K be topological groupoids, A,B and C
H-algebras, and φ : K → H and ψ : G → K continuous groupoid homomorphisms.

• ∀x ∈ KKHi (A,B) : (φ ◦ ψ)∗(x) = φ∗ ◦ ψ∗(x) ∈ KKGi (ψ∗φ∗A,ψ∗φ∗B);
• φ∗(1A) = 1φ∗A ∈ KKG0 (φ∗A, φ∗A);
• ∀x ∈ KKHi (A,B), y ∈ KKHj (B,C) we have

φ∗(x)⊗φ∗B φ∗(y) = φ∗(x⊗B y) ∈ KKG(φ∗A, φ∗C).

The case we will be most interested in is that of an ordinary space, viewed as
a groupoid. Elements of EX(A,B) are ordinary Kasparov modules subject to the
extra condition that in the C∗-module E there is an equality (af)eb = ae(fb) for
all a ∈ A, b ∈ B and f ∈ C0(X) [33]. The same adaptation is used for unbounded
bimodules.

2. C∗-algebras and -modules

In order to obtain C∗-algebras from general groupoids, one needs the datum of
a Haar system. This is a system of measures supported on the fibers of the range
map r. Inversion in the groupoid yields a system of measures supported on the
fibers of d. In the presence of a Haar system, a natural convolution product on
the algebra Cc(G) is defined, making it into a topological *-algebra. The reduced
groupoid C∗-algebra C∗r (G) can then be obtianed as an algebra of endomorphisms
of a canonical C∗-module over C0(G(0)), as the completion of Cc(G) in a canonical
representation. If the groupoid happens to be étale, a canonical Haar system always
exists.

2.1. Haar systems and the convolution algebra. The space Cc(G) of
continuous complex valued functions with compact support is a right module over
Cc(G(0)) if we define

f ∗ g(ξ) := f(ξ)g(d(ξ)), f ∈ Cc(G), f ∈ Cc(G(0)).

Cc(G) is an algebra under pointwise multiplication, but this algebra does not cap-
ture the structure of G as a groupoid. If G carries some extra structure, Cc(G)
carries both a noncommutative multiplication, encoding the groupoid structure,
and a Cc(G(0))-valued inner product. This in turn allows for the definition of two
canonical C∗-algebras, that need not be isomorphic.
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Definition 2.2.1.1 ([46]). Let G be a locally compact Hausdorff groupoid. A
Haar system on G is a system of measures {νx : x ∈ G(0)} on G(1) such that

• supp νx = r−1(x)
• ∀f ∈ Cc(G),

∫
G f(ξ)dνr(η)(ξ) =

∫
G f(ηξ)dνd(η)(ξ)

• ∀f ∈ Cc(G), g(x) :=
∫
G f(ξ)dνx(ξ) ∈ C(G(0)).

Étale groupoids always admit a Haar system, consisting of counting measures
on the fibers. There is a natural involution on Cc(G) given by f∗(ξ) := f(ξ−1).
The Haar system also allows us to define the convolution product on Cc(G):

f ∗ g(η) :=
∫
G
f(ξ)g(ξ−1η)dνr(η).

This is an associative, distributive product that makes Cc(G) into a topological
*-algebra for the topology given by uniform convergence on compact subsets.

Definition 2.2.1.2 ([25]). Let G be a locally compact Hausdorff groupoid with
Haar system. Define

‖f‖ν := sup
u∈G(0)

∫
G
|f(ξ)|dνu, ‖f‖ν−1 := sup

u∈G(0)

∫
G
|f(ξ−1)|dνu,

and
‖f‖I := max{‖f‖ν , ‖f‖ν−1}.

Let H be a Hilbert space. A representation π : Cc(G) → B(H) is called
admissible if it is continuous with respect to the inductive limit topology on Cc(G)
and the weak operator topology on B(H), and ‖π(f)‖ ≤ ‖f‖I .

Definition 2.2.1.3. The full C∗-norm on Cc(G) is defined by

‖f‖ := sup{‖π(f)‖ : π admissible}.
The full C∗-algebra C∗(G) is the completion of Cc(G) with respect to this norm.

We can associate a canonical C∗-C0(G(0))-module to a groupoid with Haar
system via the pairing

Cc(G)× Cc(G)→ Cc(G(0))

〈f, h〉(u) :=
∫
G
f(ξ−1)h(ξ−1)dνuξ.

As usual, Cc(G) gets a norm

‖f‖2 := ‖〈f, f〉‖ := sup
u∈G(0)

∫
G
|f(ξ−1)|2dνuξ.

We denote the completion by L2(G, ν). Since Cc(G) acts on itself by convolution
we get an embedding

Cc(G) ↪→ End∗C(G(0))(L
2(G, ν)).

Definition 2.2.1.4 ([46]). The reduced C∗-algebra C∗r (G) of G, is the comple-
tion of Cc(G) in the norm ‖.‖r it gets as an algebra of operators on L2(G, ν).

The approach we’ve taken to defining C∗r (G) is different from that in [46] and
was first considered in [34]. As mentioned before, the C∗-algebras C∗(G) and C∗r (G)
are not isomorphic in general.
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Example 2.2.1.5. In the literature the C∗-algebras C∗(XoΓ) and C∗r (XoΓ),
with X o Γ as in example 2.1.1.2, are referred to as the full and reduced crossed
products of C(X) by Γ.They are commonly denoted C(X) o Γ and C(X) or Γ, but
we will stick with the first notation.

2.2. Amenability. A sufficient analytic condition for the full and reduced
groupoid C∗-algebras to be isomorphic is that of amenability. All groupoids of
interest to us will turn out to be amenable, but the condition is very technical
in nature, and the results we will use are proved elsewhere. Therefore we will
restrict ourselves here to an overview of the concept, for the sake of completeness.We
consider the following weakening of the notion of Haar system, with which the
notion of amenability is formulated.

Definition 2.2.2.1 ([2]). Let G be a locally compact groupoid, and π : X → Y
an equivariant surjection of G-bundles. A continuous π-system of measures on X
is a family of measures {νx} such that

• supp νx = r−1(x)
• ∀f ∈ Cc(G), g(x) :=

∫
G f(ξ)dνx(ξ) ∈ C(G(0)).

π is called amenable if there exists a net {νi} of π-systems of probability measures
such that ∫

G
d|ξνxi − ν

ξx
i | → 0,

uniformly on compact subsets of X o G.

The net {νi} is sometimes referred to as an approximate invariant continuous
mean. A groupoid G is called amenable if the map r : G → G(0) is an amenable
surjection. The action of a group Γ on a space X is said to be amenable if the
crossed product groupoid X o Γ is. For amenable groupoids, the full and reduced
C∗-algebras coincide.

Theorem 2.2.2.2 ([2],[46]). Let G be a groupoid with Haar system. If G is
amenable, then C∗r (G) ∼= C∗(G). That is, the full and reduced norms on Cc(G)
coincide.

This is indeed a very useful result, since the reduced norm is much easier to
work with than the full-norm. The notion of amenability is compatible with that
of equivalence of groupoids as defined in the previous section.

Theorem 2.2.2.3 ([2]). Amenabiltiy is invariant under equivalence of locally
compact groupoids.

2.3. C∗-modules from correspondences. The construction of C∗(G) and
C∗r (G) is compatible with both the notion of correspondence and that of Morita
equivalence.

Theorem 2.2.3.1 ([45]). Let G,H be second countable locally compact Hausdorff
groupoids and Z a biprincipal G-H- bibundle. The space Cc(Z) can be completed
into Morita equivalence correspondences

C∗(G) � EZ � C∗(H) and C∗r (G) � EZr � C∗r (H).

That is, the maps
G 7→ C∗(G), G 7→ C∗r (G),
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preserve Morita equivalence classes. They also carry correspondences into corre-
spondences.

Theorem 2.2.3.2 ([49]). Let G � Z � H be a groupoid correspondence. The
space Cc(Z) can be completed into C∗-correpondences

C∗(G) � EZ � C∗(H) and C∗r (G) � EZr � C∗r (H).

On the dense subspaces Cc(G), Cc(H) and Cc(Z), explicit formulae for both
the inner product(s) and module structures can be given. For later reference and
completeness we give them here. For Φ ∈ Cc(Z), the right module action of h ∈
Cc(H) is given by

(2.2) Φ · h(z) :=
∫
H

Φ(zχ)h(χ−1)dνσ(z)χ.

Similarly, the left action of g ∈ Cc(G) on Φ is

(2.3) g · Φ(z) :=
∫
G
g(ξ)Φ(ξ−1z)dνρ(z)ξ.

There is a Cc(H)-valued inner product on Cc(Z):

(2.4) 〈Φ,Ψ〉H(χ) :=
∫
G

Φ(ξ−1z)Ψ(ξ−1zχ)dvρ(z)ξ.

In this formula, z ∈ Z is chosen such that σ(z) = r(χ), and it is independent of
choice because G \ Z ∼= H(0), and finite because the G-action is proper. 〈Φ,Ψ〉H ∈
Cc(H) by virtue of the properness of theH-action. In case theH action is transitive,
one defines a Cc(G)-valued inner product by

(2.5) 〈Φ,Ψ〉G(η) :=
∫
H

Φ(η−1zχ)Ψ(zχ)dνσ(z)χ,

where z ∈ Z is chosen in such a way that ρ(z) = r(η). Again, the integral is
independent of this choice by transitivity of the H-action.

2.4. Functoriality for étale groupoids. The next step is to establish func-
toriality of the maps G 7→ C∗(G) and G 7→ C∗r (G), viewed as maps CorG → CorC∗ .
Recall that CorC∗ is the category of C∗-correspondences described in proposition
1.1.3.2. Functoriality has been established for Lie groupoids in [37], but a proof
in the locally compact case is still lacking. However, in [44] it is shown that for
smooth étale groupoids, the bimodule construction is functorial on the level of the
uncompleted (C∞c (G), C∞c (G))-bimodule C∞c (Z). Combined with the line of proof
employed in [37], this yields the following result.

Theorem 2.2.4.1. Let CoretG ⊂ CorG be the subcategory of étale groupoids. The
maps G 7→ C∗(G) and G 7→ C∗r (G) define functors CoretG → CorC∗ .

Let G1 → Z � H andH →W � G2 be groupoid correspondences with moment
maps ρ, σ and ρ′, σ′ respectively. The important part of the argument is showing
that the C∗-modules EZ⊗̃C∗(H)EW and EZ∗HW are canonically ismorphic. To this
end the map

i : Cc(Z)⊗Cc(H) Cc(W )→ Cc(Z ∗HW ),
defined by

(z, w) 7→
∫
H

Φ(zh)Ψ(h−1w)dνσ(z),
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is shown to extend to an isometry ([37],[44])

EZ⊗̃C∗(H)EW ↪→ EZ∗HW .

