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Introduction

This research is devoted to a very interesting and important class of homogeneous spaces

of real Lie groups. We suppose that all considered homogeneous spaces are Riemannian

manifolds. This assumption allows us to use a lot of geometrical methods.

Let X = G/K be a connected Riemannian homogeneous space of a real Lie group G. We

assume that the action G : X of G on X is locally effective, i.e., K contains no non-trivial

connected normal subgroups of G. Denote by D(X)G the algebra of G-invariant differential

operators on X and by P(T ∗X)G the algebra of G-invariant functions on T ∗X polynomial

on fibres. It is well known that P(T ∗X)G is a Poisson algebra, the Poisson bracket being

induced by the commutator in D(X)G.

Definition 1. The homogeneous space X is called commutative or the pair (G,K) is called

a Gelfand pair if the following five equivalent conditions are satisfied:

(0) the algebra D(X)G is commutative;

(1) the algebra of K-invariant measures on X with compact support is commutative with

respect to convolution;

(2) the algebra P(T ∗X)G is commutative with respect to the Poisson bracket;

(3) the representation of G on L2(X) has a simple spectrum;

(4) the action of G on T ∗X is coisotropic with respect to the standard symplectic structure

on the cotangent vector bundle.

Condition (1) was first considered by Gelfand in [18]. The equivalence of (0) and (1)

is proved by Thomas [42] and Helgason [19], independently. Clearly, (0) implies (2). The

inverse implication is proved by Rybnikov [40]. The equivalence of (1) and (3) is proved e.g.

by Berezin et al. in [5]. Finally, the equivalence of (2) and (4) is proved by Vinberg [43].

Good references for the theory of Gelfand pairs are [16] and [43].

Symmetric Riemannian homogeneous spaces introduced by Élie Cartan are commutative.

In case X is compact, this was proved by Cartan himself. The theory of symmetric spaces

is well developed. Works of Élie Cartan [12] and Sigurdur Helgason [19], [20], [21] describe
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their structure and also deal with harmonic analysis on such manifolds. The common eigen-

functions of D(X)G that are invariant under K are called spherical functions on X. Many

special functions arise in this way.

There is a more general geometrical condition sufficient for commutativity. In his cel-

ebrated work [41] on the trace formula, Selberg introduced a notion of weakly symmetric

homogeneous space. He proved that each weakly symmetric homogeneous space is commu-

tative.

Let σ be an automorphism of G such that σ(K) = K. Define an automorphism s of X

by s(gK) := σ(g)K.

Definition 2. The homogeneous space X is said to be weakly symmetric with respect to σ,

if for every pair of points x, y ∈ X there is g ∈ G such that gx = sy, gy = sx. X is said to

be weakly symmetric, if it is weakly symmetric with respect to some automotphism σ.

Selberg pointed out that his ”trace formula” is true not only for the weakly symmetric

spaces but for all commutative ones as well. He did not know if the second class of spaces is

strictly larger. In 2000, Lauret [26] constructed the first example of a commutative but not

weakly symmetric homogeneous space.

Due to lack of non-trivial examples weakly symmetric homogeneous spaces were forgotten

for almost 30 years. Clearly, each symmetric space is weakly symmetric. It is well known

that the second class is larger. For example, as was noticed by Selberg, a homogeneous space

(SL2(R) × SO2)/SO2 is weakly symmetric but not symmetric. Recently weakly symmetric

homogeneous spaces were intensively studied by several mathematicians, see, for example,

[1], [6], [7], [8], [9]. In particular, new examples of non-symmetric weakly symmetric ho-

mogeneous spaces have been constructed. These works show that weakly symmetric spaces

possess a fairly interesting geometry.

Definition 3. A real or complex linear Lie group with finitely many connected components

is said to be reductive if it is completely reducible.

Let F be a complex reductive Lie group and H ⊂ F a reductive subgroup.

Definition 4. An affine complex F -variety X is called spherical if a Borel subgroup B(F ) ⊂
F has an open orbit in X. If X is a linear space and a spherical F -variety then it is called a

spherical representation of F . If a homogeneous space F/H is spherical, then the pair (F,H)

and the subgroup H are also called spherical.

Let G be a real form of a complex reductive group G(C). Suppose K ⊂ G is a compact

subgroup. We call the real homogeneous space G/K, the subgroup K and the pair (G,K)

spherical if the complexification X(C) = G(C)/K(C) is a spherical G(C)-variety. In case

of reductive G the notions of commutative and weakly symmetric homogeneous spaces are

equivalent, see [1]. Moreover, weakly symmetric spaces are real forms of complex affine
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spherical homogeneous spaces, [1]. These latter spaces are classified by Krämer [25] (if G(C)

is simple), Brion [10] and Mikityuk [30] (if G(C) is semisimple).

Homogeneous space X of a reductive Lie group G is spherical if and only if each G-

invariant Hamiltonian system on T ∗X is integrable within the class of Noether integrals,

see [30]. In case of non-reductive G, the notion of spherical homogeneous space does not

exist. The notions of weakly symmetric and commutative homogeneous spaces are natural

substitutes for it. It would be interesting to realise whether this result of [30] extends to all

Gelfand pairs.

Note that the classifications in [10, 30] are not quite complete, because the case of non-

principal homogeneous spaces is not treated there. This gap is fixed here, see Theorem 2.1.

The real forms of homogeneous spherical spaces, i.e., commutative homogeneous spaces of

real reductive groups are explicitly described in Section 2.1. We obtain many new examples

of weakly symmetric Riemannian manifolds. Most of them are not symmetric regardless of

the (or under some particular) choice of a G-invariant Riemannian metric.

The principal result of this work is the complete classification of Gelfand pairs. Our main

tool in obtaining classification is a criterion for commutativity of homogeneous spaces, which

is also useful and interesting in its own right.

Fix some notation that will be used throughout the text. Lie algebras of Lie groups are

denoted by corresponding small Gothic letters; for instance, n = LieN . Unless otherwise

explicitly stated, all Lie groups, algebras, vector spaces are assumed to be real. If G is a Lie

group, then G0 is the identity component of G; G′ is the commutator group of G; Z(G) is

the connected centre of G;

G(C) is the complexification of a real Lie group G;

R[X] is the algebra of real-valued regular function on an affine algebraic variety X;

R[X]G is the subalgebra of G-invariants in R[X].

If a reductive Lie group F acts on a linear space V , then F∗(V ) denotes a generic stabiliser

for this action and Fy the stabiliser of y ∈ V .

Some necessary conditions for the commutativity of arbitrary homogeneous spaces are due

to Vinberg. If G/K is commutative, then, up to a local isomorphism, G has a factorisation

G = NhL, where N is the nilpotent radical of G, K ⊂ L, L and K have the same invariants

in R[n], and [[n, n], n] = 0, see [43]. Without loss of generality, one may assume that L′ is

a real form of a complex semisimple group and the centre of L is compact. Hence, L is a

reductive group.

The following is our commutativity criterion.

Theorem 1. X = (N h L)/K is commutative if and only if all of the following three

conditions hold:

(A) R[n]L = R[n]K;

(B) for any point γ ∈ n∗ the homogeneous space Lγ/Kγ is commutative;
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(C) for any point β ∈ (l/k)∗ the homogeneous space (N hKβ)/Kβ is commutative.

It is always assumed below that G = N h L, K ⊂ L, and X = G/K is a commutative

homogeneous space. Let P denote the ineffective kernel of the action L : n. Then P is a

normal subgroup of L and G. Let us indicate some important consequences of Theorem 1.

By condition (A), we have L/P ⊂ O(n). Hence, Lγ is reductive for any γ ∈ n∗. Therefore

condition (B) actually means that Lγ/Kγ is spherical, and one can use classification results

for spherical homogeneous spaces. Because the orbits of the compact group K in n are

separated by polynomial invariants, L and K have the same invariants in R[n] if and only if

they have the same orbits. In other words, condition (A) means that there is a factorisation

L = L∗(n)K or, equivalently, L/P is a product of L∗(n)/P and K/(K ∩ P ). All non-trivial

factorisations of compact groups into products of two subgroups are classified by Onishchik

[32] (see also [34, Chapter 4]).

Our classification is based on the following principles and conventions.

• A homogeneous space G/K is called indecomposable if it cannot be presented as a

productG1/K1×G2/K2, whereG = G1×G2, K = K1×K2 andKi ⊂ Gi. Obviously, G1/K1×
G2/K2 is commutative if and only if both spaces G1/K1 and G2/K2 are commutative. Hence,

it suffices to classify only indecomposable commutative homogeneous spaces.

• Commutativity is a local property, i.e., it depends only on the pair of algebras (g, k),

see [43]. Therefore we may assume that G and K are connected, N is simply connected,

L = Z(L) × L1 × . . . × Lm, where Z(L) is the connected centre of L, and the {Li}’s are

the simple factors of L. We also assume that Li are real forms of simply connected complex

simple groups and the action of Z(L)/(Z(L) ∩ P 0) on n is effective. Given a pair (g, k), it

may happen that there is no effective pair (G,K) satisfying these assumptions, so we admit

not only effective actions G : (G/K), but locally effective as well.

• Assume that z0 ⊂ [n, n] is an L-invariant subspace, and Z0 ⊂ N is the correspond-

ing connected subgroup. Then the homogeneous space X/Z0 = ((N/Z0) h L)/K is also

commutative, see [43]. The passage from X to X/Z0 is called a central reduction. A commu-

tative homogeneous space is said to be maximal, if it can not be obtained by a non-trivial

central reduction from a larger one. Clearly, one can consider only maximal commutative

homogeneous spaces.

• In Chapters 1 and 3 we impose on G/K two technical conditions. The first of them

concerns the behaviour of Z(K) with respect to the simple factors of L and the action

Z(L) : n. Let n/n′ = w1⊕· · ·⊕wp be a decomposition of the L-module n/n′ into irreducibles.

Since P is a normal subgroup of L, it is reductive. We say that G/K is principal, if P is

semisimple, Z(K) = Z(L)×(L1∩Z(K))×. . .×(Lm∩Z(K)), and Z(L) = C1×. . .×Cp, where

Ci ⊂ GL(wi). The second condition, “Sp1-saturation”, describes the behaviour of normal

subgroups of K and L isomorphic to Sp1. The precise definition is given in Section 1.5. Both

these constrains are removed in Chapter 4.

In Chapter 1, we obtain a partial classification of Gelfand pairs. The simplest and
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most important results are obtained for simple L. Note that if L is simple, then G/K is

automatically principal and Sp1-saturated.

Denote by Hn the (2n+1)-dimensional real Heisenberg group. In tables and theorems we

write Un instead of U1× SUn and sometimes SOn instead of Spinn. The symbols Rn and Cn

stand for simply-connected Abelian groups, which are regarded as standard L-modules.

Theorem 2. Suppose X = (N hL)/K is an indecomposable commutative space, where L is

simple, L 6= K and n 6= 0. Then X is one of the following eight spaces.

(H2n h SU2n)/Spn; (R7 h SO7)/G2; ((R8 × R2) h SO8)/Spin7;

(C2n h SU2n)/Spn; (R8 h Spin7)/Spin6; (R8 h SO8)/Spin7;

(R2n h SO2n)/Un; (R8 h SO8)/(Sp2 × SU2).

Commutativity of (N hL)/K implies that of (N h (L/P ))/(K/(K ∩P )). Therefore we first

describe the indecomposable commutative spaces with trivial P (Sections 1.2 and 1.3) and

then study possible kernels P in Section 1.4. The classification results of Sections 1.2–1.4

can be summarised as follows.

Theorem 3. Let X = (NhL)/K be a maximal principal indecomposable commutative ho-

mogeneous space and L1 � L a simple direct factor acting on n non-trivially. If L1 6= SU2

and L1 6⊂ K, then either L is simple (and X appears in Theorem 2) or X is one of the

following four spaces:

(H2nhU2n)/(Spn·U1), (H8h(SO8×U1))/(Spin7×U1);

((RnhSOn)×SOn)/SOn, ((HnhUn)×SUn)/Un.

(In the last two items, the normal subgroups SOn and SUn of K are diagonally embedded

into SOn×SOn and SUn×SUn, respectively.)

A commutative homogeneous space (N hL)/K is said to be of Heisenberg type if L = K.

The following is the main classification result of Chapter 1.

Theorem 4. Any indecomposable maximal principal Sp1-saturated commutative homoge-

neous space belongs to the one of the three classes:

1) the commutative homogeneous spaces of reductive real Lie groups;

2) the homogeneous spaces listed in Theorems 2 and 3.

3) the commutative homogeneous spaces of Heisenberg type.

Chapter 2 is devoted to commutative spaces of reductive Lie groups. As we have already

mentioned, they are real forms of spherical affine homogeneous spaces. Let (G(C), H) be

a spherical pair of complex reductive groups. We describe real commutative spaces corre-

sponding to G(C)/H. Assume that G(C), H, and G are connected. The subgroup K is

a maximal compact subgroup of H. For G we can take any real form of G(C) containing

K. The subgroup K is always contained in a maximal compact subgroup of G(C). For a

non-compact G, we have the following result.
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Theorem 5. G = (G(C)τϕ)0, K = Hτ , where ϕ is an involution of G(C) acting trivially on

H, and τ is a compact real structure on G(C), commuting with ϕ and preserving H.

Recall that in case of reductive G the notions of commutative and weakly symmetric

spaces are equivalent.

Denote by Aut(G,K) the set of automorphisms of G preserving K. We call an automor-

phism σ ∈ Aut(G,K) righteous, if it defines a weakly symmetric structure on X = G/K,

i.e., if X is weakly symmetric with respect to σ.

Suppose weakly symmetric homogeneous space X = G/K is a real form of a spherical

affine homogeneous space Y = G(C)/H. Denote by Vλ the irreducible representation of

G(C) with the highest weight λ. Let

C[Y ] =
⊕

λ∈Λ(Y )

Vλ,

be the decomposition into irreducible representations of G(C). Note that this decomposition

is canonical [45].

The following theorem characterise all righteous automorphisms of weakly symmetric

homogeneous spaces of reductive Lie groups.

Theorem 6. An automorphism σ ∈ Aut(G,K) is righteous if and only if σ(Vλ) = V ∗
λ for

each weight λ ∈ Λ(Y ).

Let X = G/K be weakly symmetric with respect to σ. One can introduce a G-invariant

Riemannian metric on X. This metric will be also σ-invariant. The Riemannian manifold

X can be symmetric even if X is not symmetric as a homogeneous space of G. For example,

an odd dimensional sphere S2n−1 = SUn/SUn−1 = SO2n/SO2n−1 is a symmetric Riemannian

manifold and simultaneously a non-symmetric weakly symmetric homogeneous space of SUn.