Thus it suffices to show that this map has dense range. But for this Mrc̆un’s
argument applies: For a function Ξ ∈ Cc(Z∗HW ) with support in an open set of the
form U ∗V , where U ⊂ Z and V ⊂W are such that σ and σ′ are homeomorphisms
onto their images and ρ′(V ) ⊂ σ(U), the map

j : V → U ∗ V
v 7→ [σ−1(ρ′(v)) ∩ U, v],

is a homeomorphism. Define Ψ(v) := Ξ(j(v)). The set S := σ−1ρ(supp Ψ) ∩ U
is compact in U , and hence there exists Φ with supp Ψ ⊂ U such that Ψ(S) = 1.
Then we have Ξ = i(Φ ⊗ Ψ). Since the functions Ξ span Cc(Z ∗H W ), this shows
that U has dense range. We believe that the functoriality result should be valid in
the general case, maybe with some extra condition on the correspondences.

3. Cocycles and K-theory

The continuous cohomology of a groupoid generalizes that of a group. In this
section we develop a connection between the cocycles defining the cohomology group
H1(G,R) and K1(C∗(G)). This is done by constructing for each closed real-valued
1-cocycle c : G → R an odd unbounded (C∗(G), C∗(H))-bimodule, where H =
ker c. This in turn induces maps K1(C∗(G)) → K0(C∗(H)) and K0(C∗(G)) →
K1(C∗(H)). According to properties of c, the K-groups of C∗(H) can be more
accessible than those of C∗(G), thus paving a way to the calculation of invariants
of C∗(G).

3.1. Groupoid cocycles. The cohomology of groupoids can be developed in
complete generality, by adapting the theory for groups, in a similar way as the
notion of action is adapted. We will only be interested in the first cohomology
group H1(G,R) of a groupoid G with coefficients in R. This group has a fairly
straightforward definition in terms of homomorphisms G → R.

Definition 2.3.1.1. Denote by Z1(G,R) the set of continuous homomorphisms
G → R. We will refer to the elements of Z1(G,R) as cocycles on G. Denote by
B1(G,R) the subset of those c ∈ Z1(G,R) such that there exists a continuous
function f : G(0) → R such that c(ξ) = f(r(ξ))−f(d(ξ)). The elements of B1(G,R)
are referred to as coboundaries. Finally, define H1(G,R) := Z1(G,R)/B1(G,R).

The kernel
ker c := {ξ ∈ G : c(ξ) = 0}

is a closed subgroupoid of G, which we will denote by Hc. It is immediate that
H(0) = G(0). H acts on G by both left- and right multiplication, and these actions
are proper. We will always consider the action by multiplication from the right.
G → G � H is a groupoid correspondence. Any closed subgroupoid with Haar
system H ⊂ G is Morita equivalent to the crossed product G nr G/H, where the
moment map G/H → G(0) for the action of G on G/H is given by [χ] 7→ r(χ),
whence the notation. G nr G/H inherits a Haar system from G, since we have

r−1([η]) = {(ξ, [η]) ∈ G nr G/H : d(ξ) = r(η)} ∼= d−1(r(η)).
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The equivalence correspondence is given by G itself with moment map

ρ : G → (G nr G/H)(0) = G/H
η 7→ [η]

equal to the quotient map. The left action is given by (ξ, [η1])η2 = ξη2 whenever
[η1] = [η2], and hence the bundle is left principal. The map σ : G → H(0) is just
equal to d. The bundle is right principal by construction.

Definition 2.3.1.2. A cocycle c : G → R is regular if H = ker c admits a Haar
system, and closed if the canonical projection G → G/H is closed.

From the above discussion, it follows that for a regular cocycle, the full and
reduced C∗-agebras of G and G nr G/H are Morita equivalent. If G is an étale
groupoid, any closed subgroupoid admits a Haar system, as is the case when G is
a Lie groupoid and c is smooth. For the map G → G/H to be closed it is sufficient
that the image of c be a discrete subgroup of R. The sum of two closed cocycles is
again a closed cocycle.

Renault [46] showed that a 1-cocycle c ∈ Z1(G,R) defines a one-parameter
group of automorphisms of C∗(G) by

utf(ξ) = eitc(ξ)f(ξ).

Furthermore he showed that if c ∈ B1(G,R), the automorphism group is inner, i.e.
implemented by a strongly continuous family of unitaries in the multiplier algebra
of C∗(G).

Proposition 2.3.1.3. Let c : G → R be a regular cocycle. The operators

Ut : Cc(G)→ Cc(G)

Utf(ξ) = eitc(ξ)f(ξ)

extend to a one parameter group of unitaries in EndC∗(H)(EG) (resp. EndC∗r (H)(EGr )),
implementing the one parameter group of automorphisms ut of (the image of)
C∗(G), resp. C∗r (G).

Proof. The identity 〈Utf, Utg〉H = 〈f, g〉H is proved by a straightforward
computation. To see that Ut implements ut, just compute:

Ut(f ∗ U∗t g)(η) = eitc(η)

∫
G
f(ξ)e−itc(ξ

−1η)g(ξ−1η)dνr(η)

=
∫
G
f(ξ)eitc(ξ)g(ξ−1η)dνr(η)

= (utf) ∗ g(η).

�

3.2. An odd bimodule. The generator of the one parameter group described
in proposition 2.3.1.3 is closely related to the cocycle c. On the level of Cc(G),
pointwise multiplication by c induces a derivation, which we wil further investigate
in this section.
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Proposition 2.3.2.1. Let G be a locally compact Hausdorff groupoid with Haar
system, c : G → R a regular cocyle, and H = ker c. The operator

D : Cc(G)→ Cc(G)

f(ξ) 7→ c(ξ)f(ξ),

is a Cc(H)-linear derivation of Cc(G) considered as a bimodule over itself. More-
over, it extends to a selfadjoint regular operator in the C∗-modules EG � C∗(H)
and EGr � C∗r (H).

Proof. It is clear that D is Cc(H)-linear and the following computation

f ∗Dg(η) =
∫
G
f(ξ)Dg(ξ−1η)dνr(η)

=
∫
G
f(ξ)c(ξ−1η)g(ξ−1η)dνr(η)

= c(η)
∫
G
f(ξ)g(ξ−1η)dνr(η) −

∫
G
c(ξ)f(ξ)g(ξ−1η)dνr(η)

= D(f ∗ g)(η)− (Df) ∗ g(η),

shows it is a derivation. Furthermore, it is straightforward to check that

〈Df, g〉H = 〈f,Dg〉H,
using formula 2.4. Thus, D is closable, and we will denote its closure by D as well.
It is regular because on Cc(G) we have

(1 +D∗D)f(ξ) = (1 + c2(ξ))f(ξ),

and this clearly has dense range. The same goes for D + i and D − i, restricted to
Cc(G). Therefore, by lemma 1.1.4.8, these operators are bijective, and hence the
Cayley transform c(D) (1.6) is unitary. Then, by corollary 1.1.4.10, it follows that
D is selfadjoint. �

The operator D is of course the generator of the one-parameter group of propo-
sition 2.3.1.3. If the cocycle c happens to be closed and K ⊂ G(0) is compact, the
induced map c : (K × R) ∩ G/H → R is proper. This can be seen using the
identification

G/Hc = {(r(ξ), c(ξ)) : ξ ∈ G}.
It is a key fact in the subsequent proof.

Theorem 2.3.2.2. Let G be a locally compact Hausdorff groupoid and c : G →
R a closed regular cocycle. The operator D from proposition 2.3.2.1, makes the
correspondences

C∗(G) � EG � C∗(H), C∗r (G) � EGr � C∗r (H),

into unbounded bimodules.

Proof. The derivation property implies that the commutators [D, f ] are bounded
for f ∈ Cc(G). They are given by convolution by Df. So it remains to show that
D has C∗(H)-compact resolvent. To this end, let f,Φ ∈ Cc(G). The operator
f ◦ (1 +D2)−1 acts as

f ◦ (1 +D2)−1Φ(η) =
∫
G
f(ξ)(1 + c2(ξ−1η))−1Φ(ξ−1η)dνr(η)ξ.
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The action of

g ∈ Cc(G nr G/H) ⊂ C∗(G nr G/H) = KC∗(H)(EG),

is given by

gΨ(η) =
∫
GnrG/H

g(ξ1, [ξ2])Ψ(ξ−1η)dν[η](ξ1, [ξ2])

=
∫
G
g(ξ, [ξ−1η])Ψ(ξ−1η)dνr(η)ξ.

Thus, if we show that for each f ∈ Cc(G) the function

kf (ξ, [η]) := (1 + c2(η))−1f(ξ)

is a norm limit of elements in Cc(G nr G/H), then we are done.

Define
Kn := (r(supp f)× R) ∩ c−1([−n, n]) ⊂ G/H,

where we view c as a map G/H → R. Then

· · · ⊂ · · · ⊂ Kn ⊂ Kn+1 ⊂ · · · ⊂ G/H,
is a filtration of (r(supp f)×R)∩G/H by compact sets. Moreover, we may assume
that the image of c is not a bounded set in R, and that Kn 6= Kn+1 (if not, just
rescale). Thus, there exist cutoff functions

en : G/H → [0, 1],

with
en = 1 on Kn, en = 0 on G/H \Kn+1.

Define
knf (ξ, [η]) := en([η])kf (ξ, [η])

such that c(Kn) ⊂ [−n, n]. Recall from definitions 2.2.1.2 and 2.2.1.4 that ‖ · ‖r ≤
‖ · ‖ ≤ ‖ · ‖I , so it suffices to show that ‖knf −kmf ‖I → 0 as n > m→∞. For n > m
we can estimate:

‖knf − kmf ‖ν = sup
[η]∈G/H

∫
GnrG/H

|knf (ξ, [η])− kmf (ξ, [η])|dν[η]

= sup
[η]∈G/H

∫
G
|knf (ξ, [η])− kmf (ξ, [η])|dνr(η)

= sup
[η]∈G/H

∫
G
|(en − em)(η)(1 + c2(η))−1f(ξ)|dνr(η)

≤ 1
1 +m2

sup
[η]∈G/H

∫
G
|f(ξ)|dνr(η)

=
1

1 +m2
‖f‖ν .

For ‖knf − kmf ‖ν−1 a similar computation yields the estimate

‖knf − kmf ‖I ≤
1

1 +m2
‖f‖I ,

proving that the sequence knf is Cauchy for ‖ · ‖I and hence for ‖ · ‖ and ‖ · ‖r.
Furthermore, it converges to f(1 +D2)−1. �
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Several well known examples of spectral triples can be obtained using this
theorem. In the sequel we encounter some truly bivariant examples.

Example 2.3.2.3 (The circle). Consider R as a groupoid, and take c = id :
R→ R. The kernel of c is a point, so C∗(Hc) = C. The spectral triple so obtained
is the Fourier transform of the canonical Dirac triple (C(S1), L2(S1), i ∂∂x ) on S1.
One obtains this triple directly from the embedding Z→ R.

Example 2.3.2.4 (Crossed products by subgroups of R). Let (C(X),H,D)
be a commutative smooth spectral triple, G ⊂ R a subgroup acting smoothly
(in the sense of the given spectral triple) on X. The projection homomorphism
c : X o G → G ⊂ R gives an unbounded C∗(X o G) → (E , Dc) � C(X). E is
a completion of Cc(G)⊗ C(X), which is a free C(X)-module, and the Levi-Civita
connection is a Dc connection in this case. Thus one can form the Kasparov product
of this module with the given specral triple to obtain a spectral triple for C(X)oG.
One in particular obtains the noncommutative tori in this way (see section 3.4).

3.3. Continuous quasi-invariant measures. An interesting class of cocyles
c : G → R comes from certain well-behaved measures on the unit space G(0).
For this class of cocycles, the kernel algebra C∗(H) carries a canonical trace.τ :
C∗(H) → C. Composing the induced homomorphism τ∗ : K0(C∗(H)) → C with
the homomorphism K1(C∗(G)) → K0(C∗(H)) induced by the bimodule coming
from c, yields an index map K1(C∗(G))→ C.

Definition 2.3.3.1. Let G be a groupoid with Haar system {νx} and µ be a
positive Radon measure on G(0). νµ denotes a measure on G, the measure induced
by µ, and is defined by∫

G
f(ξ)dνµ(ξ) :=

∫
G(0)

∫
G
f(ξ)dνx(ξ)dµ(x).

The measure µ is said to be quasi-invariant in νµ is equivalent to its inverse νµ,
induced by the corresponding right Haar system on G. The function

∆ :=
dνµ

dνµ
: G → R≥0,

is called the modular function of µ. If this function is continuous, then µ is said to
be continuous.

The modular function is an almost everywhere homomorphism [46]. That is,
it is a measurable cocycle on G. We will only be interested in continuous measures,
and it that case Renault’s result is rephrased as follows.

Proposition 2.3.3.2. Let G be a groupoid with Haar system and µ a continuous
quasi-invariant measure on G(0). Then the modular function ∆ : G → R≥0 is a
continuous cocycle.

The measure µ defines a positive functional τ on the algebra Cc(G).

τ : Cc(G)→ C

f 7→
∫
G(0)

fdµ.
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It extends to both C∗(G) and C∗r (G), but in general does not yield a trace. How-
ever, if the measure µ is continuous, the Radon-Nikodym cocycle c induces a one-
parameter group ut of automorphisms of C∗(G), as mentioned before proposition
2.3.1.3.

Definition 2.3.3.3. Let A be a C∗-algebra and ut a strongly continuous one
parameter group of automorphisms of A. A KMS- β-state on A, relative to ut, is
a state σ : A → C, such that the for all a, b in some dense subalgebra of A the
function

F : t 7→ σ(autb)
admits a continuous bounded continuation to the strip {z ∈ C : 0 ≤ Imz ≤ β} that
is homolomorphic on the interior, such that

F (t+ iβ) = σ(ut(b)a).

Theorem 2.3.3.4 ([46]). Let µ be a continuous quasi-invariant measure on G.
The functional τ is a KMS −1-state for the one parameter group of automorphisms
associated to the Radon-Nikodym cocycle on G.

A measured groupoid is called unimodular if ∆ = 1 νµ-almost everywhere. For
continuous measures, the following proposition is a corollary of theorem 2.3.3.4, but
it holds for general measures.

Proposition 2.3.3.5. Let G be a unimodular measured groupoid. Then the
functional τ : Cc(G)→ C is a trace.

Proof. Compute

τ(f ∗ g) =
∫
G(0)

∫
G
f(ξ)g(ξ−1x)dνxξdµ(x)

=
∫
G(0)

∫
G
f(ξ)g(ξ−1)dνxξdµ(x)

=
∫
G(0)

∫
G
f(ξ−1)g(ξ)dνxξdµ(x)

= τ(g ∗ f),

where we used unimodularity of G in the third line. �

Corollary 2.3.3.6. Let G be a groupoid with Haar system, µ a continuous
quasi-invariant measure such that the cocycle ∆ is regular. Then τ : C∗(H) → C
is a trace, for H = ker ∆.

If µ is quasi-invariant, ∆(ξ) 6= 0 for all ξ in G. Hence we can compose it with
the logarithm ln : R+

∼−→ R, to obtain a real valued cocycle cµ ∈ Z1(G,R). We will
refer to this element as the Radon-Nikodym cocycle on G.

Corollary 2.3.3.7. Let G be a groupoid with Haar system, µ a continuous
quasi-invariant measure such that the cocycle ∆ is closed and regular. Then µ
induces an index homomorphism Indµ : K1(C∗(G))→ C.

Proof. By theorem 2.3.2.2, the Radon-Nikodym cocycle cµ defines an element
[D] ∈ KK1(C∗(G), C∗(H)) and the Kasparov product with [D] gives a group homo-
morphism ⊗[D] : K1(C∗(G))→ K0(C∗(H)). The trace τ induces a homomorphism
τ∗ : K0(C∗(H))→ C. Hence we can define Indµ := τ∗ ◦⊗[D] : K1(C∗(G))→ C. �
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Note that, in fact, we get an index map K1(C∗(G))→ C for any closed regular
cocycle whose kernel is unimodular with respect to some quasi invariant measure.

3.4. The noncommutative torus as a quotient. Recall that the noncom-
mutative 2-torus, topologically is the C∗-algebra of an irrational rotation action on
the circle S1. More precisely, for θ ∈ (0, 1) consider the action of Z on S1, given by
rotation over an angle 2πθ:

e2πit · n := e2πi(t+nθ).

We denote the corresponding crossed product groupoid by S1 oθ Z. Lebesgue
measure λ is quasi-invariant for this action, and we get a representation of C∗(S1oθ

Z) as bounded operators on the Hilbert space H := L2(S1oθZ, νλ), where the Haar
system ν is given by counting measures on the fiber. The subalgebra C∞c (S1×θ Z)
comes equipped with two canonical derivations:

∂1f(x, n) := inf(x, n), ∂2f(x, n) := ∂f(x, n).

The operator

D :=
(

0 −i∂1 − ∂2

−i∂1 + ∂2 0

)
,

is an odd, unbounded operator on H ⊕ H , with compact resolvent. Moreover,
C∗(S1 oθ Z) acts on this graded Hilbert space by the diagonal representation.
The commutators [D, f ] are bounded, for f ∈ C∞c (S1 ×θ Z), which is dense in
C∗(S1 oθ Z). The above described structure is the canonical spectral triple on
C∗(S1 oθ Z). It is smooth in the sense of Connes.

The trivial cocycle c : S1 oθ Z → Z, given by projection on the first factor,
gives us an unbounded bimodule via theorem 2.3.2.2. As a C∗-module, this is just
`2(Z)⊗̃C(S1), and the operator Dc acts as en 7→ nen, where en are the canonical
basis vectors for `2(Z). The Levi-Civita connection

∇ : `2(Z)⊗̃C(S1)→ `2(Z)⊗̃Ω1(C(S1)),

satisfies [∇, Dc] = 0. Now consider the canonical spectral triple on the circle algebra
C(S1). This triple is odd and its operator is given by ordinary differentiation. The
C∗-module is smooth for the ordinary smooth structure on the circle. Moreover,
Dc satisfies

[Dc, C
∗(S1 oθ Z)i+1] ⊂ End∗Ci(S1)(`

2(Z)⊗̃Ci(S1)),

the transversality condition for correspondences.

Theorem 2.3.4.1. (`2(Z)⊗̃C(S1), Dc,∇) is a correspondence of the spectral
triples (C∗(S1 o Z),H ⊕ H , D) and (C(S1), L2(S1), i∂).

Proof. By the above discussion, (`2(Z)⊗̃C(S1), Dc,∇) is a smooth bimodule
with connnection. The product of these two odd cycles is given by(

0 Dc⊗̃1− i⊗̃∇i∂
Dc⊗̃1 + i⊗̃∇i∂ 0

)
,

cf.1.14. This exactly reduces to the operator D on H ⊕ H . �

In this way, we can regard the noncommutative torus as the quotient manifold
for the rotation action of Z on the circle.
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4. Crossed products

For any locally compact group Γ acting on a locally compact space X, one can
form the crossed product groupoid X o Γ, cf. example 2.1.1.2. A Haar system on
Xo Γ is obtained by setting νx = δx⊗λ, with δx the Dirac measures at x ∈ X and
λ a left Haar measure on Γ. If the group Γ is discrete, λ is counting measure, and
this groupoid is étale. In that case the algebra Cc(X o Γ) can be identified with
the algebraic tensor product C(X) ⊗ C[Γ] of C(X) by the complex group ring of
Γ. We will give explicit descriptions of the modular function of crossed products
by discrete groups, and canonical connections associated to equivariant maps.

4.1. The modular function. Suppose now that a Γ-quasi-invariant measure
µ on X, is given. Define a map

c′ : X o Γ→ R>0

(x, γ) 7→ dγµ

dµ
(xγ).

Lemma 2.4.1.1. Let Γ be a topological group acting on the space X, and µ a
Γ-quasi invariant measure on X. The modular function of the measured groupoid
X o Γ is

∆(x, γ) = ∆Γ(γ)
dγµ

dµ
(xγ).

Proof. We compute the relevant integral:∫
XoΓ

f(ξ−1)dνµ =
∫
X

∫
Γ

f(xγ, γ−1)dλ(γ)dµ(x)

=
∫

Γ

∫
X

f(x, γ−1)dγµ(x)dλ(γ)

=
∫

Γ

∫
X

f(x, γ)dγ−1µ(x)dλ−1(γ)

=
∫

Γ

∫
X

f(x, γ)
dγ−1µ

dµ
dµ(x)

dλ−1

dλ
dλ(γ)

=
∫
X

∫
Γ

f(x, γ)
dλ−1

dλ

dγ−1µ

dµ
dλ(γ)dµ(x)

=
∫
X

∫
Γ

f(ξ)
dλ−1

dλ

dγ−1µ

dµ
dλ(γ)dµ(x).

Therefore

∆(x, γ) =
dνµ

dν−µ
(x, γ) =

(
dλ−1

dλ
(γ)

dγ−1µ

dµ
(x)
)−1

= ∆Γ(γ)
dµ

dγ−1µ(x)
(x)

Then using that dµ
dγ−1µ(x) (x) = dγµ

dµ(x) (xγ) gives the desired expression �

In particalur we see that c′ is a homomorphism, which for unimodular groups,
and in particular for discrete groups, equals the modular fucntion of XoΓ. In gen-
eral the maps x 7→ dγ∗µ

dµ (x) are only measurable, but they still define a measurable
homomorphism X o Γ→ R.
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4.2. Equivariant maps. Let Γ and Γ′ be countable discrete groups and φ :
Γ→ Γ′ a proper homomorphism. Correspondingly, let X and X ′ be locally compact
spaces, acted upon by Γ and Γ′, respectively. A proper map ψ : X → X ′ is
called φ-equivariant if ψ(xγ) = ψ(x)φ(γ). If ψ is φ-equivariant, the pair (ψ, φ) will
be referred to as an equivariant pair. Such an equivariant pair induces a proper
groupoid homomorphism ψ o φ : X o Γ→ X ′ o Γ′, and hence a correspondence

Zψoφ := {((ψ(x), φ(γ)), x) : (x, γ) ∈ X o Γ}.