To understand whether a given Riemannian metric is symmetric, it is sufficient to know the

isometry group of the pair (X,µ) or its identity component P = Isom(X)0. Let Q be the

stabiliser of eK ∈ X in P . Clearly, there is a factorisation P = GQ. The Riemannian

manifold X is symmetric if and only if Q is a symmetric subgroup of P . Factorisations of

reductive groups into products of two reductive subgroups are described by Onishchik [32],

[33]. This allows us to classify non-symmetric weakly symmetric Riemannian manifolds with

reductive isometry group. In case of a non-compact X we prove the following theorem.

Theorem 7. An indecomposable (as a homogeneous space) non-symmetric non-compact ho-

mogeneous space of a semisimple group G is not a symmetric Riemannian manifold regardless

of the choice of a G-invariant metric.

Classification results in the compact case are presented in Table 2.6 (Subsection 2.2.4).
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Chapter 3 is devoted to homogeneous spaces of Heisenberg type. Recently, these spaces

were intensively studied by several people, see [3], [27], [31], [43], [44]. We complete the clas-

sification of principal Sp1-saturated commutative spaces of Heisenberg type, started in [3]

and [43], [44].

Since L = K, we have D(G/K)G ∼= U(n)K , where U(n) is the universal enveloping

algebra of n. In particular, if n is an Abelian Lie algebra, then G/K is commutative. It is

called a commutative space of Euclidian type. Such a space is completely determined by a

K-module structure on n. Therefore, there is no harm in assuming that n is not Abelian.

Recall that [n, [n, n]] = 0 if G/K is commutative. For the spaces of Heisenberg type, it was

already proved in [3]. Commutative homogeneous spaces of Heisenberg type such that n/n′

is a simple K-module are classified in [43] and [44]. In general, n is a sum of an Abelian

ideal and algebras listed in [43, Table 3] and [44]. But the problem of classifying possible

sums is not trivial.

Interest of commutative spaces of Heisenberg type is explained by their connections with

spherical representations. Recall relevant structure results. Consider a homogeneous space

(NhK)/K, where n is two-step nilpotent and dim[n, n] = 1. Set z = [n, n]. Decompose n into

aK-invariant direct sum n = (w⊕z)⊕V , where V is an Abelian ideal and w⊕z is a Heisenberg

algebra. A nonzero covector α ∈ z∗ determines a non-degenerate skew-symmetric form α̂

on w; namely, α̂(ξ, η) = α([ξ, η]) for ξ, η ∈ w. Therefore the complexification of w, w(C),

is simultaneously an orthogonal and symplectic K(C)-module. Hence, w(C) ' W⊕W ∗ for

some K(C)-module W . By [3] and [48], (NhK)/K is commutative if and only if W is a

spherical representation of the complexification of K∗(V ). In the simplest situation when

V = 0 this means that W is a spherical representation of K(C). Classification of spherical

representations was obtained by combined efforts of Kac [22], Brion [11], Benson and Ratcliff

[4], and Leahy [28] (see historical comments in [24]).

The list of commutative homogeneous spaces (N h K)/K, where N is a product of

several Heisenberg groups, is given in [3]. That article also claims to classify all commutative

homogeneous spaces (N hK)/K such that n = n0 ⊕ V , where V is an Abelian ideal and n0

is a direct sum of several Heisenberg algebras. The authors of [3] erroneously assume that if

N0 ⊂ N is the subgroup with LieN0 = n0 and (N0hK)/K is commutative, then (NhK)/K

is commutative as well. The simplest counterexample is ((C2 × H2) h SU2)/SU2. By [43,

Prop. 15], this space is not commutative, whereas (H2 h SU2)/SU2 is commutative.

Theorem 8. All indecomposable Sp1-saturated maximal principal commutative homogeneous

spaces (N h K)/K with non-commutative n and reducible n/n′ are given in Table 3.2 in a

sense that n is a K-invariant subalgebra of nmax.

In Table 3.2, the Lie algebra nmax is described in the following way. Each subspace

in parentheses represent a subalgebra wi ⊕ [wi,wi], where wi ⊂ (n/n′) is an irreducible

K-invariant subspace with [wi,wi] 6= 0. The spaces given outside parentheses are Abelian.
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Notation (SUn,Un,U1×Spn/2) means that this normal subgroup of K can be equal to either

of these three groups. Appearance of the symbol Spn/2 means that n is even.

Table 3.2.
K nmax

1 Un (Cn ⊕ R)⊕ sun

2 U4 (C4 ⊕ Λ2C4 ⊕ R)⊕ R6

3 U1 ×Un (Cn ⊕ R)⊕ (Λ2Cn ⊕ R)
4 SU4 (C4 ⊕HS2H2 ⊕ R)⊕ R6

5 U2 ×U4 (C2 ⊗ C4 ⊕HΛ2C2)⊕ R6

6 SU4 ×Um (C4 ⊗ Cm ⊕ R)⊕ R6

7 Um ×Un (Cm ⊗ Cn ⊕ R)⊕ (Cm ⊕ R)
8 U1 × Spn ×U1 (Hn ⊕ R)⊕ (Hn ⊕ R)
9 Sp1 × Spn ×U1 (Hn ⊕H0)⊕ (Hn ⊕ R)
10 Sp1 × Spn × Sp1 (Hn ⊕H0)⊕ (Hn ⊕H0)
11 Spn × (Sp1,U1, {e})× Spm (Hn ⊕H0)⊕Hn ⊗Hm

12 Spn × (Sp1,U1, {e}) (Hn ⊕H0)⊕HS2
0Hn

13 Spin7 × (SO2, {e}) (R8 ⊕ R7)⊕ R7 ⊗ R2

14 U1 × Spin7 (C7 ⊕ R)⊕ R8

15 U1 × Spin7 (C8 ⊕ R)⊕ R7

16 U1 ×U1 × Spin8 (C8
+ ⊕ R)⊕ (C8

− ⊕ R)
17 U1 × Spin10 (C16 ⊕ R)⊕ R10

18 (SUn,Un,U1 × Spn/2)× SU2 (Cn ⊗ C2 ⊕ R)⊕ su2

19 (SUn,Un,U1 × Spn/2)×U2 (Cn ⊗ C2 ⊕ R)⊕ (C2 ⊕ R)
20 (SUn,Un,U1×Spn/2)×SU2× (Cn ⊗ C2 ⊕ R)⊕ (C2 ⊗ Cm ⊕ R)

×(SUm,Um,U1×Spm/2)
21 (SUn,Un,U1×Spn/2)×SU2×U4 (Cn⊗C2⊕R)⊕(C2⊗C4⊕R)⊕R6

22 U4 ×U2 R6 ⊕ (C4 ⊗ C2 ⊕ R)⊕ su2

23 U4 ×U2 ×U4 R6⊕(C4⊗C2⊕R)⊕(C2⊗C4⊕R)⊕R6

24 U1 ×U1 × SU4 (C4 ⊕ R)⊕ (C4 ⊕ R)⊕ R6

25 (U1×)SU4(×SO2) (C4 ⊕ R)⊕ R6 ⊗ R2

In Chapter 4, we classify non-Sp1-saturated and non-principal commutative spaces. This

classification is done in terms of certain weighted graphs Γq. To each graph the attache

a triple (F, F̌ , V ) such that F = Sp1×F̌ , f ⊂ so(V ) and a Lie algebra n generated by V .

Using these data we construct non-Sp1-saturated commutative spaces. Let us start with the

description of the correspondence between graphs Γq and triples (F, F̌ , V ).

Let Γq be a connected rooted graph with vertices 0, 1, . . . , q, where 0 is the root, and

maybe one special vertex as. Attach to each vertex i a weight d(i), which is either a positive

integer or ∞. We say that a vertex i is finite if d(i) < ∞, an edge (i, j) is finite if both

i and j are finite. Assume that d(0) = d(as) = 1, each infinite vertex has degree 1, and
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if (i, j) is infinite edge with d(j) = ∞, then d(i) > 1 and there is at most one infinite

vertex t 6= j such that (i, t) is an edge of Γq. To each non-special vertex i we attach

a group H(i) = Spd(i). To the special vertex as we attach a group H(as) and a linear

representation H(as) : V̌ (as). Moreover, the pair (H(as), V̌ (as)) is one of the following:

(U1, {0}); (Sp1,R3); (Sp1×(S)U4,C2⊗C4 ⊕ R6); (Sp1×(S)Um,C2⊗Cm) with m ≥ 3. Set

Wi,j := Hd(i) ⊗H Hd(j) for each finite edge (i, j). If (i, j) is infinite and d(j) = ∞, we set

Wi,j := HS2
0Hd(i) ∼= su2d(i)/spd(i). Since Γq is connected, here d(i) < ∞. Let H be a

product of H(i) over all finite vertices, Ȟ a product of H(i) over all finite vertices except

for the root, and W a direct sum of Wi,j over all edges of Γq. Set V := W ⊕ V̌ (as). Then

h ⊂ so(V ). Suppose Γq contains no triple edges, then the normaliser NSO(V )(h) is locally

isomorphic to (U1)
r×H. We define F to be a product of (U1)

t×H, where (U1)
t ⊂ (U1)

r,

and set F̌ = (U1)
t×Ȟ. Clearly, f ⊂ so(V ).

Consider a homogeneous space X = (V h F )/(U1×F̌ ), where F = Sp1×F̌ , U1 ⊂ Sp1,

and V is an Abelian Lie group. According to Theorem 1, X is commutative if and only

if F∗(V ) = Sp1×F̌∗(V ). On the other hand, F∗(V ) = Sp1×F̌∗(V ) if and only if the triple

(F, F̌ , V ) corresponds to a tree Tq which has no special vertices and satisfies the following

two conditions:

(I) if d(i) > 1, then the vertex i has degree at most 2;

(II) if there is an edge (i, j) with d(i) > 1, d(j) > 1, then either i or j has degree 1.

We illustrate the structure of X by the following diagram.

U1 Sp1
// Tq

Here the direct factor Sp1 of L corresponds to the root of Tq.

If Γq contains a special vertex or a double edge we can define an F -invariant Lie algebra

structure either on V or on V ⊕ R (see Lemma 4.10), i.e., we attach to Γq a Lie algebra

n = n(Γq). In case Γq is a tree with no special vertices n is Abelian. The classification

of principal maximal non-Sp1-saturated commutative spaces, which are not of Heisenberg

type, is done in terms of trees Tq satisfying conditions (I), (II) and graphs Γq, described in

Lemma 4.9. The result is given in Theorem 4.11.

Let Frs be a forest of s-trees satisfying conditions (I), (II). Let X0 = (N0 h K0)/K0

be an Sp1-saturated commutative space of Heisenberg type with n′0 6= 0. Suppose K0 =

Z(L)×L1× . . .×Ls×Ls+1× . . .×Lm, where L1 = L2 = . . . = Ls = Sp1 and a triple (F, F̌ , V )

is attached to Frs. We assume that each Li corresponds to the root of the i-th tree of Frs.

Set K = Z(L)×Ls+1× . . .×Lm×(Sp1)
s×F̌ , n = n1⊕V , where for each edge (j, t) of the i-th

tree [Wj,t,Wj,t] is non-zero only if j = 0 and li ⊂ n′0, in that case [W0,t,W0,t] can be li. (We

do not require that [W0,t,W0,t] = li for all edges (0, t) of the i-th tree.) One can show that

X = (N h K)/K is commutative. We say that such X is a space of a wooden type. We

classify those indecomposable commutative homogeneous spaces of Heisenberg type, which

are not of wooden type.

10



Here we come across yet another difficulty. Suppose n = Hn⊕H0, K = Spn× Sp1. Then

both homogeneous spaces (NhSpn)/Spn and (Nh(Spn×Sp1))/(Spn×Sp1) are commutative.

It follows that any representation (Sp1×H) : V of a compact group Sp1×H gives rise to a

new commutative space ((V×N) h (Spn×Sp1×H))/(Spn×Sp1×H)). In Theorem 4.15 and

Lemma 4.16, we describe several non-Sp1-saturated commutative spaces of Heisenberg type

in terms of graphs Tq and Γq. To conclude the classification of principal commutative spaces,

we need the following construction.

Table 4.1.

Sp1 · Spn : (Hn ⊕ sp1)⊕HS2
0Hn Sp1 · Spn × Spm : (Hn ⊕ sp1)⊕Hn ⊗Hm

Sp1 · Spn · Sp1

��

: (Hn ⊕ sp1)⊕Hn

Tq

Sp1 · Sp1

��

: H⊕ sp1

Tq

Take r commutative spaces X̂i containing in Table 4.1. Suppose X̂i = (N̂i h K̂i)/K̂i and

K̂i = Sp1×Hi, where Sp1 is the direct factor in the box. Take any linear representation

V of a compact group (Sp1)
s×F . Set K := H×H1× . . .×Hr×F , where H is a subgroup

of (Sp1)
r×(Sp1)

s, n := n1⊕ . . .⊕nr⊕V , where V is a commutative subspace, and let X =

(N hK)/K be a homogeneous space of G = N hK.

Theorem 9. Suppose X is a principal maximal indecomposable non-Sp1-saturated space of

Heisenberg type. Then either X is listed in Theorem 4.15 or Lemma 4.16, or is obtained by

the procedure described above.

In Section 4.2, we describe possible connected centres of L and K. We suppose that P

is semisimple. If this is not the case, then G/K is commutative if and only if (G/Z(P ))/K

is commutative, where Z(P ) is the connected centre of P .

Let X = G/K be a non-principal maximal indecomposable commutative space. We can

enlarge groups L and K and obtain a principal commutative space X̃, such that L̃′ = L′,

K̃ ′ = K ′ and Ñ = N . In general X̃ is decomposable X̃ = X1 × . . . × Xr. Each Xi =

(Ñi h L̃i)/K̃i is a central reduction (maybe trivial) of a maximal principal indecomposable

commutative space. For each i either L̃i or K̃i has a non-trivial connected centre. Suppose

we have such a product X̃ = X1 × . . . × Xr. Let Ci be the connected centre of L̃i and Zi
of K̃i. In order to classify all commutative homogeneous spaces, we have to describe all

subgroups Z(L) ⊂ C1 × . . . × Cr and Z(K) ⊂ Z1 × . . . × Zr such that (N h L)/K, where

L = Z(L) × L̃′, K = Z(K) × K̃ ′, is commutative. In case of reductive G it was done in

Chapter 2, another particular case is considered in [4] and [28].

Via sequence of reductions, our problem is reduced to the situation where Z(L) ⊂ Z(K)L′

and each (Ñi h L̃′i)/K̃
′
i is not commutative, if Xi is not of Heisenberg type. We denote by

11



X̃Heis the product of all direct factors of X̃, which are of Heisenberg type and by X̃red of

all direct factors, which are commutative spaces of reductive (semisimple) groups. Suppose

X̃ = X̃1 × · · · × X̃s × X̃Heis × X̃red.

Denote by Z~ a connected central subgroup of L̃Heis = K̃Heis such that (L̃Heis)∗(n)L̃′Heis =

Z~ × L̃′Heis. Let Z(L) be a subgroup of C1 × · · · × Cs × Z(L̃Heis) and Z(K) a subgroup of

Z1 × · · · × Zs(K̃Heis)× Z(K̃red). Assume that Z(K) is contained in L := Z(L)× L̃′ and set

K := Z(K)× K̃ ′, X = (N h L)/K.