For fixed γ ∈ Γ, the subset

Z(γ) := {((y, γ), x) : ψ(x) = yγ} = Zψoφ ∩ Y × {γ} ×X ⊂ Zψoφ,

is open, closed and compact, since the crossed product groupoid Y o Γ′ is étale.
The function 1Z(γ) is equal to π∗1Y×{γ}, where π : Zψoφ → Y o Γ′ is projection on
the first factor. We denote by P the coset space φ(Γ)/Γ′ and set

Z [γ] :=
⋃
δ∈[γ]

Z(δ),

where [γ] ∈ P denotes the class of γ. Now we identify P with a subset of φ(Γ)/Γ′

by choosing a representative in each equivalence class. We choose e as the repre-
sentative of [e]. For δ ∈ Γ′, there is a map

ψ oδ φ : X × Γ→ Zψoφ

(x, γ) 7→ ((ψ(x)δ−1, δφ(γ)), xγ).

Note that for δ = e, this map is defined for any correspondence coming from a
groupoid homomorphism.

Lemma 2.4.2.1. The maps ψoδ φ are Cc(X o Γ)-module maps. Moreover, the
module Cc(Zφoψ) is a free right module over Cc(X o Γ), with basis

{π∗1Y×γ ∈ Cc(Zφoψ) : γ ∈ P}.

Proof. Recall the right module structure given by a correspondence (equation
2.2), and compute

(ψ oδ φ)∗(Ψ · g)(η) = Ψ · g(ψ oδ φ(η), d(η))

=
∫
XoΓ

Ψ(ψ oδ φ(η)ψ o φ(ξ), d(ξ))g(ξ−1)dνd(η)

=
∫
XoΓ

(ψ oδ φ)∗Ψ(ηξ)g(ξ−1)dνd(η)

=
∫
XoΓ

(ψ oδ φ)∗Ψ(ξ)g(ξ−1η)dνr(η)

= (ψ oδ φ)∗Ψ · g(η).

Next, we will prove that

Ψ =
1

| kerφ|
∑
γ∈P

π∗1Y×γ(ψ oγ ψ)∗Ψ,
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which is always a finite sum since Ψ has compact support. This proves the second
statement. We compute

π∗1Y×γ · (ψ o φ)∗Ψ(η, x) =
∫
XoΓ

π∗1Y×γ(ηψ o φ(ξ), d(ξ))(ψ o φ)∗Ψ(ξ−1)dνx

=
∫
XoΓ

π∗1Y×γ(ηψ o φ(ξ), d(ξ))Ψ(ψ o φ(ξ−1), r(ξ))dνx

= | kerφ|Ψ|Z[γ](η, x).

The last equality follows because π∗1Y×γ(ηψ o φ(ξ), d(ξ)) is nonzero only if

ηψ o φ(ξ) ∈ Y × γ,
whereas r(ξ) = x. This determines ξ up to a choice of elements γ ∈ φ−1(γ′), with
γ′ such that η = (x, γ′). There are exactly | kerφ| such γ, because ψ o φ(x, γ) =
(ψ(x), φ(γ)). �

Lemma 2.4.2.2. If φ is injective, the functions

{π∗1Y×γ ∈ Cc(Zφoψ) : γ ∈ P},
form an orthonormal set for the Cc(X o Γ)-valued inner product.

Proof. By equation 2.4,

〈π∗1Y×γ , π∗1Y×γ〉(χ) =
∫
YoΓ′

π∗1Y×γ(ξ−1z)π∗1Y×γ(ξ−1zχ)dνρ(z)ξ

=
∫
YoΓ′

1Y×γ(ξ−1η)1Y×γ(ξ−1η(ψ o φ)(χ))dνxξ

= 1X(χ).

Here we have written z = (η, x), and used the fact that for the penultimate ex-
pression to be nonzero ξ is completely determined by η, and that (ψ o φ)(χ) =
(ψ(x), φ(γ)) for χ = (x, γ). Injectivity of φ then yields the last equality. If γ and δ
are such that γ 6= δ ∈ P, then 〈π∗1Y×γ , π∗1Y×γ〉(χ) = 0 because ψoφ(χ) can only
move the Γ′-part of ξ−1η around in the same coset. �

Combining the preceding lemmas, we get and explicit formula for the Levi-
Civita connection associated to the basis of Cc(Zφoψ) coming from a choice of
representatives of elements of P.

Theorem 2.4.2.3. Let X,Y be compact spaces acted upon by discrete countable
groups Γ and Γ′, respectively. For an equivariant pair (ψ, φ), the map

∇ : Cc(Zψoφ)→ Cc(Zψoφ)⊗Cc(XoΓ) Ω1(Cc(X o Γ))

Φ 7→
∑
γ∈P

1
| kerφ|

π∗1Y×{γ} ⊗ d(ψ oγ φ)∗(Φ),

defines a universal connection

∇ : EZψoφ → EZψoφ⊗̃C∗(XoΓ)Ω1(C∗(X o Γ)).

Moreover, if φ is injective, i.e. | kerφ| = 1, then ∇ is Hermitian.

Proof. By lemma 2.4.2.1, the above expression is just the Levi-Civita connec-
tion associated to the basis from lemma 2.4.2.2. If φ is injective this same lemma
says the basis orthonormal, hence ∇ is Hermitian. �
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5. Semidirect products

We now discuss some generalities concerning semidirect product groupoids.
These arise when one deals with a single, not necessarily invertible endomorphism of
a topological space. Our examples are related to symbolic dynamics and topological
Markov shifts. The C∗-algebras associated to groupoids of topological Markov shifts
are the Cuntz-Krieger algebras and their generalizations. We show that an arbitrary
map admitting a Markov partition can be covered by a topological Markov shift,
and that this yields a correspondence of semidirect product groupoids.

5.1. Markov maps. In this section we recall the basic properties of Markov
maps. This theory works most nicely in the case of a totally disconnected space.
To get a fruitful theory for arbitrary spaces, it is convenient to consider partial
endomorphisms. These are maps defined on an open subset U ⊂ X into X.

Definition 2.5.1.1 ([9]). Let X be a compact Hausdorff space, and σ : U → X
a continuous partial endomorphism. A finite partition P = {Ui} of U into open
subsets Ui is called a Markov partition with respect to σ if σ|Ui is a homeomorphism
onto its image and

Ui ∩ Uj = ∅,
⋃
i

Ui = U, Ui ∩ σ(Uj) 6= ∅ ⇒ Ui ⊂ σ(Uj).

A partial endomorphism σ for which a Markov partition exists is called a Markov
map.

As mentioned before, topological Markov shifts are the easiest and most fre-
quently ocurring examples of Markov maps.

Example 2.5.1.2 (Shifts and subshifts). Let A = {a0, a1, . . . , an} be a finite
set of symbols, equipped with the discrete topology. Let

SA := AN =
∞∏
i=0

A,

the set of infinite words in the alphabet A, with the product topology. It can be
metrized by

d((xi), (yi)) := e−min{i:xi 6=yi}.

The map
σA : SA → SA

(x0x1 . . . ) 7→ (x1x2 . . . )

is continuous and Markov for the partition given by the alphabet. The pair (SA, σA)
is called the full A-shift. A closed σA invariant subset W is called a subshift. It is
called a subshift of finite type if there exists n ∈ N and a subset w ⊂ An such that

W = {(x0x1 . . . ) ∈ SA : ∀i ∈ N, (xi . . . xi+n) ∈ w}.

Proposition 2.5.1.3 ([16], 2.5.4). Let W a subshift of finite type. Then W is
isomorphic to a subshift of finite type such that w ⊂ A2.

Here, by isomorphism we mean the existence of an equivariant homeomorphism.
Thus, the subset w can be defined by a n+1×n+1-matrix A with entries in {0, 1}.
Conversely, this matrix completely determines the subshift, which we will therefore
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denote by SA. For a Markov map σ : U → X, with partition P = {Ui}ni=0 one can
consider the refinements

Pn := {
n⋂
j=0

σ−j(Uij )}.

Lemma 2.5.1.4. For all k ≤ n, Pn is a Markov partition for σk.

Proof. Let Uk denote the domain of σk. Then we have

Uk = σ−1(Uk−1).

Since
⋃

P = U , it follows that
⋃

P1 = U1 and inductively that
⋃

Pn = Un. To
see that each Pn is Markov with respect to σk, k ≤ n, denote

Ui0...in =
n⋂
j=0

σ−j(Uij ).

We have σ(Ui0...in) ⊂ Ui1...in . To see this, assume Ui0...in 6= ∅ (otherwise the
statement is vacuous). Then,

σ(
n⋂
j=0

σ−j(Uij )) = σ(Ui0) ∩ Ui1 ∩ σ−1(Ui2) ∩ · · · ∩ σ−n+1(Uin),

because σ is injective on Ui0 . Hence σ(Ui0) ∩ Ui1 6= ∅ so Ui1 ⊂ σ(Ui0) and

σ(Ui0) ∩ Ui1 ∩ σ−1(Ui2) ∩ · · · ∩ σ−n+1(Uin) = Ui1 ∩ σ−1(Ui2) ∩ · · · ∩ σ−n+1(Uin).

Using this, it follows by induction that if Ui0...in ∩Uj0...jn 6= ∅ then ik = jk for k =
0, . . . , n. Also by induction, for k ≤ n, one gets σk(Ui0...in) = Uik...in . Moreover, if

σk(Ui0...in) ∩ Uj0...jn 6= ∅,
then

Uik...in ∩ Uj0...jn 6= ∅,
and j0 = ik, . . . , in = jn−k, i.e. Uj0...jn ⊂ Uik...in = σk(Ui0...in) �

Definition 2.5.1.5. Let σ : U → X be a Markov map such that U = X. A
Markov partition {Ui} is called a topological generator if σk has dense domain for
all k, and

lim
n→∞

sup
V ∈Pn

diam (V ) = 0

Markov generators allow for a special type of equivariant coverings. The fol-
lowing theorem was proved in [1] for Markov automorphisms. We generalize it to
arbitrary partial endomorphisms.

Theorem 2.5.1.6. Let X be a compact metric space and σ : U → X a Markov
map, with partition P = {Ui}mi=0. σ determines a subshift SA of the full m+1-shift,
with the matrix A determined by P. Moreover, if P is a topological generator, there
is a σ-equivariant map π : SA → X.