Theorem 10. Suppose X̃ = X̃1× · · · × X̃s× X̃Heis× X̃red is a commutative principal homo-

geneous space such that there is no spherical subgroups in L̃red between K̃ ′
red and K̃red; and

(Ñi h L̃′i)/K̃
′
i is never commutative. Assume that Z(L) ⊂ Z(K)L′. Then X is commutative

if and only if Z(K) is a product T1 × T2 such that

T1 ⊂

(
s∏
i=1

Zi

)
× Z~ × Z(K̃red), T2 = Z(K) ∩ Z(K̃Heis),

(
s∏
i=1

Zi

)
× Z(K̃red) ⊂ T1Z~,

and the action T2 × K̃ ′
Heis : ñHeis is commutative.

It remains to describe possible connected centres of K for commutative spaces of Heisen-

berg type. Given Z(K) we describe a simple algorithm, which allows one to check whether

X is commutative or not, see Lemma 4.19.

We illustrate the general classification scheme by the following diagram.

Indecomposable maximal

commutative spaces

X = G/K, G = N h L
gggggggggggg

VVVVVVVVVVVVVVVV

G = L is reductive

Section 2.1
G 6= L

eeeeeeeeeeeeeeeeeeeeeeee

principal
iiiii

UUUUUUUUUU

Heisenberg type

L = K

qqqq

L 6= K

mmmmmmmm

Sp1-saturated

Chapter 3

Sp1-saturated

Chapter 1

Theorem 1.19

non-Sp1-saturated

Section 4.1

qqqq QQQQQ

non-Sp1-saturated

Section 4.1

Theorem 4.11

non-wooden type

Theorem 4.17

wooden type

see pages 10,76

non-principal

Section 4.2
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In Chapter 5, we classify principal maximal Sp1-saturated weakly symmetric homoge-

neous spaces. Recall that commutative spaces of reductive Lie groups are weakly symmetric

according to [1]. Commutative spaces of Euclidian type are symmetric.

For one class of commutative spaces we prove a general statement.

Theorem 11. Suppose n is a direct sum of several K-invariant Heisenberg algebras and

X = (N hK)/K is commutative. Then X is weakly symmetric.

For all other spaces, we check case by case whether they are weakly symmetric or not. To

state the result we use notation of Table 3.2.

Theorem 12. There are only eight maximal principal Sp1-saturated indecomposable com-

mutative spaces, which are not weakly symmetric. They are: ((R2⊗R8) h SO8)/Spin7 and

seven spaces of Heisenberg type with K = Spn, n = Hn⊕HS2
0Hn⊕H0; K = Spn×Spm,

n = (Hn⊕H0)⊕Hn⊗Hm; K = Spn, n = (Hn⊕H0)⊕HS2
0Hn; K = Spin7 · (SO2, {E}),

n = (R8⊕R7)⊕R7⊗R2; and K = (U1·)SU4, n = (C4⊕R)⊕R6⊗R2. There is only one non-

trivial central reduction of a maximal principal Sp1-saturated indecomposable commutative

space, which is not weakly symmetric, namely, (N hK)/K, where K = Spn, n = Hn⊕H0.

Let us say that θ ∈ AutG is a Weyl involution of G = N h L, if θ(L) = L and θ|L is a

usual Weyl involution of L. (Note that the condition θ(N) = N is automatically satisfied.)

We show that if G/K is commutative, then a Weyl involution of G exists and can be chosen

such that θ(K) = K. As in the reductive case, if G/K is weakly symmetric, then it is weakly

symmetric with respect to a Weyl involution of G.

To prove that G/K is not weakly symmetric, we show that for any automorphism σ

of G preserving K, there is a K-invariant homogeneous polynomial f in R[g/k] such that

σ(f) 6= (−1)deg ff .
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Chapter 1

Principal Gelfand pairs. First

classification results

Let G be a real Lie group, K ⊂ G a compact subgroup and X = G/K.

1.1 A commutativity criterion

Let U(g) stand for the universal enveloping algebra of g. There is a natural filtration:

U0(g) ⊂ U1(g) ⊂ . . . ⊂ Um(g) ⊂ . . . ,

where Um(g) ⊂ U(g) consists of all elements of order at most m.

The Poisson bracket on the symmetric algebra S(g) = grU(g) is determined by the

formula

{a+ Un−1(g), b+ Um−1(g)} = [a, b] + Un+m−2(g) ∀a ∈ Un(g), b ∈ Um(g).

Let X = G/K be a Riemannian homogeneous space. It is well known, see, for example, [43],

that there is an isomorphism of the associated graded algebras:

grU(g)K/(U(g)k)K = grD(X)G = P(T ∗X)G = S(g/k)K .

The space (U(g)k)K is an ideal of U(g)K , also (S(g)k)K is a Poisson ideal of S(g)K . The

well defined Poisson bracket on the factor S(g)K/(S(g)k)K ∼= S(g/k)K coincides up to a sign

with the Poisson bracket on P(T ∗X)G. In particular, X is commutative if and only if the

Poisson algebra S(g/k)K is commutative.

If X = (N h L)/K is commutative, then R[n]L = R[n]K [43]. The orbits of a compact

group are separated by polynomial invariants. Hence, the last equality holds if and only if L

and K have the same orbits in n. Next, a K-invariant positive-definite symmetric bilinear

form on n is automatically L-invariant. In particular, n and n∗ are isomorphic as L-modules.
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Therefore, ad∗(k)γ = ad∗(l)γ for each γ ∈ n∗ and hence l = k + lγ. Moreover, the natural

restriction

τ : l∗ −→ l∗γ

(which is also a homomorphism of Lγ-modules) determines an isomorphism of Kγ-modules

(l/k)∗ and (lγ/kγ)
∗.

Recall that g = l + n, where n is a nilpotent ideal and l is a reductive subalgebra. Let ň

and ľ be Abelian Lie algebras of dimensions dim n and dim l, respectively. Consider new Lie

algebras ǧ1 = l + ň and ǧ2 = ľ⊕ n, where ľ, ň are Abelian ideals and ň ∼= n as an l-modules.

That is, ǧ1 and ǧ2 are two different contractions of the Lie algebra structure on g.

Denote by { , }l and { , }n the Poisson brackets on S(ǧ1) and S(ǧ2). There is a K-

invariant bi-grading S(g) =
⊕

Sn,l(g), where Sn,l(g) = Sn(n)Sl(l). We may identify S(g),

S(ǧ1), and S(ǧ2) as graded commutative R-algebras.

Lemma 1.1. For any bi-homogeneous elements ξ ∈ Sn,l(g), η ∈ Sn′,l′(g), we have

{ξ, η} = {ξ, η}n + {ξ, η}l, with {ξ, η}n ∈ Sn+n′−1,l+l′(g), {ξ, η}l ∈ Sn+n′,l+l′−1(g).

In other words, the Poisson bracket on S(g) is a direct sum of the brackets { , }n and { , }l.

Proof. The Poisson bracket of bi-homogeneous elements ξ = ξ1...ξn, η = η1...ηm ∈ S(g) is

given by the formula

{ξ, η} =
∑
i,j

[ξi, ηj]ξ1...ξ̂i...ξnη1...η̂j...ηm. (1.1)

This expression for {ξ, η} contains summands of three different types, depending on whether

ξi and ηj are elements of l or n. Because [l, n] ⊂ n and l, n are subalgebras, if ξi, ηj ∈ n, then

[ξi, ηj] ∈ Sn+n′−1,l+l′(g), otherwise [ξi, ηj] ∈ Sn+n′,l+l′−1(g).

In case of ǧ2, we suppose that ǩ is an Abelian subalgebra of ľ of dimension dim k. The

Poisson brackets on the Poisson quotients S(ǧ2/ǩ)
K = S(ǧ2)

K/(S(ǧ2)ǩ)
K and S(ǧ1/k)

K =

S(ǧ1)
K/(S(ǧ1)k)

K are still denoted by { , }n and { , }l, respectively. Here ǧi, i = 1, 2, are

isomorphic to g asK-modules. Then {a, b}l ∈ Sn+n′,l+l′−1(g/k) and {a, b}n ∈ Sn+n′−1,l+l′(g/k)

for any a ∈ Sn,l(g/k), b ∈ Sn′,l′(g/k) (a, b ∈ S(g/k)K).

Lemma 1.2. The Poisson bracket on S(g/k)K is of the form { , } = { , }n + { , }l.

Proof. This is a straightforward consequence of Lemma 1.1.

Corollary 1. Let (NhL)/K be a commutative homogeneous space and Ň a simply connected

Abelian Lie group with Lie algebra ň. Then (Ň h L)/K is also commutative.

Denote by Y//F the categorical quotient of an affine algebraic variety Y by the action of

a reductive group F . Set m := l/k.
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Theorem 1.3. The homogeneous space X = (N h L)/K is commutative if and only if all

of the following three conditions hold:

(A) R[n]L = R[n]K;

(B) for any point γ ∈ n∗ the homogeneous space Lγ/Kγ is commutative;

(C) for any point β ∈ m∗ the homogeneous space (N hKβ)/Kβ is commutative.

Remark 1. The statement of the theorem remains true if we replace arbitrary points by

generic points in conditions (B) and (C).

Proof. As was already mentioned, Vinberg proved in [43] that the condition (A) holds for

any commutative space. So let us assume that it is fulfilled.

Let γ be a point in n∗. Recall that the Kγ-modules l/k and lγ/kγ are isomorphic. Hence,

S(l/k) is isomorphic to S(lγ/kγ) as a graded associative algebra and also as a Kγ-module.

Consider the homomorphism

ϕγ : S(g/k) −→ S(g/k)/(ξ − γ(ξ) : ξ ∈ n) ∼= S(l/k) ∼= S(lγ/kγ).

Evidently, ϕγ(S(g/k)K) ⊂ S(lγ/kγ)
Kγ .

Let ξ ∈ lγ, η ∈ n. Then γ({ξ, η}) = γ([ξ, η]) = −[ad∗(ξ)γ](η) = 0 = {ξ, γ(η)}.
It can easily be deduced from the above statement and from the formula (1.1), that for

arbitrary bi-homogeneous elements a, b ∈ S(g/k)K , which can be regarded as elements of

S((lγ ⊕ n)/kγ), we have

ϕγ({a, b}l) = {ϕγ(a), ϕγ(b)},

where the second bracket is the Poisson bracket on S(lγ/kγ)
Kγ . In other words, ϕγ is a

homomorphism of the Poisson algebras S(ǧ1/k)
K and S(lγ/kγ)

Kγ .

Given β ∈ m∗, consider the homomorphism

ϕβ : S(g/k) −→ S(g/k)/(ξ − β(ξ) : ξ ∈ m) ∼= S(n).

Clearly, ϕβ(S(g/k)K) ⊂ S(n)Kβ . Note that ϕβ is a homomorphism of Poisson algebras

S(ǧ2/ǩ)
K and S(n)Kβ . For arbitrary bi-homogeneous elements a, b ∈ S(g/k)K we have

ϕβ({a, b}n) = {ϕβ(a), ϕβ(b)},

where the second bracket is a Poisson bracket on S(n)Kβ .

Now we show that homomorphisms ϕγ and ϕβ are surjective. We have S(g) = R[g∗],

S(g/k)K = R[(g/k)∗]K = R[(g/k)∗//K] and S(lγ/kγ)
Kγ = R[m∗//Kγ], S(n)Kβ = R[n∗//Kβ].

Note that
m∗//Kγ

∼= (Kγ ×m∗)//K ⊂ (g/k)∗//K;

n∗//Kβ
∼= (n∗ ×Kβ)//K ⊂ (g/k)∗//K.

Moreover, Kγ and Kβ are closed in n∗ and m∗, respectively. Hence the subsets (Kγ⊕m∗)//K

and (n∗⊕Kβ)//K are closed in (g/k)∗//K. Thus, the restrictions R[(g/k)∗]K → R[Kγ⊕m∗]K
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and R[(g/k)∗]K → R[n∗ ⊕ Kβ]K are surjective. It is therefore proved that ϕγ and ϕβ are

surjective.

(⇐=) Suppose conditions (B) and (C) are satisfied. Clearly, X is commutative if and only

if both Poisson brackets { , }n and { , }l equal zero on S(g/k)K . If {a, b}l 6= 0 for some

elements a, b ∈ S(g/k)K then there is a (generic) point γ ∈ n∗ such that ϕγ({a, b}l) 6=
0. But ϕγ({a, b}l) = {ϕγ(a), ϕγ(b)} = 0. Analogously, if {a, b}n 6= 0 for some elements

a, b ∈ S(g/k)K , then there is a (generic) point β ∈ m∗ such that ϕβ({a, b}l) 6= 0. But

ϕβ({a, b}l) = {ϕβ(a), ϕβ(b)} = 0.

(=⇒) Suppose X is commutative. Then both Poisson brackets { , }n and { , }l vanish

on S(g/k)K . Hence {ϕγ(a), ϕγ(b)} = 0, {ϕβ(a), ϕβ(b)} = 0 for any a, b ∈ S(g/k)K . The

homomorphisms ϕγ and ϕβ are surjective, so the Poisson algebras S(lγ/kγ)
Kγ and S(n)Kβ

are commutative.

Example 1. Making use of Theorem 1.3, we verify that (H2n h U2n)/Spn is commutative.

We regard LieH2n as C2n ⊕ R, where R is the centre and C2n is the standard U2n-module.

Since U2n and Spn are transitive on the sphere in C2n, R[C2n]U2n = R[q] = R[C2n]Spn ,

where q is an invariant of degree 2.

The generic stabiliser for Spn : C2n is equal to Spn−1. The space U2n−1/Spn−1 is a compact

real form of the complex spherical space GL2n−1(C)/Sp2n−2(C), and, hence, is commutative.

It remains to check that condition Theorem 1.3(C) holds. Here we have m = u2n/spn =∧2 C2n. It is a classical result that K∗(ΛC2n) = SU2 × . . .× SU2︸ ︷︷ ︸
n

. As a K∗(m)-module

n = v1 ⊕ . . . ⊕ vn ⊕ R, where vi = C2 for every i. Each vi is acted upon by its own SU2.

Note that [vi, vj] = 0 for i 6= j. For K∗(m)-invariants we have S(n)K∗(m) = R[t1, . . . , tn, ξ],

where ti is the quadratic SU2-invariant in S2(vi) and ξ ∈ h′n. Evidently, ti and tj commute

as elements of the Poisson algebra S(n), and ξ lies in the centre of S(n).

1.2 Properties of commutative spaces

In this and subsequent sections, the commutativity criterion (Theorem 1.3) is applied to the

classification problem of Gelfand pairs. As always, X = G/K = (NhL)/K is a commutative

homogeneous space and P is the ineffective kernel of the action L : n. As a consequence

of Theorem 1.3(A), we have L/P ⊂ O(n), L = L∗(n)K (or, equivalently, L/P is a product

of L∗(n)/P and K/(K ∩ P )), and Lγ is reductive for each γ ∈ n∗. The latter implies that

Lγ/Kγ is commutative if and only if it is spherical.

We will frequently use the following result.

Proposition 1.4. [43, Corollaries to Proposition 10] Let G/K be commutative. Then

1) for any normal subgroup Q ⊂ G the homogeneous space G/(QK) = (G/Q)/(K/(Q ∩
K)) is commutative;
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2) for any compact subgroup F ⊂ G containing K the homogeneous space G/F is com-

mutative;

3) for any subgroup F ⊂ G containing K the homogeneous space F/K is commutative.

In particular, (G/P )/(K/(K ∩ P )) is a commutative homogeneous space of G/P = N h
(L/P ). In this section we consider commutative spaces satisfying condition

(∗) L 6= K and the action L : n is locally effective, i.e., P is finite.

This implies that L is compact.

Definition 5. Let M , F , G, K be Lie groups, with F ⊂ M and K ⊂ G. The pair (M,F )

is called an extension of (G,K) if

G $ M, M = GF, K = F ∩G.

Condition (A) means that (L,K) is an extension of (L∗(n), K∗(n)).

Below we state and prove several properties of generic stabilisers and extensions of spher-

ical pairs. They will be the basic classification tools.

Denote by B(F (C)) and U(F (C)) ⊂ B(F (C)) a Borel and a maximal unipotent sub-

groups of a complex reductive group F (C).

Lemma 1.5. Let a symmetric pair (M = F × F, F ) with a simple compact group F be an

extension of a spherical pair (G,H). Then G contains either F × {e} or {e} × F .

Proof. Let G1 and G2 be the images of the projections of G onto the first and the second

factors respectively. The group G1×G2 acts spherically on F ∼= M/F ∼= G/H. If neither G1

nor G2 equals F , then due to [2, Theorem 4] we have dimB(Gi(C)) ≤ dimU(F (C)). Hence,

dimB((G1 × G2)(C)) ≤ 2 dimU(F (C)) < dimF (C) and the action (G1 × G2) : F cannot

be spherical. Assume that G1 = F but F × {e} is not contained in G. Then G ∼= F and

H = {e}. But the pair (F, {e}) cannot be spherical.

Lemma 1.6. Suppose a compact group F ⊂ Spn acts irreducibly on Hn and F |ξH = Sp1 for

generic ξ ∈ Hn. Then F = Spn.

Proof. Let F (C) ⊂ Sp2n(C) be the complexification of F . Take a generic subspace C2 ⊂
C2n and let SL2 × Sp2n−2 be the subgroup of Sp2n(C) preserving it. Then the intersection

F (C)∩ SL2 × Sp2n−2 contains a subgroup H ∼= SL2 acting on C2 non-trivially. Hence, F (C)

acts on C2n locally transitively. It was proved by Panyushev [38] in a classification-free way,

that under our assumptions F (C) = Sp2n(C).

Lemma 1.7. Suppose l ⊂ so(V ) is a Lie algebra. Let l1 be a non-Abelian simple ideal of

l. Denote by π the projection onto l1. If π(l∗(V )) = l1 and W1 is a non-trivial irreducible

l-submodule of V that is also non-trivial as an l1-module, then l1 = su2 and W1 is of the

form H1 ⊗H Hn, where l acts on Hn as spn.
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Proof. Set l = l1⊕ l2. We may assume that V = W1. The vector space V can be decomposed

into a tensor product V = V1,1 ⊗D V
1
1 of l1 and l2-modules, where D is one of R, C or H.

Here l1 acts trivially on V 1
1 and l2 acts trivially on V1,1. Both actions l1 : V1,1 and l2 : V 1

1 are

irreducible.

Let x = x1,1 ⊗ x1
1 ∈ V be a non-zero decomposable vector. Because V1,1 is a non-trivial

irreducible l1-module, (l1)x 6= l1. We have l∗ ⊂ lx up to conjugation.

Evidently, lx ⊂ n1(x)⊕n2(x), where ni(x) = {ξ ∈ li : ξx ∈ Dx}. Since l1 = π(l∗) ⊂ n1(x),

we have n1(x) = l1. Hence, Dx1,1 is an l1-invariant subspace of V1,1. Thus V1,1 = Dx1,1 and

l1 ⊂ gl1(D). If D equals R or C, gl1(D) is Abelian. If D = H then l1(x) ⊂ sp1. Thus we have

shown that l1 = sp1 = su2 and W1 = H1 ⊗H Hn. Moreover, l2|Hx = sp1. To conclude, notice

that l has to act on Hn as spn by Lemma 1.6.

Lemma 1.8. Suppose l is an ideal of a Lie algebra f ⊂ so(V ). Denote by π the orthogonal

projection of f to l. Then l∗(V ) is an ideal of π(f∗(V )) and π(f∗(V ))/l∗(V ) is a direct sum

of several copies of su2 and an Abelian Lie ideal.

Proof. Without loss of generality, we may assume that l is semisimple. A generic stabiliser

is defined up to conjugation. Therefore, suppose that l∗(V ) ⊂ f∗(V ). Then l∗(V ) = f∗(V )∩ l

is an ideal of f∗(V ). Hence, l∗(V ) = π(l∗(V )) is an ideal of π(f∗(V )). Write f = l⊕ a, where

a is the complementary ideal. Then V can be represented as a direct sum

V = (V1 ⊗D1 V
1)⊕ . . .⊕ (Vp ⊗Dp V

p),

where Vi are irreducible l-modules, V i are a-modules; l (resp. a) acts trivially on each V i

(resp. Vi). In each summand, the tensor product is taken over a skew-field Di, which equals

R, C or H depending on Vi and V i. Set l̃ :=
⊕

li, ã :=
⊕

ai, where

li = so(Vi), ai = so(V i) for Di = R,
li = su(Vi), ai = u(V i) for Di = C,
li = sp(Vi), ai = sp(V i) for Di = H.

Here sp(Vi) is a compact real form of the corresponding complex symplectic Lie algebra. By

the construction, l ⊂ l̃, a ⊂ ã. It suffices to prove the assertion of Lemma for the larger

algebra l⊕ ã in place of f.

Therefore we may assume without loss of generality that ã = a. To make the next

reduction, we set f̃ := l̃ ⊕ a, and denote by π̃ the orthogonal projection of f̃ to l̃. Then

l∗(V ) = l ∩ l̃∗(V ), π(f∗(V )) = l ∩ π̃(̃f∗(V )). Hence, π(f∗(V ))/l∗(V ) ⊂ π̃(̃f∗(V ))/̃l∗(V ). That

is, it is sufficient to prove the Lemma for the pair (̃f, l̃).

Recall a classical result concerning generic stabilisers; namely, if n ≤ m, then

(On ×Om)∗(Rn ⊗ Rm) = ({±1})n ×Om−n;

(Un × Um)∗(Cn ⊗ Cm) = (U1)
n × Um−n;

(Spn × Spm)∗(Hn ⊗Hm) = (Sp1)
n × Spm−n.
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Hence π̃(̃f∗(V ))/̃l∗(V ) =
⊕p

i=1 ti, where ti is trivial, if Di = R; Abelian, if Di = C; and if

Di = H, then ti = su2 ⊕ . . .⊕ su2 (di times), where di = min(dimVi, dimV i).

Set L∗ := L∗(n), K∗ := K∗(n). Recall that there is a factorisation L = Z(L)×L1× . . .×Lm.

Denote by πi the natural projection L→ Li.

Theorem 1.9. Suppose G/K is commutative and satisfies condition (∗). Then any non-

Abelian normal subgroup of K distinct from SU2 is contained in a simple factor of L.

Proof. Assume that K1 is a normal subgroup of K having non-trivial projections to, say, L1

and L2. Consider the subgroup M = Z(L) × π1(K) × π2(K) × L3 × . . . × Lm. Evidently,

K ⊂ M . According to Proposition 1.4, we can replace L by M without loss of generality

or better assume from the beginning that Li = πi(K) = πi(K1) ∼= K1 (i = 1, 2). Let π1,2

denote the projection of L onto L1 × L2. By Theorem 1.3(A), L1 × L2 = K1π1,2(L∗); and

by Theorem 1.3(B), L∗/K∗ is commutative, hence (L∗, K∗) is a spherical pair. The pair

(π1,2(L∗), π1,2(K∗)) is also spherical as an image of a spherical pair. Clearly, π1,2(K∗) ⊂
π1,2(K) ∩ π1,2(L∗). Thus the symmetric pair (L1 × L2, K1) is an extension of the spherical

pair (π1,2(L∗), π1,2(K) ∩ π1,2(L∗)). By Lemma 1.5, the group π1,2(L∗) contains L1 or L2 (we

can assume that it contains L1). Then π1(L∗) = L1 and L1 = SU2 by Lemma 1.7.

In Table 1.1, we present the list of all factorisations of compact simple Lie algebras

obtained in [32].

Table 1.1.

g g1 ϕ1 g2 ϕ2 u

su2n spn $1 su2n−1 $1 + I1 spn−1

su2n−1 ⊕ R spn−1 ⊕ R
so2n+4 so2n+3 $1 + I1 sun+2 $1 +$n+1 sun+1

sun+2 ⊕ R sun+1 ⊕ R
so4n so4n−1 $1 + I1 spn $1 +$1 spn−1

spn ⊕ R spn−1 ⊕ R
spn ⊕ su2 spn−1 ⊕ su2

so16 so15 $1 + I1 so9 $4 so7

so8 so7 $3 so7 $1 + I1 G2

so7 G2 $1 so5 $1 + I1 + I1 su2

so5 ⊕ R su2 ⊕ R
so6 $1 + I1 su3

Here g1, g2 are subalgebras of g, g = g1 + g2, u = g1 ∩ g2. In all cases n > 1, ϕ1 and ϕ2

are the restrictions of the defining representation of the complexification g(C) to g1(C) and

g2(C) (whose highest weights are indicated), $m are the fundamental weights, I1 is the trivial
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one-dimensional representation. Note that all algebras g1 in Table 1.1 are simple; if g2 is not

simple, then g2 = g3 ⊕ a, where g3 is simple, a = R or a = su2 and g = g1 + g3.

Lemma 1.10. Let L̂ be a simple non-Abelian subgroup of SO(V ). Suppose l̂ 6= su2, V
L̂ =

{0}, and there are proper subgroups K̂, F ⊂ L̂ such that L̂∗(V ) is a normal subgroup of F ,

f/̂l∗(V ) ⊂ su2, L̂ = FK̂, and the pair (F, F ∩ K̂) is spherical. Then the triple (L̂, K̂, V ) is

contained in Table 1.2a. (If V = V1 + V2 is a reducible L̂-module, then it is assumed that

each (L̂, K̂, Vi) is also an item of Table 1.2a.)

Proof. By our assumptions L̂ = FK̂, hence, l̂ = f + k̂. Since L̂ is simple, the factorisation

l̂ = f+ k̂ occurs in Table 1.1. In particular, l̂ is either su2n or som. Suppose l̂ = g, f = gi, and

k̂ = gj, where {i, j} = {1, 2}. Then f ∩ k̂ = u, therefore the pair (gi, u) is spherical. By the

hypotheses, l̂∗(V ) is an ideal of f and f/̂l∗(V ) ⊂ su2. Thus l̂∗(V ) is one of the algebras: gi,

g′i, gi/sp1, where the last case is only possible if gi = spn ⊕ sp1. It can be easily seen from

Table 1.1, that l̂∗(V ) is non-trivial (and even non-Abelian). Hence, the representation l̂ : V

is contained in the Élashvili’s classification [14].

Suppose l̂ = g = su2n. Then l̂∗(V ) is one of the algebras: spn, su2n−1, u2n−1. According

to [14], either V = C2n, then we obtain the first row of Table 1.2a; or V = R6 with l̂ = su4,

then (L̂, K̂, V ) = (SU4,U3,R6) is a particular case of item 3 up to a local isomorphism.

Suppose now that l = som. According to [14], if m ≥ 15, then l∗(V ) = som−k and V is

the sum of k copies of Rm. It follows form Table 1.1 that k = 1 and l̂∗(V ) = f = som−1.

According to Krämer’s classification [25], the pair (f, u) is spherical only in one case, namely

(so2n+3, sun+1⊕R). The corresponding triple is item 3 of Table 1.2a. For smaller m one has

to check several cases by direct computations. The result is given in rows 2a, 2b, 4a, and 4b

of Table 1.2a.

Proposition 1.11. Let (N h L)/K be a commutative homogeneous space satisfying condi-

tion (∗). Suppose there is a simple direct factor L1 ⊂ L such that L1 6= SU2, L1 6⊂ K and

nL1 ⊂ n′. Then the triple (L,K, n) is contained in Table 1.2b.

Proof. According to Theorem 1.9 π1(K) 6= L1. Then, by Lemma 1.7 and Theorem 1.3,

there is a non-trivial factorisation L1 = π1(L∗)π1(K), or equivalently, l1 = π1(l∗) + π1(k).

Set F := π1(L∗). Due to Lemma 1.8, (L1)∗(n) � F and F/(L1)∗(n) is locally isomorphic

to a product of (U1)
q and (SU2)

r. It follows form Table 1.1 that F/(L1)∗(n) is either finite

or locally isomorphic to U1 or SU2. The pair (F, π1(K∗)) is spherical as an image of the

spherical pair (L∗, K∗). Moreover, since π1(K∗) ⊂ F ∩π1(K), the pair (F, F ∩π1(K)) is also

spherical. Hence the triple (L1, π1(K), n/(nL1)) satisfies the assumptions of Lemma 1.10 and

thereby is contained in Table 1.2a.

Set V := n/(nL1) and let NSO(V )(L1) be the normaliser of L1 in SO(V ). Recall that by

our hypothesis nL1 ⊂ n′. Since the action L : n is locally effective, the actions L : (n/n′) and

L : V are locally effective as well. Thus L is contained in SO(V ) and, hence, in NSO(V )(L1)
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up to a local isomorphism. If (L1, π1(K), V ) appears in row 2b, 3 or 4b of Table 1.2a, then

V is an irreducible orthogonal L1-module and L = L1, K = π1(K). These are items 2b, 3

and 4d of Table 1.2b.

It can be easily seen form Table 1.2a, that there at most three subgroups between L̂ and

NSO(V )(L̂). Thus each triple (L̂, K̂, V ) yields at most three possibilities for L and K. For

several arising triples conditions (A) and (B) of Theorem 1.3 are not satisfied. For instance,

assume that (L1, π1(K), V ) is a triple pointed out in row 2a of Table 1.2a and L = SO7×SO2.