Proof. Define A = (aij) by

aij = 1⇔ Ui ∩ σ(Uj) 6= ∅, aij = 0⇔ Ui ∩ σ(Uj) = ∅.
Then we can identify

W := {(i0i1 . . . ) : ∀n ∈ N,
n⋂
j=0

σ−j(Uij ) 6= ∅},
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with SA. To show that W is shift invariant, we must show that for all n
n⋂
j=0

σ−j(Uij ) 6= ∅ ⇒
n−1⋂
j=0

σ−j(Uij+1) 6= ∅.

This follows from the proof of lemma 2.5.1.4. In case P is a topological generator,
we have

∞⋂
n

n⋂
j=0

σ−j(Uij ) 6= ∅ ⇒
∞⋂
n

n⋂
j=0

σ−j(Uij ) = {p}

for some unique p ∈ X, since diam
⋂∞
j σ−j(Aij ) = 0, and the intersection is over

a nested sequence of compact sets. This defines a map π : W → X, which is
equivariant by construction. It is continuous because for ε > 0 there exists n ∈ N
such that diam(V ) < ε for all V ∈Pn. If x, y ∈W are such that d(x, y) < e−n−1,
then we have xi = yi for i = 0, ..., n and hence

π(x), π(y) ∈
n⋂
j=0

σ−i(Uij ),

whence d(π(x), π(y)) < ε. �

For infinite Markov partitions, the situation is considerably more complicated.
We do expect however, that a result similar to the above can be obtained.

5.2. Generalized Cuntz-Krieger algebras. In [47], Renault discusses trans-
formation groupoids associated to continuous partial endomorphisms. The C∗-
algebras of the groupoids coming from subshifts of finite type are the classical
Cuntz-Krieger algebras.

Definition 2.5.2.1 ([47]). Let σ : U → X be a continuous partial endomor-
phism. The semidirect product groupoid of X by σ is defined as

X o σ := {(x, n, y) ∈ X × Z×X : ∃k, l ∈ N σk(x) = σl(y), k − l = n},

r(x, n, y) = x, d(x, n, y) = y

and composition law
(x, n, y)(y, k, z) = (x, n+ k, z).

Note that the unit space of X o σ can be identified with X. This groupoid is
étale, for the topology defined by the basis of open sets

(U,m, V, n) := {(x,m− n, y) : (x, y) ∈ U × V, σm(x) = σn(y)},

where U and V are open subsets of the domain on which σm, respectively σn are
injective. It comes equipped with a continuous homomorphism

c : X o σ → Z ⊂ R
(x, n, y) 7→ n.

This homomorhism is known as the fundamental cocycle of X o σ.

Proposition 2.5.2.2 ([47]). The groupoid X o σ is amenable, and the C∗-
algebra C∗(X o σ) is nuclear.
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Example 2.5.2.3 (Cuntz-Krieger algebras). W ⊂ AN be a subshift of finite
type of the full m+1-shift. W is given by a (m+1)× (m+1) matrix A with entries
in {0, 1}. The C∗-algebra C∗(Woσ) is canonically isomorphic to the Cuntz-Krieger
algebra OA, [19]. Recall that OA is the universal C∗-algebra generated by partial
isometries Si, i = 0, ...,m, satisfying the relations

PiPj = 0, Qi =
m∑
j=0

A(i, j)Pj ,

where Pi = SiS
∗
i and Qi = S∗i Si.

In case of an arbitrary partial endomorphism σ : U → X that admits a Markov
generator, theorem 2.5.1.6 gives us an equivariant map π : SA → X. Here A
is the matrix given by the Markov partition. π defines a proper homomorphism
SA o σA → X o σ of étale groupoids. This map fits into a commutative diagram
of groupoids

SA o σA
π- X o σ

Z

cA

?
= Z.

c

?

Here we denote by cA and c the fundamental cocycles the respective groupoids. In
particular, π maps ker cA to ker c. Denote by Zπ the SAoσA-Xoσ correspondence
induced by π and by Zc the ker c-ker cA induced by the restriction π : ker cA → ker c.

Proposition 2.5.2.4. The X o σ-HcA bibundles Zπ and X o σ ∗Hc Zc are
isomorphic.

Proof. Recall that

Zπ = {((x, n, y), y′) ∈ X o σ × SA : y = π(y′)},

and that
X o σ ∗Hc Zc = X o σ ∗X Zc/Hc.

Thus an element of X o σ ∗Hc Zc is represented by a pair ((x, n, y), ((y, 0, z), z′))
with π(z′) = z, modulo equivalence by the action of ker c on both factors. Using
this it is straightforward to check that the map

Zπ → X o σ ∗Hc Zc
((x, n, y), y′) 7→ ((x, n, y), ((y, 0, y), y′))

is an equivariant bijection. In fact, its inverse is given by

((x, n, y), ((y, 0, z), z′)) 7→ ((x, n, z), z′).

�

Corollary 2.5.2.5. Let

C∗(X o σ)→ (E , Dc) � C∗(Hc)

and
OA → (EA, DA) � C∗(HcA),
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be the unbounded bimodules associated to the cocycles c and cA, cf. theorem 2.3.2.2.
The bimodules EZπ and EZc satisfy

E⊗̃C∗(Hc)EZc ∼−→ EZπ ⊗̃OAEA,

where the isomorphism is induced by the isomorphism of correspondences above.

Proof. This follows directly from theorem 2.2.4.1. �

In order to make the above pair of bimodules into a correspondence of KK-
cycles, we need to equip EZπ with a connection.In order to find an explicit con-
nection, some further information on the structure of EZπ as a module over OA is
required. This is work in progress.





CHAPTER 3

Limit sets

Fundamental groups of Riemann surfaces or higher dimensional hyperbolic
manifolds, those of Mumford curves, the modular group SL(2,Z) and its finite
index subgroups, free groups and automorphism groups of trees are all examples
of a discrete countable group Γ acting on a space which is hyperbolic in the sense
of Gromov. The limit set ΛΓ ⊂ ∂H, on which Γ acts with dense orbits, has some
remarkable properties. In important cases, such as that of modular curves, it recov-
ers topological information of the curve H2/Γ. This can be viewed as a holography
principle cf.([40],[41]). In [14] and [17], spectral triples for such boundary actions
were constructed, in the case of Kleinian and p-adic Schottky groups. These con-
structions depend heavily on the fact that the groups under consideration are free.
They employ the Patterson-Sullivan measure on the limit set, and the orbit equiv-
alence of the boundary action of the free group with the full one-sided shift. In this
chapter we pursue these ideas further, allowing for more general groups, in particu-
lar all the examples mentioned above. The Patterson-Sullivan measure remains the
vital ingredient to obtain a noncommutative geometry for these limit sets, but the
construction given does not yield spectral triples, but unbounded bimodules. They
come from the cocycle construction described in theorem 2.3.2.2. In all cases of in-
terest, the kernel groupoid is unimodular, and hence the bimodule defines an index
map, as in 2.3.3.7. The ultimate goal is to show that orbit equivalences, inclusions
of groups (coverings of curves), and the equivariant map from the tree of SL(2,Z)
to P1(R) all give rise to correspondences of KK-cycles, relating the different index
maps. Most of the material discussed in this chapter is work in progress at the
moment this thesis is written.

1. Limit sets and Patterson-Sullivan measures

There is, in general, no preferred way to compactify a topological space. If
the only purpose is to obtain a compact space H that contains a given space H
as a dense subset, one might choose the one point compactification. This is the
simplest choice possible, but not always the best. The largest reasonable compact
space containing H as a dense subset is the Stone-C̆ech compactification Ȟ. From
the operator algebraic point of view, these two spaces correspond to the unitization
and the multiplier algebra of C0(H), respectively. We will be interested in spaces
H that are hyperbolic in the sense of Gromov. These spaces admit a natural
compactification, intermediate with respect to the extreme cases mentioned above.
Much of the geometry of H is reflected in properties of the Gromov boundary ∂H.
In the presence of the action of a discrete countable group Γ, ∂H decomposes into
two parts, according to the behaviour of the action of Γ.

71
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1.1. Hyperbolic spaces. We review some general definitions and results con-
cerning Gromov hyperbolic spaces. The reason to present this general discussion is
that it includes all the examples of interest to us at once. Recall that a metric space
(H, d) is said to be geodesic if for any two points x, y ∈ H there exists a continuous
path of length d(x, y) from x to y. We will assume all metric spaces to be geodesic.

Definition 3.1.1.1. Let (H, d) be a metric space, and p ∈ H a fixed basepoint.
The Gromov product on H (with respect to p) is the map

H ×H → R

(x, y) 7→ x �p y :=
1
2

(d(x, p) + d(y, p)− d(x, y)).

Let δ > 0. H is said to be δ-hyperbolic if

∀z ∈ H x �p y ≥ min{x �p z, y �p z)} − δ.

H is called hyperbolic if it is δ-hyperbolic for some δ > 0. Furthermore a hyerbolic
metric space H is called proper if all closed balls

Bε(x0) := {x ∈ H : d(x0, x) ≤ ε}

are compact.

Examples of hyperbolic metric spaces are the Poincaré half spaces Hn (or any
equivalent Riemannian manifold), and trees. The latter have hyperbolicity constant
δ = 0. There is a natural way to compactify proper hyperbolic spaces. A sequence
(xn)n∈N in H is said to converge to infinity if

lim inf
i,j
xi �p xj =∞.

Although the Gromov product does depend on the basepoint p, the notion of con-
vergence to infinity does not. Let H∞ be the set of sequences converging to infinity.
We can define an equivalence relation on this set by

(xn) ∼ (yn)⇔ lim inf
i,j
xi �p yj =∞.

Definition 3.1.1.2. Let H be a proper hyperbolic metric space. Define the
boundary of H as

∂H := H∞/ ∼,
the quotient of H∞ by the above equivalence relation.

We denote elements of the boundary by [(xn)], where (xn) is some representa-
tive sequence. The boundary ∂H carries a natural topology, a basis of open sets
for which is given by

U(x, r) := {y ∈ ∂H : ∃(xn), (yn), [(xn)] = x, [(yn)] = y, lim inf
i,j
xi �p yj ≥ r > 0}.

On H ∪ ∂H we can define a topology by extending the topology of H by the basis

V (x, r) := U(x, r) ∪ {y ∈ H : ∃(xn), [(xn)] = x, lim inf
i
xi �p y ≥ r > 0},

for x ∈ ∂H.

Proposition 3.1.1.3. Let H be a hyperbolic metric space. The spaces ∂H and
H := H ∪ ∂H are compact in the above topologies.
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Although the metric on H does not extend to the Gromov compactification H,
it is a metrizable space.

Theorem 3.1.1.4 ([24]). Let (H, d) be a proper hyperbolic geodesic metric
space. There exists a real number a0 > 1 such that for every a ∈ [1, a0] the boundary
∂H admits a metric da with the following property. Let r : R → H be a geodesic
connecting two distinct points x, y ∈ ∂H, then there exists C ∈ R such that

C−1a−d(p,r) ≤ da(x, y) ≤ Ca−d(p,r),

where d(p, r) = inf{d(p, r(t)) : t ∈ R}.
A metric da with the above property is called a visual metric with parameter

a. From now on we’ll fix a and a visual metric da.

1.2. Quasiconformal measures. Let Γ denote a discrete countable group of
isometries of some Gromov hyperbolic space H. The action of Γ on H, which we
assume to be properly discontinuous, extends to an action on the boundary ∂H,
by setting

[(xn)]γ := [(xnγ)].
Isometries of H can be classified according to their behaviour as homeomorphisms
of ∂H. Isometries are named accordingly.

Proposition 3.1.2.1 (Classification of isometries [24]). Let γ be an isometry
of a hyperbolic space H. Then exactly one of the following occurs:

(1) For all p ∈ H, the set {pγn : n ∈ Z} is bounded in H. γ is said to be
elliptic.

(2) The homeomorphism γ : ∂H → ∂H has exactly two fixed points. γ is said
to be loxodromic.

(3) The homeomorphism γ : ∂H → ∂H has exactly one fixed point. γ is said
to be parabolic.

Example 3.1.2.2 (Kleinian and Fuchsian groups). Recall that a Kleinian group
is a discrete subgroup of the group of orientation preserving isometries of hyperbolic
n-space Hn. If n = 3, the full isometry group of H3 is isomorphic to PGL2(C). A
Fuchsian group is a Kleinian group of isometries of H3 that is conjugate to a sub-
group of PGL2(R). These were the type of groups for which the subsequent theory
was first considered [50],[51]. The elliptic, loxodromic and parabolic elements of
proposition 3.1.2.1 coincide with the classical notions in this case.

Example 3.1.2.3 (Hyperbolic groups). A discrete group Γ is said to be word-
hyperbolic if its Cayley graph is Gromov-hyperbolic for the word metric.

Definition 3.1.2.4. Let Γ be a discrete properly discontinuous group of isome-
tries of a Gromov hyperbolic space H, with basepoint p. The limit set ΛΓ ⊂ ∂H is
the set of accumulation points of pΓ. That is

ΛΓ := pΓ \H ⊂ ∂H.
Γ is said to be non-elementary if ΛΓ contains more than two points, and elementary
otherwise.

This definition is independent of the choice of basepoint p. The complement of
the limit set in ∂H is sometimes referred to as the domain of discontinuity of Γ. It
is denoted by ΩΓ := ∂H \ ΛΓ. This name is justified by the following theorem of
Gromov.
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Theorem 3.1.2.5 ([24]). ΛΓ is the unique minimal domain for the action of Γ
in ∂H. That is, any closed Γ-invariant subset of ∂H contains ΛΓ.

In particular, Γ has dense orbits in ΛΓ. The limit set admits a natural measure
with very specific properties. The construction of these measures was first developed
by Patterson, for Fuchsian groups, and later extended by Sullivan to arbitrary
Kleinian groups. Coornaert then extended their construction to the case of a general
Gromov hyperbolic space.

Definition 3.1.2.6. Let x ∈ ∂H and rx : [0,∞] → H a geodesic ray such
that r(∞) = x. The Busemann horofunction hx : H → R associated to rx is the
function

hx(p) := lim
t→∞

d(p, rx(t))− t.

The Busemann functions are continuous and satisfy

|hx(p1)− hx(p2)| ≤ d(p1, p2).

In what follows we will be interested in the functions

hγ(x) = hx(p)− hx(pγ),

viewed as functions of x. From the above inequality, we get an upper bound
|hγ(x)| ≤ d(p, pγ). We use them to define

jγ : ∂H → R

x 7→ ahx(p)−hx(pγ),

where a is the visual parameter. Given a Borel measure µ on ∂H, we define
γ∗µ(A) := µ(Aγ−1).

Definition 3.1.2.7. A Borel measure µ on ∂H is called quasiconformal of
dimension N , N ∈ R, if the measures γ∗µ are absolutely continuous with respect
to one another and there exists a constant C ≥ 1 such that the Radon-Nikodym-
derivatives dγ∗µ

dµ satisfy

(3.1) C−1jNγ ≤
dγ∗µ

dµ
≤ CjNγ mod µ.

The Poincare series of the group Γ is the series

gs(x, y) :=
∑
γ∈Γ

a−sd(x,yγ),

and the critical exponent δa(Γ) is the real number such that gs converges for s >
δa(Γ) and diverges for s < δa(Γ). Coornaert [15] proved the following:

Theorem 3.1.2.8. Suppose δa(Γ) < ∞. For each p ∈ H, there exists a Γ-
quasiconformal measure µp of dimension δa(Γ) on ∂H whose support is the limit
set ΛΓ.

The measure µp is referred to as the Patterson-Sullivan measure based at p.
Note that the dependence on the basepoint p actually gives us a field of measures,
parametrized by H/Γ, as two points in the same orbit give the same measure.
Sullivan calls this a conformal density. We will see in due course that, for ordinary
hyperbolic space H = Hn, this density can be interpreted as a generalized KMS-
state on a continuous field of C∗-algebras over H/Γ. In the sequel we will always
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assume our groups to be of finite critical exponent, guaranteeing the existence of a
Patterson-Sullivan meausre.

1.3. Quasi-convex-cocompact groups. General discrete group actions on
Gromov hyperbolic space can be quite wicked. We now describe a class of actions,
for which the Patterson Sullivan meausure is quite well-behaved. We denote by
Q(ΛΓ) ⊂ H the Gromov envelope of the limit set ΛΓ. It is defined as

Q(ΛΓ) :=
⋃
{g(R) : g : R→ H, a geodesic for which g(∞), g(−∞) ∈ ΛΓ},

that is, the union of all geodesics in H with endpoints in ΛΓ. Its closure is sometimes
referred to as the convex core of the limit set.Q(ΛΓ) ⊂ H is closed and Γ-invariant.

Definition 3.1.3.1. The group Γ is said to be quasi-convex-cocompact if the
quotient space Q(ΛΓ)/Γ is compact.

In the theory of Kleinian groups, the above property is usually referred to as
convex-cocompactness. Recall that a Kleinian group is said to be of the first kind
if ΛΓ = Sn−1. Such groups are cofinite, ie. the manifold M := Hn/Γ has finite
volume. For Kleinian groups of the second kind (that is, those that are not of the
first kind), convex cocompactness and cofiniteness are not he same concepts. Now
let X be a metric space, δ ≥ 0 a real number. Recall that the expression

µδH(S) := inf{
∞∑
i=0

diam (Ui)δ : S ⊂
∞⋂
i=0

Ui},

defines a Borel measure on X, called the δ-dimensional Hausdorff measure. It can
be shown that if 0 < µδH(S) <∞ for some δ, then this δ is unique.

Definition 3.1.3.2. Let X be a metric space. The Hausdorff dimension of X
is the extended real number

inf{δ : µδH(X) = 0}.

For quasiconvex-cocompact groups, the Patterson-Sullivan and Hausdorff mea-
sures are closely related.

Theorem 3.1.3.3 ([15]). Let Γ be a quasiconvex-cocompact group and µ a
quasi-conformal measure of dimension δ on ΛΓ. There exists a constant C ≥ 1
such that for all S ⊂ ΛΓ

C−1µδH(S) ≤ µ(S) ≤ CµδH(S).

In particular, δ(Γ)-dimensional Hausdorff measure on ΛΓ is nonzero and the Haus-
dorff dimension of ΛΓ is δ(Γ).

2. Hyperbolic manifolds

Kleinian groups (example 3.1.2.2) occur as fundamental groups of hyperbolic
manifolds. Their importance in this field stems from the Mostow rigidity theorem.
This deep theorem losely reads as saying that two finite volume hyperbolic n-
manifolds are isometric if and only if their fundamental groups are isomorphic.
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2.1. A continuous field of C∗-algebras. A Kleinian group Γ uniformizes
a an n-dimensional hyperbolic manifold M := Hn/Γ. Recall that a fundamental
domain for the action Γ is an open connected subset D ⊂ Hn with the following
two properties:

•
⋃
γ∈ΓDγ = Hn,

• ∀γ ∈ Γ : Dγ ∩D ⊂ ∂D.
It is well known that a fundamental domain always exists, and it may or may not
have vertices on the boundary ∂Hn = Sn−1. Boundary vertices of a fundamental
domain for Γ are called cusps of Γ. They correspond to the parabolic ends of the
quotient manifold M , sometimes also referred to as cusps. If Γ has cusps, then M
cannot possibly be compact, but can still have finite volume. We will review some
constructions of Lott [39], relating the boundary operator algebra C∗(ΛoΓ) to the
quotient manifold M .

Lemma 3.2.1.1 ([39]). The groupoid Λ o Γ is amenable, and the C∗-algebra
C∗(Λ o Γ) = C∗r (Λ o Γ) is nuclear, simple and purely infinite.

It is convenient to choose the visual parameter equal to e. The Patterson-
Sullivan measure µp is conformal (i.e. one may take C = 1 in 3.1), continuous and
the Radon-Nikodym cocycle

c : Λ o Γ→ R

(x, γ) 7→ ln
dγµp
dµp

(xγ),

can be expressed as

(x, γ) 7→ δΓ( lim
n→∞

d(pγ, pn)− d(p, pn)) = δΓhγ(x),

where pn is a sequence in Hn converging to x ∈ ∂Hn. In the sequel we will assume
these cocycles to be closed. This is definitely the case if the limit set is all of Sn−1

and we expect it to be true for arbitrary limit sets. The measures µp and µp′ , for
different basepoints p, p′ ∈ Hn, are related by

dµp
dµp′

(x) = lim
n→∞

d(p, pn)− d(p′, pn).

All this follows from the material in [50]. In [39], the Busemann cocycle

(3.2) b : (x, γ) 7→ hγ(x),

is used to explicitly construct a one parameter group of automorphisms and a KMS
δΓ-state on C∗(Λ o Γ). This is in fact a special case of the constructions discussed
in section 3.3. We denote the KMS-state associated with the measure µp by τp.
Lott then proceeds to construct a continuous field of C∗-algebras over M , with fiber
C∗(ΛoΓ). We here give a description of this field that looks slightly different from
the one in [39], but is essentially the same. Let

(3.3) A := {f : Hn × G → C : ∀m ∈ Hnf(m, ·) ∈ Cc(G)},

where we require the functions f to be continuous. A becomes an algebra in the
pointwise convolution product

f ∗ g(m, η) :=
∫
G
f(m, ξ)g(m, ξ−1η)dνrηξ.
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The crossed product groupoid G = Λ o Γ carries an action of Γ:

(x, γ)δ := (xδ, δ−1γδ),

and hence the set Hn × Λ o Γ and the algebra A do so too.