Then K ⊂ G2×SO2, (L∗)
0 = SO5, (K∗)

0 = SU2. But SU2 is not a spherical subgroup of

SO5. Hence, condition (B) is not satisfied. We get the same non-spherical pair (L∗, K∗) in

case (L,K, V ) = (SO8×SO3, Spin7×SO3,R8⊗R3).

All triples (L,K, V ) such that L = L∗(V )K, (L∗(V ), K∗(V )) is spherical and V L1 = 0

are contained in Table 1.2b.

Now we describe possible Lie algebra structures on n. We claim that n′ 6= {0} only if the

pair (L,K) is contained in the row 1 or 4a of Table 1.2b.

Set a := nL1 . One can identify V with an L-invariant complement of a in n, i.e., n = a⊕V .

Recall that by our assumptions a ⊂ n′. Hence n = V + [V, V ].

Note that V is reducible only if L = SO8, K = Spin7. In that case V = R8 ⊕ R8 is a

direct sum of two isomorphic L-modules. It follows from [43, the proof of Prop. 15] that

[V, V ] = 0. Hence, n = V is an Abelian Lie algebra.

Suppose now that V is an irreducible L-module. Then n = V ⊕ a and a = [V, V ].

There is an L-invariant surjection Λ2V 7→ [V, V ]. Because representation of L in Λ2V is

completely reducible, [V, V ] can be regarded as an L-invariant subspace of Λ2V . In particular,

a ⊂ (Λ2V )L1 . The space Λ2V contains non-trivial L1-invariants only in cases 1 and 4a. In

both these cases dim(Λ2V )L1 = 1 and n is either an Abelian or a Heisenberg algebra.

Table 1.2a.

L̂ K̂ V

1 SU2n Spn C2n

2a SO7 G2 R7 ⊕ R7

2b Spin7 Spin6 R8

3 SO2n Un R2n

4a SO8 Spin7 R8 ⊕ R8 ⊕ R8

4b SO8 Sp2×SU2 R8

Table 1.2b.

L K n

1 (S)U2n Spn(·U1) h2n, C2n

2a SO7 G2 R7

2b Spin7 Spin6 R8

3 SO2n Un R2n

4a SO8×SO2 Spin7×SO2 h8,R8⊗R2

4b SO8 Spin7 R8⊗R2

4c SO8 Spin7 R8

4d SO8 Sp2 × SU2 R8

The first row of Table 1.2b represents actually six commutative spaces. Namely, L can be

either SU2n or U2n; if L = U2n, then there are two possibilities K = Spn or Spn × U1;
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independently, n can be either C2n or h2n, with N being Abelian or the Heisenberg group

H2n. Similar, row 4a of Table 1.2b represents two commutative spaces. Commutativity of

each item of Table 1.2b can easily be proved by means of Theorem 1.3. For the homogeneous

space contained in row 1 it was done in Example 1. Consider two more examples.

Example 2. The homogeneous space (R2n h SO2n)/Un, indicated in row 3 of Table 1.2b,

is commutative. Since n is Abelian here, condition (C) of Theorem 1.3 is automatically

satisfied. For condition (A), we have R[R2n]SO2n = R[q] = R[R2n]Un . It is easily seen

that L∗ = SO2n−1 and K∗ = Un−1. The corresponding homogeneous space SO2n−1/Un−1 is

spherical by Krämer’s classification [25].

Example 3. The homogeneous space (H8 h (SO8×SO2))/(Spin7×SO2), indicated in row 4a

of Table 1.2b, is commutative. Here L∗ = SO7, K∗ = G2. The pair (SO7, G2) is spherical,

see [25], and according to Table 1.1 SO8 = G2SO7. It remains to check condition 1.3(C). We

have m = l/k ∼= R7, K∗(m) = SU4×SO2, and (n/n′) ∼= C4⊗RC ∼= C4⊕C4 as a K∗(m)-module.

Then (H8 h (SU4×SO2))/(SU4×SO2) is commutative. according to [3].

Proposition 1.12. Suppose X = (N hL)/K is an indecomposable commutative space such

that n 6= 0, L is simple, and L 6= K. Then X is contained in Table 1.2b.

Proof. The action L : n is non-trivial, otherwise X would be a product N × (L/K). Set

a := nL. According to [43, Prop. 15] [a, n] = 0, i.e., a is an Abelian ideal of n. Assume that

a 6⊂ n′. Then a = (a ∩ n′)⊕ a0 and X = A0 × ((N/A0) h L)/K, where A0 ⊂ N , LieA0 = a0.

Thus, a ⊂ n′ and X is contained in Table 1.2b by Proposition 1.11.

Now we can partially extend Theorem 1.9 to normal subgroups SU2 �K.

Lemma 1.13. Suppose a commutative homogeneous space (NhL)/K satisfies condition (∗)
and K1

∼=SU2 is a normal subgroup of K. Then either K1 ⊂ Li for some direct factor Li�L,

or K1 is the diagonal of a product of at most three direct factors of L isomorphic to SU2.

Proof. Suppose πi(K1) 6= {e} and Li 6= SU2. Then πi(K) 6= Li. Set a = nLi . As we

have seen in the proof of Proposition 1.11, the triple (Li, πi(K), n/a) satisfies conditions of

Lemma 1.10, and, hence, is contained in Table 1.2a. Note that K1 is a normal subgroup of

πi(K). Thus, Li = SO8, πi(K) = Sp2 × SU2. If K1 had a non-trivial projection onto some

other simple factor of L, then the pair (SO8 × SU2, Sp2 × SU2) would be spherical. (Here

SU2 is embedded in SO8 as the centraliser of Sp2 and in SU2 isomorphically.) But this is not

the case. To conclude with, note that the pair ((SU2)
4, SU2) is not spherical either.

Let G/K be a Gelfand pair and (L4, K4) a spherical subpair of (L,K), i.e., L4 � L,

K4 �K and K4 = L4 ∩K. Denote by π4 the projection L→ L4.

Lemma 1.14. If (L4, K4) = (SU2 × SU2 × SU2, SU2) or (L4, K4) = (SU2,U1) then

π4(L∗) = L4, if (L4, K4) = (SU2 × SU2, SU2) then π4(L∗) equals either L4, or SU2 × U1.
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Proof. The group SU2 has only trivial factorisations, besides, (π4(L∗), π
4(L∗) ∩ K4) is a

spherical pair. In particular, π4(L∗)∩K4 is not empty. This reasoning explains the second

and the third cases. It remains to observe that in the first case the group π4(L∗) can not be

SU2 × SU2 × U1, because the pair (SU2 × SU2 × U1,U1) is not spherical.

Results of this section provide a basis for further classification of Gelfand pairs; for

example, see Theorem 1.15.

1.3 Principal commutative spaces

Keep the previous notation. In particular, X = G/K = (N h L)/K is commutative, L =

Z(L)×L1 × · · · ×Lm, and P is the ineffective kernel of L : n. Decompose n/n′ into a direct

sum of irreducible L-invariant subspaces n/n′ = w1 ⊕ . . .⊕wp.

Definition 6. We say that G/K is principal if P is semisimple, Z(K) = Z(L) × (L1 ∩
Z(K))× . . .× (Lm ∩ Z(K)) and Z(L) = C1 × . . .× Cp, where Ci ⊂ GL(wi).

The condition of “principality” concerns only properties of Z(L) and Z(K). The classifi-

cation of commutative homogeneous spaces can be divided in two parts: (1) the classification

of principal commutative spaces and (2) description of possible centres of L and K. In this

Chapter, we concentrate on part (1). Part (2) is considered in Section 4.2.

Suppose z0 ⊂ [n, n] is an L-invariant subspace, and Z0 ⊂ N is the corresponding connected

subgroup. Then X/Z0 = ((N/Z0) h L)/K is also commutative, see [43]. The passage from

X to X/Z0 is called a central reduction.

Definition 7. A commutative homogeneous space is said to be maximal, if it cannot be

obtained by a non-trivial central reduction from a larger one.

Theorem 1.15. Let X = (N h L)/K be a maximal indecomposable principal commutative

homogeneous space satisfying condition (∗). Then either X is contained in Table 1.2b (and

L′ is simple); or (L,K) is isomorphic to a product of pairs (SU2× SU2× SU2, SU2), (SU2×
SU2, SU2) or (SU2,U1) and a pair (K1, K1), where K1 is a compact Lie group.

Proof. Suppose first that each normal subgroup Li 6= SU2 is contained in K. Then the

spherical pair (L,K) is a product of the “SU2-pairs” and (K1, K1), where K1 contains the

connected centre of L and all simple normal subgroups Li 6= SU2.

Suppose now that there is a simple normal subgroup Li 6= SU2 of L, which is not a

subgroup of K. Then we prove that X is contained in Table 1.2b.

Set a = nLi and let n = a ⊕ V̂ be an L-invariant decomposition. Denote by P̂ the

identity component of the ineffective kernel of L : V̂ and set L̂ := L/P̂ , K̂ := K/(K ∩ P̂ ),

n̂ := V̂ + [V̂ , V̂ ]. Then (N̂ h L̂)/K̂ is commutative by Proposition 1.4. Due to Theorem 1.9
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πi(K) 6= Li. Hence, Li, which is a simple direct factor of L̂, is not contained in K̂. Therefore,

(N̂ h L̂)/K̂ satisfies conditions of Proposition 1.11 and is contained in Table 1.2b. We can

identify L̂ with the maximal connected subgroup of L acting on V̂ locally effectively. Then

L = L̂ · P̂ . We show that if P̂ is non-trivial, then X is either decomposable or not maximal.

Since X is principal, Z(L) = Ĉ ×C1, where Ĉ = GL(V̂ )∩Z(L). Hence, Ĉ ⊂ L̂, C1 ⊂ P̂

and L = L̂× P̂ . Similarly, the connected centre Z = Z(K) is a product Z = Z(L)× Ẑ×Z1,

where Ẑ ⊂ L̂′ and Z1 ⊂ P̂ ′. According to Table 1.2b, L̂ = Ĉ × Li. Let Kj be a simple

non-Abelian normal subgroup of K such that πi(Kj) 6= {e}. If Kj 6∼= SU2, then Kj ⊂ Li by

Theorem 1.9. If Kj
∼= SU2, then Kj ⊂ Li by Lemma 1.13. We conclude that K̂ = L̂ ∩ K

and K = K̂ × F , where F ⊂ P̂ .

Evidently, a is a subalgebra of n. Moreover, because different L-invariant summands of

n commute (see [43, Prop. 15]), we have [V̂ , a] = 0. Let A ⊂ N be a connected subgroup

with LieA = a. Recall that either L̂ = Li or L̂ = U1 × Li. Anyway, L̂ acts on a trivially.

Assume that X is not contained in Table 1.2b, i.e., X 6= (N̂ h L̂)/K̂. If [V̂ , V̂ ] ⊂ V̂ , we

obtain a non-trivial decomposition X = (N̂hL̂)/K̂×(AhP̂ )/F . But by our assumptions X

is indecomposable, hence, [V̂ , V̂ ] 6⊂ V̂ and n̂′ 6= 0. According to Table 1.2b, n̂ = V̂ ⊕ z, where

z ∼= R is a trivial L-module. Let a0 be an L-invariant complement of z in a, i.e., n = V ⊕z⊕a0.

If a0 is a subalgebra of n (then it is an ideal), we again obtain a decomposition of X. If

z ⊂ [a0, a0], then X is a central reduction of (N̂ h L̂)/K̂ × (Ah P̂ )/F by a one dimensional

subgroup embedded diagonally into N̂ ′ × A′. Hence, X is not maximal.

Item 1 of Table 1.2b is maximal if and only if n = h2n, and it is principal if and only if

L̂ = SU2n, K̂ = Spn or L̂ = U2n, K̂ = U1 · Spn; item 4a of Table 1.2b is maximal if and only

if n = h8. Homogeneous spaces corresponding to other rows of Table 1.2b are maximal and

principal.

1.4 The ineffective kernel

The symbols G,L,N,K have the same meaning, as above. In this section we describe

possible ineffective kernels P of actions L : n. Let L� be the maximal connected normal

subgroup of L acting on n locally effectively. Then L can be decomposed as L = P ·L�. We

assume that G/K is indecomposable and G is not reductive, hence P 6= L. In this section

we frequently use classification of spherical pairs [25], [10, 30].

Lemma 1.16. Let G/K be commutative. Suppose a normal subgroup K1 6= SU2 of K is

contained in neither P nor L�. Then either K1 = SOn with n ≥ 5, or K1 = SUn with n ≥ 3;

and there are simple direct factors P1, L
�
1 of P , L� such that K1 ⊂ P1×L�1, P1

∼= L�1
∼= K1.

Proof. It can be seen from the classification of spherical pairs, that K1 ⊂ Li × Lj. Suppose

that K1 ⊂ P1 × L�1. The action K1 : n is non-trivial, otherwise K1 would be a subgroup
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of P . Denote by πK1 the projection onto K1 in K and by π1,1 the projection onto P1 × L�1
in L. By Lemma 1.7, πK1 (K∗) 6= K1. Recall that (L∗, K∗) is spherical. Hence, the pair

(π1,1(L∗), π1,1(K∗)) is also spherical. Note that L∗ = P ·L�∗(n). Hence, π1,1(L∗) = P1×π�1(L∗),
where π�1 is a projection onto L�1 in L.

We claim that (K1 × πK1 (K∗), π
K
1 (K∗)) is spherical. Without loss of generality, we can

assume that P1
∼= L�1

∼= K1. If this is not the case, we replace L by a smaller subgroup

containing K, namely each of P1 and L�1 is replaced by a projection of K onto it. We

illustrate the embedding π1,1(K∗) ⊂ π1,1(L∗) by the following diagram.

π1,1(L∗) ∼= K1 × π�1(L∗)

π1,1(K∗) = πK1 (K∗)

BBBBB
vvvvvv

Because the pair (π1,1(L∗), π1,1(K∗)) is spherical, (K1 × πK1 (K∗), π
K
1 (K∗)) is also spherical.

According to the classification of spherical pairs, there are only two possibilities: either

K1 = SOn+1, π
K
1 (K∗) = SOn; or K1 = SUn+1, π

K
1 (K∗) = Un.

Assume that either P1 or L�1 is larger than K1. Then, according to classifications [10, 30],

(P1×L�1, π1,1(K)) is one of the following six pairs.

sun sun+1(sun,1)

sun

xxxxxxxx
u1

spn+2(spn,2) sp2

spn sp2

EEEEEEEE

son son+1(son,1)

son

2222222

{{{{{{{{

In particular, either P1 or L�1 is equal to K1.

Suppose first that P1
∼= K1 and L�1 is larger than K1. Then we get a non-trivial factori-

sation L�1 = π�1(L∗)π
�
1(K). Moreover, π�1(L∗) ∩ π�1(K) contains either SOn or Un, depending

on K1. According to Table 1.1, (P1 × L�1, π1,1(K)) = (SU3 × SU4,U3) and π�1(L∗) = Sp2.

We have π1,1(K∗) ⊂ Sp2 ∩ U3 = Sp1 × U1. But Sp1 × U1 is not a spherical subgroup of

π1,1(L∗) = SU3 × Sp2. Hence, the pair (π1,1(L∗), π1,1(K∗)) is not spherical. A contradiction.

Suppose now that L�1
∼= K1 and P1 is larger that K1. Denote by πP1 the projection onto

P1. We can decompose πP1 (K) into a locally direct product πP1 (K) ∼= F ·K1. Then F ·πK1 (K∗)

should be a spherical subgroup of P1. But it is not in any of six cases listed above.

Example 4. The homogeneous spaces ((Rn h SOn)× SOn)/SOn and ((Hn h Un)× SUn)/Un,

where the normal subgroups SOn and SUn of K are diagonally embedded into SOn×SOn and

SUn×SUn, respectively, are commutative. We prove it for the second space. Commutativity

of the first one can be proved by the same method.

We have L∗ = SUn × Un−1 and K∗ = Un−1. Clearly L = L∗K. According to [10, 30],

L∗/K∗ is spherical. Thus conditions (A) and (B) of Theorem 1.3 are satisfied. To check

condition (C) we show that S(n)K∗(m) is commutative. Recall that m = l/k. Here K∗(m) =

(U1)
n and n = v1 ⊕ . . . ⊕ vn ⊕ R, where vi = R2 is an irreducible K∗(m)-module for every
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1 ≤ i ≤ n. Each vi is acted upon by its own U1. Note that [vi, vj] = 0 for i 6= j. For

K∗(m)-invariants we have S(n)K∗(m) = R[t1, . . . , tn, ξ], where ti is the quadratic U1-invariant

in S2(vi) and ξ ∈ n′. Evidently, ti and tj commute as elements of the Poisson algebra S(n),

and ξ lies in the centre of S(n).

Theorem 1.17. Suppose X = (N h L)/K is a maximal principal indecomposable commu-

tative homogeneous space. Then either X is one of the spaces ((Rn h SOn) × SOn)/SOn,

((Hn h Un) × SUn)/Un or each non-Abelian simple normal subgroup K1 6= SU2 of K is

contained in P or L�.

Proof. Let K1 6= SU2 be a non-Abelian simple normal subgroup of K that is contained in

neither L� nor P . Then, by Lemma 1.16, either K1 = SOn or K1 = SUn and there are

P1
∼= L�1

∼= K1 such that K1 ⊂ P1 × L�1. Choose an L-invariant decomposition n = nL
�
1 ⊕ V .

Consider first the case K1 = SOn. Recall that π1,1 stands for the projection L→ P1×L�1.
The pair (π1,1(L∗), π1,1(K∗)) is spherical as an image of the spherical pair (L∗, K∗). According

to [10, 30], π1,1(L∗) = SOn×SOn−1. It follows that L∗(V ) = SOn−1 and using [14] we obtain

V = Rn. It is easily seen that [V, V ] = 0 and ((Rn h SOn)× SOn)/SOn is a direct factor of

X. But X is indecomposable, and we are done.

Consider now the second case K1 = SUn. Here π1,1(L∗) = SUn×Un−1, L∗(V ) = (S)Un−1,

and V = Cn. Set CV = Z(L) ∩GL(V ). Since X is principal, CV ⊂ K and CV acts trivially

on nL
�
1 ∩ n′. Assume that CV is trivial. Then π1,1(L∗) = SUn × SUn−1, π1,1(K∗) = SUn−1.

But the pair (SUn × SUn−1, SUn−1) is not spherical. A contradiction. Thus CV = U1.

Denote by n1 := V + [V, V ] the Lie subalgebra generated by V , and by N1 ⊂ N the

corresponding connected subgroup. Assume that X 6= ((N1 h Un) × SUn)/Un. Then L =

(Un × SUn)× F , K = Un ×H, where H ⊂ F and F acts on V (and hence on n1) trivially.

Let a ⊂ nL
�
1 be an L-invariant complement of n1 in n. Similar to the proof of Theorem 1.15,

we show that X is either decomposable or not maximal. If a is a subalgebra, then it is an

ideal, and X is decomposable. Assume that [a, a] 6⊂ a. Since the action L�1 : a is trivial

[a, a] ∩ V = 0. Thus [V, V ] ⊂ [a, a] and X is not maximal.

We have proved that X = ((N1 h Un) × SUn)/Un. Since V is an irreducible L-module

V ∩ [V, V ] = {0}. Hence, [V, V ] is a trivial L-module. It follows that either n1 = Cn or

n = hn. But in case n1 = Cn, X is a a central reduction of ((Hn h Un) × SUn)/Un and,

therefore, is not maximal. Thus n1 = hn.

Proposition 1.18. Let G/K be a maximal principal indecomposable commutative space.

Suppose there is a direct factor Li 6= Sp1, Li 6⊂ P such that πi(K) 6= Li. Then X is

contained in Table 1.2b.

Proof. The commutative space (G/P )/(K/(K ∩P )) is contained in Table 1.2b due to Theo-

rem 1.15. In particular, (L�)′ = Li. Assume that P is not trivial. Since G/K is principal and

indecomposable, there is a simple direct factor K1 �K which is contained in neither L� nor
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P . According to Theorem 1.17, K1 = Sp1. Then, as we can see from Table 1.2a, Li ∼= Spin8.

But as was already mentioned, the pair (SU2 × Spin8, SU2 × Sp2) is not spherical.

Let K1 = SU2 be a normal subgroup of K. Suppose it has a non-trivial projections

onto P1 and L1 ⊂ L�. If L1 6= SU2, then π1(K) 6= L1 and L1
∼= Spin8. But the pair

(SU2 × Spin8, SU2 × Sp2) is not spherical. Thus L1 = SU2.

If πK1 (K∗) 6= K1, i.e., πK1 (K∗)
0 = U1, then K1 ⊂ P1 × L�1 and P1 = SU2. But if

πK1 (K∗) = K1 (and this can be the case), then P1 can be larger and K1 can have a non-

trivial projection onto some other simple factor P2 or L�2 = SU2.

Example 5. Let Spm−1,1 be a non-compact real form of Sp2m(C). Set P := Spm−1,1 × Spl,

L� := Sp1 × Spn, K := Spm−1 × Spl−1 × Sp1 × Spn and take for N an Abelian group Hn.

The inclusions and actions are illustrated by the following diagram.

Spm−1,1 Spl Sp1

**VVVVVVVVVVVVVVVVVVVV Spn

''PPPPPPPPPPP

Spm−1 Spl−1 Sp1

IIIIIII

UUUUUUUUUUUUUUUU
Spn Hn

The homogeneous space ((NhL�)×P )/K is commutative. Here L∗ = Spm−1,1×Spl×Sp1×
Spn−1 and K∗ = Spm−1 × Spl−1 × Sp1 × Spn−1.

1.5 Sp1-saturated spaces

Keep the previous notation. Let Li be a simple direct factor of L. By our assumptions L is

a product L = Z(L)× Li × Li, where Li contains all direct factors Lj with j 6= i.

Definition 8. A commutative homogeneous space X is called Sp1-saturated, if

(1) any normal subgroup K1
∼= SU2 of K is contained in either P or L�;

(2) if a simple direct factor Li is not contained in P and πi(L∗) = Li, then Li ⊂ K;

(3) if there is an L-invariant subspace wj ⊂ (n/n′) such that for some Li the action

Li : wj is non-trivial and the action Z(L)×Li : wj is irreducible, then Li acts on (n/n′)/wj

trivially.

Note that the commutative homogeneous space described in Example 5 is not Sp1-

saturated. Condition (1) is not fulfilled there.

Example 6. Set X = ((N h (Spn × Sp1)) × Sp1)/(Spn × Sp1), where n = Hn ⊕ H0 is a

two-step nilpotent non-commutative Lie algebra with [Hn,Hn] = H0, H0 is the space of

purely imaginary quaternions, the normal subgroup Sp1 of K is the diagonal of the product

Sp1 × Sp1. Here Hn = Hn ⊗H H, where Spn acts on Hn and Sp1 acts on H1; H0
∼= sp1 as an

L-module, i.e., Spn acts on it trivially and Sp1 via adjoint representation.

Evidently, X = (N hL)/K is not Sp1-saturated. We show that it is commutative. First

we compute the generic stabiliser L∗. Recall that (Spn × Sp1)∗(Hn) = Spn−1 × Sp1. Clearly
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L∗(H0) = Spn×U1 × Sp1, (Spn×U1)∗(Hn) = Spn−1 ×U1. We have L∗ = Spn−1 ×U1 × Sp1,

K∗ = K ∩ L∗ = Spn−1 × U1, K∗(m) = Spn × ((Sp1)∗(sp1)) = Spn × U1. One can easily

verify conditions (A) and (B) of Theorem 1.3. Tables of [43] and [44] shows that (C) is also

satisfied.

If X is a non-Sp1-saturated commutative homogeneous space, then it can be made Sp1-

saturated by slightly enlarging K, L and, possibly, N . For instance, if a simple factor

Sp1 of K has non-trivial projections onto P and L�, then we replace P by P × Sp1 or

P × Sp1 × Sp1 (the second replacement is needed if Sp1 has non-trivial projections onto two

simple factors of P ). The group K is replaced by K × Sp1. Starting with the commutative

spaces from Example 6, we construct an Sp1-saturated commutative homogeneous space

(Sp1 × Sp1/Sp1)× (N hK/K), where K = Sp1 × Spn and N is the same as before.

Example 7. Set L = K = Spn × Sp1 × Spm, n = Hn ⊕ Hm ⊕ H0, where both subspaces Hn

and Hm are not commutative and [Hn,Hn] = [Hm,Hm] = H0. We have S(g/k)K = S(n)K =

R[ξ1, ξ2, η], where ξ1 ∈ S2(Hn)Spn , ξ2 ∈ S2(Hm)Spm , η ∈ S2(H0)
Sp1 , so the corresponding

homogeneous space (N hK)/K is commutative. The third condition of Definition 8 is not

fulfilled. If we want to enlarge L, we also need to enlarge N . As an Sp1-saturation we get

a product of two commutative spaces (Ni hKi)/Ki, where n1 = Hn ⊕H0, K1 = Spn × Sp1;

n2 = Hm ⊕H0, K2 = Spm × Sp1.

The procedure that is inverse to Sp1-saturation can have steps of three different types.

First, one simple factor Sp1 of K is replaced by U1; second, two of three simple factors Sp1

of K are replaced by the diagonal of their product; third, several simple factors Sp1 of L are

replaced by the diagonal of their product, K is replaced by the intersection of the former K

and new L and probably N is decreased.

Suppose F ⊂ SO(V ), where V is a finite dimensional vector space, F = Sp1×F̌ , and

R[V ]F = R[V ]F̌ , i.e., F = F∗(V )F̌ or, equivalently, F∗(V ) ∼= Sp1·F̌∗(V ). Then one can

construct several non-Sp1-saturated commutative homogeneous spaces, for instance, ((V h
F )×Sp1)/(F̌×Sp1), ((V h F )×Spm)/(F̌×Sp1×Spm−1), ((V h F )×Spm,1)/(F̌×Sp1×Spm),

(V h F )/(U1×F̌ ), where V is regarded as a simply connected Abelian Lie group.

Thus, in order to classify all commutative homogeneous spaces, one should determine all

such triples (F, F̌ , V ). This problem is rather technical.

Example 8. Suppose F̌ = (Sp1)
n, V = nH and the action F : V is given by the following

diagram.

Sp1

11
11

11
1
× Sp1

11
11

11
1













× Sp1

11
11

11
1













× . . . × Sp1

11
11

11
1













× Sp1













H ⊕ H ⊕ H ⊕ . . . ⊕ H ⊕ H

Then F∗(V ) = Sp1, F̌∗(V ) = {e}, F∗(V ) ∼= Sp1 × F̌∗(V ), and, hence, F = F∗(V )F̌ .
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The description of all such triples (F, F̌ , V ) can be stated in terms of certain weighted

trees. But the commutative spaces obtained in this way do not differ much from either

reducible ones or spaces of Euclidian type. In this chapter we classify Sp1-saturated com-

mutative spaces and postponed technical details until Chapter 4.

Theorem 1.19. Any maximal indecomposable principal Sp1-saturated commutative homo-

geneous space belongs to the one of the following four classes:

1) affine spherical homogeneous spaces of reductive real Lie groups;

2) spaces corresponding to the rows of Table 1.2b;

3) homogeneous space ((RnhSOn)×SOn)/SOn, ((HnhUn)×SUn)/Un, where the normal

subgroups SOn and SUn of K are diagonally embedded into SOn × SOn and SUn × SUn,

respectively;

4) commutative homogeneous spaces of Heisenberg type.

Proof. Let X = G/K be a commutative homogeneous space. If G is reductive, X belongs

to the first class. If L = K then it is a space of Heisenberg type.

Assume that G is not reductive and L 6= K. Suppose a simple factor K1 of K has

non-trivial projections onto both P and L�. Then due to condition (1) of the definition

of Sp1-saturated commutative spaces, K1 6= SU2. By Theorem 1.17, X belongs to the 3-d

class. If all simple factors of K are contained in either P or L�, then, because X is principal,

P 0/(P 0 ∩ K) is a factor of X. But X is indecomposable and G is not reductive, so P 0 is

trivial. Thus, X satisfies condition (∗).
If there is a simple factor L1 of L such that π1(L∗) 6= K and L1 $ K, then, according

to Theorem 1.15, X is contained in the second class. If there is no such factor, then also

by Theorem 1.15, (L,K) is a product of pairs of the type (SU2 × SU2 × SU2, SU2), (SU2 ×
SU2, SU2) or (SU2,U1) and a pair (K1, K1), where K1 is a compact Lie group. But these

pairs (except (K1, K1)) are not allowed in Sp1-saturated commutative space. The second

condition of the definition of Sp1-saturated commutative space contradicts conditions of

Lemma 1.14. Thus, L would be equal K, but this is not the case.
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Chapter 2

Commutative spaces of reductive Lie

groups

In this chapter we suppose that G = L. We keep all assumptions concerning L and K, for

instance, G = Z(L) × L1 × · · · × Lm. Denote by G(C) the complexification of G and let

H ⊂ G(C) be the complexification of K. We use the same definitions of indecomposable

and principal homogeneous spaces as was given in the real case.

Let F be a complex reductive group. Strictly speaking, a subgroup F0 ⊂ F is a real

form of F if F0 = F τ , where τ is a real structure on F , see [35, §1 of Chapter 5] for precise

definitions and explanations. It will be convenient for us to say that F0 is a real form of F

if (F τ )0 ⊂ F0 ⊂ F τ .

2.1 Classification

Note that G/K is commutative if and only if G′/Kr, where Kr = K/(Z(L)∩K), is commu-

tative. In this section we suppose that G is semisimple.