Lemma 3.2.1.2 ([39]). The expressions

(3.4) UtF (m,x, γ) := eithγ(x)F (m,x, γ)

(3.5) τ(F )(m) := τmF (m),

define a one parameter group of automorphisms of A , and a C(Hn)-valued func-
tional on A , both of which are Γ-equivariant.

The subalgebras Ab and A0, of functions that are bounded, respectively vanish
at infinity on Hn carry a natural norm:

‖f‖ := sup
m∈Hn

‖f(m, ·)‖,

where the norm on the righthand side is the C∗-norm on Cc(ΛoΓ). The completion
of A0 in this norm is the C∗-algebra of C0-sections of the trivial field of C∗-algebras
over Hn with fiber C∗(Λ o Γ). The subspace of invariant functions A Γ ⊂ A gives
rise to a continuous field of C∗-algebras over M , with fiber C∗(Λ o Γ). We denote
its C∗-algebra of C0-sections by C∗M (Λ o Γ), and the ∗-algebra of all sections by
A∗M (Λ o Γ). The center of A∗M (Λ o Γ) is C(M). By lemma 3.2.1.2, we get a
one parameter group of automorphisms Ut and a C(M)-valued functional τ of
A∗M (Λ o Γ). Moreover, τ has the KMS-δΓ- property with respect ot Ut.

Proposition 3.2.1.3 ([39]). (1) If Γ is convex cocompact then δΓ is the
unique β for which A∗M (Λ o Γ) has a KMS-β-state.

(2) If Γ is not convex cocompact then for each β ∈ [δΓ,∞), A∗M (Λ o Γ) has a
KMS-β-state.

(3) If Γ is not convex cocompact and has no parabolic elements, then the set
of β’s for which A∗M (Λ o Γ) has a KMS-β-state is [δΓ,∞).

The spectral geometry ofM is related toA∗M (ΛoΓ) as expressed in the following
proposition. In the convex cocompact case, all of the above structure restricts to
C∗M (Λ o Γ).

Proposition 3.2.1.4 ([39]). τ(1) is a positive eigenfunction of the Laplacian
∆M on M , with eigenvalue δΓ(n − 1 − δΓ). If Γ is convex-cocompact, then τ(1) ∈
C0(M). In this case τ restricts to a functional C∗M (ΛoΓ)→ C0(M), for which the
KMS-property holds.

2.2. A KKM -cycle. In this section we globalize the cocycle construction
2.3.2.2 by incorporating the variation of the basepoint p ∈ Hn into the construction.
We assume Γ is convex cocompact, such that proposition 3.2.1.4 is valid. Define

c : Hn × Λ o Γ→ C

(p, x, γ) 7→ dγµp
δΓdµp

(xγ),

which is a Γ-invariant function. The algebra A0 (3.3) carries a derivation

D : A0 → A0,
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defined by DF (m,x, γ) := c(m,x, γ)F (m,x, γ). This is the generator of the one
parameter group from proposition 3.2.1.4. Define

B0 := {f ∈ A0 : f(p, ·) ∈ Cc(Hp)},

where Hp denotes the kernel of the Radon-Nikodym cocycle associated to µp. One
straightforwardly checks that the action Γ on A0 restricts to an action on B0, and
hence BΓ

0 ⊂ A Γ
0 . Note that the groupoids Hp and Hpδ are isomorphic via

Hp → Hpδ
(x, γ) 7→ (xδ, δ−1γδ).

This gives rise to a C∗-subalgebra of C∗M (ΛoΓ) corresponding to a continuous field
of C∗-algebras over M with fiber C∗(Hm). Denote its C∗-algebra of C0-sections by
C∗M (µ), and the *-algebra of all sections by A∗M (µ)..The algebra A Γ

0 ⊂ C∗M (Λ o Γ)
carries a BΓ

0 -valued inner product:

〈Ψ,Φ〉(p, χ) :=
∫

ΛoΓ

Ψ(p, ξ−1)Φ(p, ξ−1χ)dνr(χ)ξ,

where χ ∈ Hp. Denote the completion of A Γ
0 in this inner product by EM . The

operator D : A Γ
0 → A Γ

0 is BΓ
0 linear and symmetric for this inner product.

Theorem 3.2.2.1. D extends to a selfadjoint regular operator with compact
resolvent in EM and as such defines an odd unbounded KKM -cycle for the pair
(C∗M (Λ o Γ), C∗M (µ)).

Proof. Selfadjointness and regularity follow in the same way as for cocycles.
The compact resolvent property follows from the fact that it holds fiberwise, which
is sufficient by lemma 2.1.3.3. �

The restriction of the functional τ : A∗M (Λ o Γ)→ C0(M) to A∗M (µ) is tracial,
i.e. τ(f ∗g) = τ(g∗f), because it is defined by fiberwise integration and the fibers of
the field defined by C∗M (µ) are the C∗-algebras of unimodular groupoids. Moreover,
an element of KKM

0 (C0(M), C∗M (µ)) defines a formal difference of projections in
Mn(A∗M (µ)). This is done by setting

Ind(F )(m) := IndFm,

that is, taking the fiberwise index of a KKM
0 -cycle (E , F ). To a projection e in

Mn(A∗M (µ)) we can apply τ :

τ∗(e) := τ(
n∑
i=1

eii),

which gives a well defined map τ∗ : KKM
0 (C0(M), C∗M (µ)) → C(M) because τ is

tracial. In the sequel em : C0(M) → C denotes the homomorphism f 7→ f(m),
which is dual to the inclusion m ↪→M .

Theorem 3.2.2.2. The operator D and the functional τ induce an index map

Indµ : KKM
1 (C0(M), C∗M (Λ o Γ))→ C(M).
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This map is compatible with the maps Indµp : K1(C∗(ΛoΓ))→ C in the sense that
the diagram

KKM
1 (C0(M), C∗M (Λ o Γ))

Indµ- C(M)

K1(C∗(Λ o Γ))

em

? Indµm- C,

em

?

commutes.

Proof. Recall the definition of the restriction homomorphism

em : KKM
1 (C0(M), C∗M (Λ o Γ))→ K1(C∗(Λ o Γ)

(E , F ) 7→ (E⊗̃C∗M (ΛoΓ)C
∗(Λ o Γ), F ⊗̃1),

where we tensor over the fiber map C∗M (Λ o Γ)→ C∗(Λ o Γ). By LeGall’s theorem
2.1.3.7, these restriction maps are compatible with the Kasparov product. That is,
the diagram

KKM
1 (C0(M), C∗M (Λ o Γ))

⊗D- KKM
0 (C0(M), C∗M (µ))

K1(C∗(Λ o Γ))

em

? ⊗Dm - K0(C∗(µm)),

em

?

commutes. Here Dm and C∗(µm) are to be understood as Dp and C∗(µp) where
p ∈ Hn is any point in the fiber over m ∈M . Furthermore, the diagram

KKM
0 (C0(M), C∗M (µ))

τ∗- C(M)

K0(C∗(µm))

em

? τm - C,

em

?

commutes by the very definition of τ . �

Although there is no solid evidence for this as of yet, we expect the image of
the global index map to be related to automorphic forms on M . This will be the
subject of further research.

2.3. Coverings. An inclusion of groups Γ ⊂ Γ′ gives rise to an inclusion of
limit sets ΛΓ ⊂ ΛΓ′ , since the orbits of Λ are a subset of the orbits of Γ′. We also
get a possibly ramified covering Hn/Γ→ Hn/Γ′. In this section we assume that Γ is
a finite index subgroup of Γ′. We believe it will be possible to obtain results similar
to those discussed here for arbitrary inclusions, using the same ideas as employed
here. Theorem 2.3.2.2, applied to the Busemann cocycles b and b′ (3.2) gives us
two odd unbounded bimodules

(3.6) C∗(Λ o Γ)→ (E , D) � C∗(µ),
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and

(3.7) C∗(Λ′ o Γ′)→ (E ′, D′) � C∗(µ′).

Here C∗(µ) denotes the groupoid C∗-algebra of the kernel of the Busemann cocy-
cle, which equals the kernel of the Radon-Nikodym cocycle associated to µ. The
inclusion of groups Γ ⊂ Γ′ gives rise to an inclusion of groupoids Λ o Γ ⊂ Λ′ o Γ′.
This map is obviously proper and gives a groupoid correpondence

Λ′ o Γ′ → Z � Λ o Γ.

Lemma 3.2.3.1. Let Γ ⊂ Γ′ be an inclusion of groups, and b and b′ the associated
Busemann cocycles. The inclusion of groupoids Λ o Γ ⊂ Λ′ o Γ′ restricts to an
inclusion ker b ⊂ ker b′.

Proof. This is immediate from the definition of b and b′:

b(x, γ) = lim
n→∞

d(p, pn)− d(pγ, pn),

with pn a sequence converging to x ∈ Λ. Clearly we can choose the same sequence
for x ∈ Λ ⊂ Λ′ in the definition of b, so b(x, γ) = 0 implies b′(x, γ) = 0. �

Consequently, there is a groupoid correspondence

ker b′ → Zb,b′ � ker b.

Lemma 3.2.3.2. The correspondences Z and Λ′o Γ′ ∗ker b′ Zb,b′ are isomorphic.

Proof. Define a map Λ′ o Γ′ ∗ker b′ Zb,b′ → Z by

((x′, γ′), ((x′γ′, δ′), x)) 7→ ((x′, γ′δ′), x).

Its inverse is given by ((x′, γ′), x) 7→ ((x′, γ′), (x′γ′, e), x). �

Hence, by theorem 2.2.4.1, the associated bimodules

(3.8) C∗(Λ′ o Γ′)→ EZ � C∗(Λ o Γ),

and

(3.9) C∗(µ′)→ EZb,b′ � C∗(µ),

satisfy
EZ⊗̃C∗(ΛoΓ)E ∼= E ′⊗̃C∗(µ)EZb,b′ .

Moreover, from lemma 2.4.2.1 and 2.4.2.2 and theorem 2.4.2.3, we know that EZ

is a finitely generated free module with Hermitian connection

∇ : Cc(Z)→ Cc(Z)⊗Cc(ΛoΓ) Ω1(Cc(Λ o Γ))

Φ 7→
∑
γ∈P

π∗1Λ′×{γ} ⊗ d(iγ)∗(Φ).

Here P denotes the coset space Γ′/Γ, which we have identified with a choice of
representatives in Γ′. The maps i∗γ : Cc(Z)→ Cc(Λ o Γ) are induced by

iγ((x′, δ), x) := ((x′γ−1, γδ), xδ).

Theorem 3.2.3.3. The pair ((EZ ,∇),EZb,b′ ) defines a weak correspondence of
the KK-cycles 3.6 and 3.7.
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Proof. The respective tensor products 3.8 and 3.9 are isomorphic, hence it
remains to show that the operators on this tensor product coincide up to a bounded
perturbation. This follwos from explicitly computing the induced operator on the
tensor product EZ⊗̃C∗(ΛoΓ)E . In doing so one sees that the action of 1⊗̃∇Db on

Cc(Z) ∼=
⊕
γ∈P

Cc(Z [γ]),

on each component Cc(Z [γ]) is given by multiplication by the Busemann cocycle for
Γ based at pγ instead of at p. On each component this is a bounded perturbation of
the Busemann cocycle for Γ′ based at p. Since there are only finitely many cosets,
this suffices. �

3. Fuchsian groups

Lastly, we discuss some constructions with classical Fuchsian groups, that is,
groups acting as isometries of the hyperbolic plane

H2 = {z ∈ C : Im z > 0},

by fractional linear transformations. These are subgroups of PSL2(R). The most
prominent example is the modular group PSL(2,Z) and its finite index subgroups,
which are important in the theory of modular forms. Arbitrary Fuchsian groups
uniformize Riemann surfaces by (branched) coverings. Explicit orbit equivalences
exist for such groups, which seems to lead to a promising approach for computing
index maps.

3.1. Orbit equivalence. In this section, Γ will be a Fuchsian group of the
first kind. The quotient XΓ := H2/Γ is a Riemann surface, and for an inclusion
Γ ⊂ Γ′ we obtain a (possibly ramified) covering XΓ′ → XΓ. In [9], Bowen and
Series construct a partial endomorphism σ : U → X, which is orbit equivalent to
the action of Γ on P1(R). This means that, except for a finite number of pairs
of points, elements x, y ∈ P1(R) are in the same Γ-orbit if and only if there exist
m,n ∈ N such that σn(x) = σm(y). Their maps have more special properties.

Theorem 3.3.1.1. Let Γ be a Fuchsian group of the first kind. There exists a
partial endomorphism σ : U → X, which is orbit equivalent to Γ. Moreover, if Γ
has no cusps, σ is a Markov generator. The Markov partition {Ui} has the property
that the restriction of σ is to each Ui is equal to an element γi ∈ Γ.

In view of theorem 2.5.1.6 there is an equivariant map SA → P1(R) from a
subshift of finite type to the dynamical system given by σ. By 2.5.2.5 the gives rise
to bimodules relating the KK-cycles coming from the fundamental cocycles of the
semidirect product groupoids X o σ and SA o σA.

Proposition 3.3.1.2. Let σ : U → X be a Markov generator with partition
{Ui}, that is orbit equivalent to the action of some group Γ on X. Moreover assume
that the restriction of σ to each Ui equals some γi ∈ Γ. Then there is a natural
groupoid homomorphism X o σ → X o Γ.

Proof. Define
X o σ → X o Γ

(x, n, y) 7→ (x, δi1 · · · δin+kγ
−1
jk
· · · γ−1

j1
).
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Here k is such that σn+k(x) = σk(y) and the δim and γj` are determined by this
relation because

σn+k(x) = xδi1 · · · δin+k , σk(y) = yγj1 · · · γjk ,
according to whether x ∈ Ui1 , xδi1 ∈ Ui2 , and so on. The map is independent of
the choice of k because if k′ is such that σk

′+n(x) = σk
′
(y) and k < k′, then the

equality holds for all k′′ with k ≤ k′′ ≤ k′. Hence the corresponding group elements
will be equal and cancel each other. �

Thus, for such an orbit equivalence, and in particular for Fuchsian groups, we
have groupoid homomorphisms

Ao σA → X o σ → X o Γ.

For the last homomorphism, it is not clear under what conditions it is proper.
This is a necessary condition to associate a C∗-bimodule to it. Also, the relation
between the fundamental cocycle of Λoσ and the Radon-Nikodym cocyle on ΛoΓ
needs further investigation. Establishing a correspondence of KK-cycles for these
orbit equivalences for Fuchsian groups might allow for computation of the index
map Indµ : K1(C∗Λ o Γ)) → C via the index map K1(OA) → C coming from the
fundamental cocycle. Since the K-theory of Cuntz-Krieger algebras is known, this
might simplify the computations greatly.

3.2. The modular group. The group SL(2,Z) acts as a group of isometries
of the hyperbolic plane by fractional linear transformations. Effectively, this is
an action of PSL(2,Z) = SL(2,Z)/{1,−1}. This group can be written as the
free product Z/2Z ∗ Z/3Z, from which an action on a tree T is constructed. The
noncommutative geometry of both boundary actions of this group is the subject
of the papers [40],[41]. There it is shown that the homology of modular curves is
recovered from the K-theory of the boundary crossed product algebra C(P1(R)) o
Γ. More precisely, let Γ ⊂ SL(2,Z) be a subgroup of finite index. Denote by
XΓ := H2/Γ the corresponding modular curve, and by P = PΓ the coset space
Γ\SL(2,Z). The set C of cusps of Γ can be identified with the orbits P1(Q)/Γ.
XΓ can be compactified, as a Riemann surface, by adding the cusps and a suitable
choice of charts. The cuspidal cohomology of XΓ is the relative cohomology group
H1(XΓ,C ).

Theorem 3.3.2.1 ([40]). There is a natural isomorphism K1(C∗(P1(R)oΓ)) ∼−→
H1(XΓ,C )⊕ Z.

This isomorphism comes from analyzing the maps in the Pimnser sequence
for Γ given its action on the tree T . We would like to describe the index map
K1(C∗(P1(R) o Γ)) → C coming from proposition 2.3.3.7. Again, without solid
evidence as of yet, we expect it to pick out the H1(XΓ,C ) part of K1(C∗(Λ o Γ)).

For p ∈ T , let µT denote the Patterson-Sullivan measure based at p and cT
the associated modular Radon-Nikodym cocycle on ∂T o Γ. Similarly µH2 and cH2

denote the corresponding objects on P1(R) o Γ. The cocycle construction theorem
2.3.2.2 applied to both cocycles yields two unbounded bimodules

(3.10) C∗(∂T o Γ)→ (ET , DT ) � C∗(ker cT ),

and

(3.11) C∗(P1(R)× Γ)→ (EP1(R), DP1(R)) � C∗(ker cH2).
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We now proceed with the construction of a geometric correspondence between these
KK-cycles in the sense of definition 1.6.5.2 and the subsequent modification to the
bivariant case.

There is an equivariant embedding Υ : T → H2. It is obtained by choosing a
fundamental domain for the action of SL(2,Z), and covering H2 by it translates,
obtaining the well known tesselation of the plane. Then T can be identified with
the union of the edges of this tesselation that have no vertex at infinity. This map
extends to an equivariant proper surjection Υ : ∂T → ∂H2 = P1(R). Therefore, Υ
induces a proper groupoid homomorphism

∂T o Γ→ P1(R) o Γ

(x, γ) 7→ (Υ(x), γ),

for Γ ⊂ PSL(2,Z).

For p, p′, p′′ ∈ H2 denote by [p, p′] the geodesic segment connecting p to p′

and by [p, p′, p′′] the angle between the geodesic segments [p, p′] and [p′, p′′]. The
following lemma gives a useful relation between the metrics on T and H2.

Lemma 3.3.2.2. Let p, q, r ∈ T ⊂ H2 and let q1, r1 be the predecessors of q, r on
the paths connecting them to p. If dT (p, q) = dT (p, r), then the triangles ∆(p, q, q1)
and ∆(p, r, r1) are congruent. In particular dH2(p, q) = dH2(p, r).

Proof. We may assume dT (p, p′) ∈ N for all p, p′ ∈ T and proceed by induc-
tion. If dT (p, q) = dT (p, r) = 1 there is nothing to prove as T ⊂ H2 has geodesic
edges. For n = 2 the statement follows because dH2(p, q1) = dH2(p, r1) = 1 and the
angles [q, q1, p] and [r, r1, p] are equal.

For the induction step, assume dT (p, q) = dT (p, r) = n. Denote by q2, r2 ∈ T ,
the predecessors of q1, r1 in [p, q], [p, r] respectively. Then dT (p, qi) = dT (p, ri) =
n − i and dT (q, qi) = dT (r, ri) = i for i = 1, 2. Hence dH2(p, qi) = dH2(p, ri) and
∆(p, q, q1), ∆(p, q1, q2), ∆(p, r, r1) and ∆(p, r1, r2) are geodesic triangles in H2. The
triangles ∆(p, q1, q2) and ∆(p, r1, r2) are congruent by the induction hypothesis.
Since the angles [r, r1, r2] and [q, q1, q2] are equal, the angles [p, q1, q] and [p, r1, r]
are equal. Hence ∆(p, q, q1) and ∆(p, r, r1) are congruent as well. �

Proposition 3.3.2.3. The homomorphism Υ : ∂T o Γ → P1(R) o Γ restricts
to a homomorphism ker cT → ker cH2 .

Proof. Let δT and δH2 denote the critical exponents of the respective Poincaré
series for SL(2,Z). The Patterson-Sullivan measures satisfy

dγµT
dµT

= jδTγ ,
dγµH2

dµH2
= j

δH2
γ .

We have to show that jδTγ (xγ) = 1 implies jδH2
γ (Υ(x)γ) = 1. Now

jδTγ (xγ) = lim
n→∞

eδT (dT (p,xnγ)−dT (p,xn)),

where xn ∈ T is a sequence converging to x ∈ ∂T . Hence jδTγ (xγ) = 1 is equivalent
to

lim
n→∞

dT (p, xnγ)− dT (p, xn) = 0.
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Since T is a tree, this means that there exists m ∈ N such that for all n > m
dT (p, xnγ) − dT (p, xn) = 0. But then dH2(p, xnγ) − dH2(p, xn) = 0 by lemma
3.3.2.2, and hence

j
δH2
γ (Υ(x)γ) = lim

n→∞
eδH2 (dH2 (p,xnγ)−dH2 (p,xn)) = 1.

�

The map Υ induces a C∗(P1(R) o Γ)-C∗(∂T o Γ) bimodule E , which is a
completion of Cc(ZΥ), with

ZΥ = {((Υ(x), γ), xγ) : x ∈ ∂T , γ ∈ Γ}.
This module comes from the equivariant pair (Υ, id), so by theorem 2.4.2.3 we get
an explicit formula for a a Hermitian connection on it. It is given by

∇ : Cc(ZΥ)→ Cc(ZΥ)⊗Cc(∂ToΓ) Ω1(Cc(∂T o Γ))

Ψ 7→ π∗1P1(R) ⊗ dΥ∗Ψ.

The restriction of Υ to the kernel groupoid induces a bimodule C∗(ker cH2)→ E ′ �
C∗(ker cT ), by proposition 3.3.2.3. This bimodule comes from the correspondence

Z ′Υ := {((Υ(x), γ), xγ) : (Υ(x), γ) ∈ ker cH2}.
This pair of modules does not constitute a correspondence of KK-cycles, as the
operators do not coincide under the respective tensor products. They are most likely
bounded perturbations of one another, and thus constiute a weak correpsondence.
For K-theoretic purposes this is sufficient, but it is likely that by suitable perturbing
the connection and the operator DT , a genuine correspondence can be obtained.
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