Commutative homogeneous spaces of real reductive Lie groups are real forms of spherical

affine homogeneous spaces, see, for example, [43]. Spherical affine homogeneous spaces

of simple Lie groups are classified by Krämer [25], of semisimple groups by Brion [10] and

Mikityuk [30], independently. Note that the paper [10] deals only with principal homogeneous

spaces. In [30] one class of non-principal spherical homogeneous spaces is described. First,

we give a complete classification of spherical affine homogeneous spaces. We do it on the Lie

algebras level.

Take a finite set {(gi(C), hi)|i = 1, . . . , n} of indecomposable principal spherical pairs such

that each hi has a non-trivial centre zi. It follows from classification, that the centre of hi is

one dimensional. Assume that (gi(C), h′i) is not spherical only for 1 ≤ i ≤ p, where p ≤ n.

Set g(C) =
n⊕
i=1

gi(C), h̃ =
n⊕
i=1

hi. Let z be a central subalgebra of h̃. Set h := (
n⊕
i=1

h′i)⊕ z. Let
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π[p] be the projection onto the sum of the first p algebras gi.

Theorem 2.1. (i) The pair (g, h) is spherical if and only if π[p](z) =
p⊕
i=1

zi.

(ii) It is decomposable if and only if z can be represented as a sum z = z1 ⊕ z2, where

z1 ⊂
⊕
i∈I

gi, z2 ⊂
⊕
i∈J

gi (I, J ⊂ {1, . . . , n}) and the intersection I ∩ J is empty.

(iii) All non-principal spherical pairs are obtained as the result of the above procedure.

Proof. (i) Denote by g[p] and z[p] the sums of the first p algebras gi(C) and zi, respectively.

Suppose (g(C), h) is spherical. Then (g[p], π[p](h)) is also spherical. Let b ⊂ g[p] be a Borel

subalgebra such that g[p] = π[p](h) + b. Clearly, b =
⊕

bi, where bi ⊂ gi(C) is a Borel

subalgebra of gi(C). For each 1 ≤ i ≤ p, we have bi + h′i + zi = gi(C). If for some

1 ≤ i ≤ p, zi ⊂ (bi + h′i), then bi + h′i = gi(C) and (gi(C), h′i) is spherical, which is not

the case. Hence, (b + π[p](h
′)) ∩ z = 0 and +g[p] = (b + π[p](h

′)) ⊕ z[p]. On the other hand,

π[p](h) = π[p](h
′)⊕ π[p](z). Thus g[p] = (b + π[p](h

′))⊕ π[p](z) and π[p](z) = z[p].

If π[p](z) = z[p], we take a Borel subalgebra b =
n⊕
i=1

bi ⊂ g(C), where bi ⊂ gi(C) are Borel

subalgebras, such that gi(C) = hi + bi for 1 ≤ i ≤ p and gi(C) = h′i + bi for p < i ≤ n. Then

g(C) = h + b and (g(C), h) is spherical.

(ii) This statement is absolutely clear.

(iii) Let (g(C), h) be an indecomposable non-principal spherical pair. Denote by h̃ the cen-

traliser of h in g(C). Then (g(C), h̃) is a principal spherical pair. Let (g(C), h̃) =
n⊕
i=1

(gi(C), hi)

be the decomposition into the sum of indecomposable spherical pairs. Because (g(C), h) is in-

decomposable, each hi has a non-trivial (one dimensional) centre zi. Clearly, h = (
n⊕
i=1

h′i)⊕ z,

where z is a central subalgebra of h̃.

Suppose that G/K is a Riemannian homogeneous space. Then H is a reductive subgroup

of G(C) and Y = G(C)/H is an affine algebraic variety. It can be easily seen, that the

homogeneous space G/K is commutative if and only if Y is spherical, see, for example, [43].

Suppose (G(C), H) is a spherical pair of connected complex reductive groups. Let K be

compact real form of H. Each real form G of G(C) containing K gives rise to a commutative

homogeneous space G/K and all of them arise in this way. The subgroup K is contained

in a compact real form (maximal compact subgroup) of G(C). Non-compact connected real

forms G of G(C) containing K are described by the following theorem.

Theorem 2.2. Suppose G is a connected non-compact real form of G(C) such that K ⊂ G.

Then G = (G(C)τϕ)0, K = Hτ , where ϕ is an involution of G(C) acting trivially on H, and

τ is a compact real structure, commuting with ϕ and preserving H.

Proof. Suppose that K is contained in a connected non-compact real form G ⊂ G(C). Then

there is a maximal compact subgroup Gϕ, defined by an involution ϕ of G, such thatK ⊂ Gϕ.
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We can extend ϕ to an involution of G(C). We get H ⊂ Gϕ(C) = G(C)ϕ ⊂ G(C). The

group Gϕ is contained in the maximal compact subgroup G(C)τ ⊂ G(C). Clearly, ϕτ = τϕ

and G = (G(C)τϕ)0.

On the other hand, suppose that G = (G(C)τϕ)0 and H ⊂ G(C)ϕ. Set K = Hτ . Then

K ⊂ Gϕ ∩ G(C)τ , hence K ⊂ G. The subgroup G(C)ϕτ is determined by ϕ up to the

conjugation.

If (G(C), H) is an indecomposable symmetric pair, then G(C)ϕ = H and there is only

one non-compact real form of G(C) containing H. This case is well-known, see, for example,

[21].

Assume that H is not a symmetric subgroup of G(C). First consider the case of simple

G(C). There are 12 non-symmetric spherical pairs (G(C), H) with simple G(C), [25]. They

are listed in Table 2.1.

Theorem 2.3. [46, Lemmas 2,3, Theorem 3] Let (G(C), H) be a non-symmetric spherical

pair with simple G(C). Then all symmetric subgroups F = G(C)ϕ such that H ⊂ F are

listed in Table 2.1. All non-compact non-symmetric commutative homogeneous spaces G/K

of simple real groups G are listed in Table 2.2 up to a local isomorphism.

All groups in Table 2.1 are complex, all groups in Table 2.2 are real.

Table 2.1.

G(C) H F

1 SLn SLk × SLn−k S(Lk × Ln−k)

2 SL2n+1 Sp2n · C∗ SL2n · C∗

3 SL2n+1 Sp2n SL2n · C∗

4 Sp2n Sp2n−2 × C∗ Sp2n−2 × Sp2

5 SO2n+1 GLn SO2n

6 SO4n+2 SL2n+1 GL2n+1

7 SO10 Spin7 × SO2 SO8 × SO2

8 SO9 Spin7 SO8

9 SO8 G2 SO7

10 SO7 G2 −
11 E6 Spin10 Spin10 · C∗

12 G2 SL3 −

Table 2.2.

G K

1 SUn,k−n SUk × SUn−k

2 SU2n,1 Spn · T
3 SU2n,1 Spn
4 Spn−1,1 Spn−1 × T

5 SO0
2n,1 Un

6 U∗
2n+1(H) SU2n+1

7 SO0
8,2 Spin7 × SO2

8 SO0
8,1 Spin7

9 SO0
7,1 G2

10 EIII Spin10

Note that Table 2.2 was given in [13] without prove.

Suppose now that G(C) is semisimple, but not simple. Then there are 8 types of non-

symmetric indecomposable principal spherical pairs (G(C), H), see [10], [30]. We list them

in Table 2.3. The case 9 describes the structure of a non-principal pair.
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Table 2.3.

1) sln sln+1

sln

�������
C

2) sln+2 sp2m

gln sl2

8888888

�������
sp2m−2

3) sp2n sp2l sp2m

sp2n−2 sp2

=======

�������

ooooooooooooo
sp2l−2 sp2m−2

4) sp2n+4 sp4

sp2n sp4

=======

5) sln+2 sp2m

sln sl2

8888888

�������
sp2m−2

6) sp2n sp4 sp2m

sp2n−2 sp2

=======

�������
sp2

7777777

�������
sp2m−2

7) son son+1

son

333333

�������

8) sp2n+2 sp2m

sp2n sp2

=======

�������
sp2m−2

9) g1 ... gn

z(h)

�������

nnnnnnnnnnnnnn
h′1 ... h′2

Theorem 2.4. [46, Theorem 4] Each indecomposable non-compact non-symmetric com-

mutative homogeneous space G/K of semisimple Lie group G is either of the form K ⊂
K1 × · · · ×Km ⊂ L1 × · · · ×Lm = G, where Li are simple direct factors of G and Li/Ki are

commutative homogeneous spaces; or contained in Table 2.4.

Table 2.4.

G K G(C)ϕ = (Gϕ)0 Embedding K ⊂ G

Spn × Sp2(C) Spn−1 × Sp1 Sp2n × Sp2 (u, z) → (u⊕ z, z)

Spn−1,1 × Sp2(C) Spn−1 × Sp1 Sp2n−2 × Sp2 × Sp2 (u, z) → (u⊕ z, z)

2.2 Weakly symmetric structure

In case of reductive group G the notion of commutative space coincides with a more geo-

metrical notion of weakly symmetric space, see [1].

Let G be a real Lie group and K be a compact subgroup of G. We assume that the

homogeneous space X = G/K is connected. Suppose for a while that the action G : X is

effective, i.e., K contains no nontrivial normal subgroups of G. Then G can be regarded

as a subgroup of Diff(X), the group of all diffeomorphisms of the manifold X. Let s be a

diffeomorphism of X.

Definition 9. The homogeneous space X is called weakly symmetric with respect to s, if the

following conditions are fulfilled:

sGs−1 = G, (2.1)

∀x, y ∈ X ∃g ∈ G : gx = sy, gy = sx. (2.2)

The homogeneous space X is called weakly symmetric, if it is weakly symmetric with respect

to some diffeomorphism s.

34



Denote by Ĝ a subgroup 〈G, s〉 ⊂ Diff(X) generated by G and s.

The notion of weakly symmetric homogeneous space is introduced by Selberg in [41]. He

assumed that s2 ∈ G. For the sake of greater generality, we will not impose this constraint.

It is worth mentioning, that all principal results of [1] and [6] were proved without this

constraint. We will prove below that if G is semisimple, then our definition is equivalent to

Selberg’s one.

One can introduce a G-invariant Riemannian metric on X, which automatically appears

to be Ĝ-invariant. This means that we can use results of [6].

Definition 10. A diffeomorphism s ∈ Diff(X) is said to be righteous, if conditions (2.1) and

(2.2) hold for it.

The aim of this section is twofold. First we describe all righteous diffeomorphisms

(isometries) of homogeneous spaces of semisimple Lie groups. After that we classify all

non-symmetric weakly symmetric manifolds with reductive isometry group.

Suppose s is a righteous diffeomorphism of X, and g ∈ G; then both sg and gs are

righteous, too. The coset sG is said to be righteous, if s is a righteous diffeomorphism.

Hence our task is to describe the righteous cosets of Diff(X)/G.

For any x ∈ X, let Diff(X)x denote the stabiliser of x in Diff(X). It is clear that the

intersection sG ∩ Diff(X)eK is not empty for every sG. If s ∈ Diff(X)eK , then s(gK) =

σ(g)K, here σ ∈ AutG and σ(g) = sgs−1. Besides the following condition holds:

(a) σ(K) = K.

Let us denote by Aut(G,K) (resp. Int(G,K)) the set of all (resp. inner) automorphisms

of G satisfying (a). For any σ ∈ Aut(G,K), one can define an element s ∈ Diff(X) by

s(gK) = σ(g)K.

For any g ∈ G, let a(g) denote the conjugation in G by g. Let σ, τ be arbitrary elements of

Aut(G,K). Then the corresponding diffeomorphisms of X lie in the same coset in Diff(X)/G

if and only if σ = a(k)τ for some k ∈ K.

The tangent space TeKX is canonically isomorphic to g/k. There is a natural action

Aut(G,K) : (g/k). If σ ∈ Aut(G,K) and η ∈ g then σ(η + k) := dσ(η) + k.

It is proved in [6] that for the elements of Aut(G,K) condition (2.2) is equivalent to the

following one:

(b) ∀ξ ∈ g/k ∃k ∈ K: (Adk)ξ = −σ(ξ).

Definition 11. An automorphism σ ∈ AutG is called righteous automorphism of the pair

(G,K), if the conditions (a) and (b) hold for σ.

If it does not lead to ambiguity, we will call righteous automorphisms of (G,K) by

righteous automorphisms of G. The righteous left cosets in Diff(X)/G are in natural one to

one correspondence with the righteous left cosets in Aut(G,K)/a(K).
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Since K-invariant polynomial functions on g/k separate the K-orbits in g/k (see [35]),

condition (b) is equivalent to the following one:

(b’) if f ∈ R[g/k]K is a homogeneous polynomial, then σ(f) = (−1)deg ff .

Proposition 2.5. ([43, Lemma 1]) Let K0 be the connected component of K, G0 the con-

nected component of G, and σ a righteous automorphism of (G,K). Then one can find

k ∈ K such that a(k)σ is a righteous automorphism of (G0, K0).

From now on, we will consider only homogeneous spaces of connected semisimple Lie

groups. Furthermore, we will assume that K is connected.

Suppose now that the action G : (G/K) is locally effective, but not necessarily effective.

Denote by N the ineffective kernel of this action, which is discrete by the definition. Let

Z(G) be the centre of G. Then N = Z(G) ∩ K. Definition 10 can be used in this more

general setting as well. Note that if σ ∈ Aut(G,K), then

σ(N) = σ(Z(G) ∩K) = σ(Z(G)) ∩ σ(K) = Z(G) ∩K = N.

Since the action N : (g/k) is trivial, every righteous automorphism of (G,K) defines a righ-

teous automorphism of (G/N,K/N) and a diffeomorphism of X = G/K = (G/N)/(K/N).

Let G̃ be the simply connected covering of G. We can consider AutG and Aut(G/N) as

subgroups of AutG̃. If AutG = Aut(G/N), then the righteous automorphisms of (G,K) are

the same as the righteous automorphisms of (G/N,K/N).

Let K̃ be the connected subgroup of G̃ such that LieK = k. Then every righteous

automorphism of (G,K) lifts to a righteous automorphism of (G̃, K̃). We will prove now

that the righteous automorphisms of those pairs are in one-to-one correspondence whenever

AutG = AutG̃(= Autg). The group G is a quotient of G̃ by some discrete subgroup Z ⊂
Z(G). It is clear that K = K̃/(K̃ ∩ Z). The actions K : (g/k) and K̃ : (g/k) are the

same as the action of K̃/(K̃ ∩ Z(G̃)) on g/k. On the other hand, suppose σ is a righteous

automorphism of G. Then σ(K) = K if and only if σ(k) = k.

We consider only real groups that are real forms of simply connected complex groups.

Obviously, for any semisimple Lie algebra g there is only one group G such that g = LieG

and G satisfies this condition. We have AutG = Autg.

2.2.1 The action of N(K) on X

Let N(K) denote the normaliser of K in G. The group N(K) acts on G/K by right mul-

tiplications. The group K is the ineffective kernel of this action. This action commutes

with the standard action of G. For every n ∈ N(K) let us denote by Υn the corresponding

automorphism of X:

Υn(gK) = gKn−1 = gn−1K.
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Lemma 2.6. Suppose s is a righteous diffeomorphism of X, and n ∈ N(K). Then sΥns
−1 =

Υ−1
n and sΥn is righteous as well.

Proof. Let us consider two points x and y = Υnx of X. There is g ∈ G such that:

gx = sy, gy = sx.

Then sx = gΥnx = Υn(gx) = ΥnsΥnx. Since it is true for every x ∈ X, we have ΥnsΥn = s.

Let x, y be arbitrary points of X. By definition, there is g ∈ G such that

gx = s(Υny), g(Υny) = sx.

Then

sΥnx = Υ−1
n sx = Υ−1

n (gΥny) = gy, sΥny = gx.

Corollary 1. Suppose σ is a righteous automorphism of (G,H), and n ∈ N(K). Then

σ(n) ≡ n−1 (mod K) and a(n)σ is righteous as well.

Proof. Consider the corresponding diffeomorphism s of X. We have:

eK = s(eK) = ΥnsΥn(eK) = Υn(σ(n−1)K) = σ(n−1)n−1K,

whence σ(n)n ∈ K. The diffeomorphism nsΥ−1
n = Υnns is righteous and stabilises eK.

Clearly, the corresponding automorphism of G is a(n)σ. 2

Two righteous automorphisms σ and a(n)σ are said to be equivalent.

Corollary 2. The group N(K)/K is Abelian and the orbits of K and N(K) in g/k coincide.

Proof. It follows from Lemma 2.6 that the inversion is an automorphism of N(K)/K. Hence

this group is abelian.

Suppose n ∈ N(K), and let σ be a righteous automorphism of G. For ξ ∈ g/k, we then

have
(Adn)ξ = (Adn)σ(σ−1(ξ)) = −(Adk1)σ

−1(ξ) = −(Adk1)(−(Adk2)ξ) =

= (Ad(k1k2))ξ, (k1, k2 ∈ K). 2

Corollary 3. The action N(K) : R[g/k]K is trivial.

2.2.2 The complex case

We recall several results of [1] and their consequences that allow us to proceed to homoge-

neous spaces of complex Lie groups.

Let G(C) be a semisimple complex algebraic group and Y an indecomposable affine

variety. Suppose G acts transitively and effectively on Y , and let s be an automorphism of
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the variety Y that normalises G. Denote by Ĝ the subgroup 〈G(C), s〉 ⊂ AutY . Define the

action Ĝ : (Y × Y ) by:

s(x, y) = (sy, sx) (2.3)

g(x, y) = (gx, gy). (2.4)

Definition 12. The homogeneous space Y is called weakly symmetric with respect to s, if

the action of s on algebra C[Y ×Y ]G(C) is trivial . The homogeneous space Y is called weakly

symmetric, if it is weakly symmetric with respect to some s. We call this automorphism s

righteous.

Suppose that G/K is weakly symmetric (commutative) and Y = G(C)/H.

Lemma 2.7. Let N (resp. N0) be the ineffective kernel for the action G(C) : Y (resp.

G : X). If either of the groups N and N0 is discrete, then N = N0. In particular the action

G(C) : Y is effective if and only if the action G : X is effective.

Proof. If at least one of the groups N , N0 is discrete, then both are discrete; hence they are

the subgroups of the centre of G(C) and G, respectively. More precisely,

N = Z(G(C)) ∩H = Z(G(C)) ∩ Z(H), N0 = Z(G) ∩K = Z(G) ∩ Z(K).

It is known that, Z(K) = Z(H), Z(G) = Z(G(C)) ∩G. Hence,

N0 = Z(G(C)) ∩ Z(K) = Z(G(C)) ∩ Z(H) = N.

An involution θ of a connected reductive complex algebraic group G(C) is called a Weyl

involution, if there exists a maximal torus of G, on which θ acts as inversion. It is well known

that Weyl involutions exist and all such involutions are conjugate by inner automorphisms.

We will need a more precise result of [1].

Theorem 2.8. ([1, Theorems 2.2, 3.3, 4.2])

Suppose the action G(C) : Y is effective. Then:

1) Let s be an automorphism of the variety Y such that sHs−1 = H and sX = X. Then

the homogeneous space X is weakly symmetric with respect to s if and only if homogeneous

space Y is weakly symmetric with respect to s.

2) Y is weakly symmetric if and only if it is spherical. More precisely, in this case it is

weakly symmetric with respect to the following automorphism t:

t(gH) = θ(g)H,

where θ is a Weyl involution of G(C) such that θ(G) = G, θ(H) = H, and θ induces a Weyl

involution on H. (In the sequel, θ always denotes a Weyl involution with these properties.)
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Automorphisms of Y under consideration determine automorphisms of G(C). Namely,

to any s ∈ AutY one associates the automorphism g 7→ σ(g) = sgs−1 of G(C). On the

other hand, to any element of Aut(G(C), H) one can assign an automorphism of the variety

G(C)/H. Define the set of righteous automorphisms of the pair (G(C), H) in the same way

as it was done for real groups. Similarly to the real case assume that the ineffective kernel

of the action G(C) : Y is discrete.

In the complex case conditions (b) and (b’) look as follows

(b)C if ξ ∈ g(C)/h and Hξ = Hξ, then there is h ∈ H such that (Adh)ξ = −σ(ξ);

(b’)C if f ∈ C[g(C)/h]H is a homogeneous polynomial, then σ(f) = (−1)deg ff .

Let R be an irreducible representation of G(C) and σ ∈ AutG. Denote by Rσ = R ◦ σ the

twisted by σ representation R and by R∗ the representation dual to R. Suppose G(C) acts

on an affine algebraic variety Y . Then the G(C)-module C[Y ] is of the form

C[Y ] =
⊕
R

(V (R)⊗ U(R)),

where R ranges over all irreducible representations of G(C), and G(C) acts via R on V (R)

and trivially on U(R).

It is well known that if Y is a spherical homogeneous space of G(C), then dimU(R) ≤ 1.

Denote by R the set of the irreducible representation R such that dimU(R) = 1.

Proposition 2.9. Let Y = G(C)/H be a spherical homogeneous space of G(C) and C[Y ] =⊕
R∈R

V (R) the decomposition of C[Y ] into the direct sum of irreducible representations of

G(C). Let σ be a righteous automorphism of G(C), H. Then the following condition is

satisfied

(c) Rσ = R∗ for every R ∈ R.

Proof. Let s be the automorphism of Y corresponding to σ. By the definition of a righteous

automorphism, Y is weakly symmetric with respect to s. Consider the action of G(C) on

C[Y × Y ] = C[Y ]⊗ C[Y ] =
⊕
R,S∈R

V (R)⊗ V (S).

As is known, each summand of the form V (R)⊗V (R∗) contains a nontrivial G(C)-invariant

vector. Thus, we have

∀R ∈ R V (R)⊗ V (R∗) = s(V (R)⊗ V (R∗)) = V ((R∗)σ)⊗ V (Rσ).

In particular, V (Rσ) = V (R∗).

Assume that G(C) is simply connected. Let a homogeneous weakly symmetric space

X = G/K be a real form of a spherical space Y = G(C)/H in the sense of Theorem 2.8. Let
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σ be a righteous automorphism of G. It extends to an automorphism of G(C) normalising

H. Hence σ defines an automorphism of Y . In view of Theorem 2.8, this means that there is

a one-to-one correspondence between the set of the righteous automorphisms of G and the

set of the righteous automorphisms of G(C) satisfying the condition

(d) σ(G) = G.

If condition (d) holds, then σ(K) = K if and only if σ(H) = H.

The action NG(K) : g/k is a real form of the action N(H) : g(C)/h. Hence the invariants

of the groups N(H) and H in C[g(C)/h] coincide just like in the real case. In particular,

if one multiplies a righteous automorphism of (G(C), H) by a(n), where n ∈ N(H), it will

remain righteous. For n ∈ N(H), the righteous automorphisms σ and a(n)σ are said to be

equivalent.

Let (G(C), H) be a spherical pair (here G(C) and H are connected complex reductive

groups). Assume that G(C) is simple connected and semisimple. In this subsection we

describe righteous automorphisms of (G(C), H). In each connected component of AutG(C) =

Autg(C) we point out one righteous automorphism if, of course, it exists. Thus we classify

all righteous automorphism up to equivalence.

Theorem 2.10. Let (G(C), H)be a locally effective spherical pair, where G(C) is semisimple

and H is reductive. Suppose σ ∈ Aut(G(C), H) satisfies condition (c). Then σ is the

righteous automorphism of (G(C), H).

Proof. It is sufficient to show that σ is equivalent to some righteous automorphism. The

set σInt(G(C), H) is the union of some connected components of the algebraic group

Aut(G(C), H). Hence it contains an element of finite order. We can assume that the order

of σ is finite. Assume also that the action G(C) : (G(C)/H) is effective, i.e., G(C) ⊂ AutY .

The automorphism σ induces the automorphism s(gH) = σ(g)H of Y . Clearly, the order

of s is finite as well. Hence the subgroup Ĝ = 〈G(C), s〉 ⊂ AutY generated by G(C) and

s is reductive. The variety Y is the spherical homogeneous space of Ĝ. More precisely,

Y = Ĝ/Ĥ, where Ĥ = 〈H, s〉.
Let C[Y ] =

⊕
R∈R

V (R) be the decomposition of C[Y ] into the direct sum of irreducible

representations of G(C). By (c) we have s(V (R)) = V (R∗). Let us decompose C[Y ] into the

sum of irreducible representations of Ĝ:

C[Y ] =
⊕

R∈R,R=R∗

V (R)⊕
⊕

R∈R,R 6=R∗
(V (R)⊕ V (R∗)).

Denote by W (R) the summand V (R)⊕ V (R∗) from the second part of the above sum. (In

fact the sum in the second part ranges over unordered pairs {R,R∗}. But we admit this

formal inaccuracy for simplicity of notation.)

The representations of Ĝ in V (R) and W (R) are self-dual. For instance, if the represen-

tation Ĝ : W (R) is not self-dual, then the representation Ĝ : W (R)∗ would occur in C[Y ] as
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well. But the representations of G(C) in W (R) and W (R)∗ are isomorphic. Since G(C)/H

is spherical, this would lead to a contradiction.

Let us show that those representations are orthogonal. Suppose Ĝ : U is an irreducible

symplectic representation of Ĝ. Then there exists a non-degenerate skew-symmetric form

on U Ĥ . It is the restriction of such form on U . This shows that dimU Ĥ is even. Hence such

a representation cannot occur in C[Y ].

Consider the action Ĝ : (Y × Y ) determined by (2.3) and (2.4). We have to prove that

C[Y × Y ]G(C) = C[Y × Y ]Ĝ. Recall that

C[Y × Y ]G(C) =
⊕

R∈R,R=R∗

S2V (R)G(C) ⊕
⊕

R∈R,R 6=R∗
(S2W (R)G(C) ⊕ Λ2W (R)G(C)),

besides dimS2V (R)G(C) = dimS2W (R)G(C) = dim Λ2W (R)G(C) = 1.

As is already known, there are nonzero Ĝ-invariant vectors in S2V (R) and S2W (R),

i.e., dimS2V (R)Ĝ = dimS2W (R)Ĝ = 1. In addition we have dimS2V (R)G(C) =

dimS2W (R)G(C) = 1 as well, hence S2V (R)Ĝ = S2V (R)G(C) and S2W (R)Ĝ = S2W (R)G(C).

Since the permutation (x, y) −→ (y, x) acts on the spaces S2V (R) and S2W (R) trivially, s

acts trivially on
⊕

S2V (R)G(C) ⊕
⊕

S2W (R)G(C).

Consider the action of s on other G(C)-invariants. Let ω be an arbitrary element of

Λ2W (R)G(C).

The automorphism s2 normalises every representation of type V (R). Consider the group

〈G(C), s2〉 ⊂ Ĝ. It is reductive as well as Ĝ. Since it has two linearly independent invariant

vectors in W (R) ⊗ W (R), the form ω is 〈G(C), s2〉-invariant. Hence sω = ±ω. Assume

that sω = −ω. Then ω is invariant with respect to the diagonal action s : (Y × Y ) defined

by s(x, y) = (sx, sy). This would imply that dim(W (R) ⊗W (R))G(C) = 2 for the diagonal

action of Ĝ on Y × Y . But this is not the case. In fact, as we have seen, this dimension is

equal to 1.

Corollary 1. The set of all righteous automorphism of the pair (G(C), H) coincides with

the union of connected components of Aut(G(C), H) satisfying condition (c).

Corollary 2. Each closed H-orbits in g(C)/h is centrally-symmetric with respect to the ori-

gin if and only if all irreducible representations occurring in the decomposition of C[G(C)/H]

are self-dual.

Proof. Both claims are equivalent to the fact that the identity mapping is the righteous

automorphism of (G(C), H).

Let B be a Borel subgroup of G(C). The set of weights in C[Y ](B) (resp. C(Y )(B)) is

called the rank semigroup (resp. group) of homogeneous space Y . Denote by Γ(Y ) the rank

group of Y . In each case, it would be sufficient to find the group Aut(G(C), H) and the
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rank semigroup (or even the rank group) in order to describe all righteous automorphism of

(G(C), H).

This problem can be solved by a method of D.Panyushev, see [36]. Let T ⊂ B be a

maximal torus and θ a Weyl involution of G(C), acting on T by inversion. We can replace

H by a conjugated group such that

I) both groups B ∩H and B ∩ θ(H) have the minimum possible dimensions;

II) they are both preserved by T ;

III) B ∩H is a Borel subgroup of the reductive group H ∩ θ(H).

If H satisfies conditions I)-III), then H∗ = H ∩ θ(H) is a generic stabiliser for the action

H : g/h, and Γ(G(C)/H) coincides with the annihilator of H∗ ∩ T .

Note that rank groups of homogeneous spaces of simple groups are already well known

and can be found in [25]. In all other cases there are easier methods of finding the righteous

automorphisms.

Let (G(C), H) be a spherical pair with semisimple G(C).

Lemma 2.11. Suppose G(C) = G(C)1× . . .×G(C)n, H = H1× . . .×Hn, where (G(C)i, Hi)

is indecomposable for every i and σ is a righteous automorphism of (G(C), H). Then

σ(G(C)i) = G(C)i.

Proof. If σ takes simple direct factor Fi�G(C)i of G(C)i into simple direct factor Fj�G(C)j
of G(C)j for some i 6= j, then σ takes Hi into Hj (otherwise σ(H) 6= H) and G(C)i into

G(C)j. In the decomposition of C[Y ] into irreducibles exists a representation, say R, such

that G(C)k acts trivially on V (R) for each k 6= i. Then G(C)j acts trivially on the space

V (R∗) and non-trivially on V (Rσ). A contradiction!

Lemma 2.12. Suppose G(C)i is a a simple normal subgroup of G(C) and σ is a righteous

automorphism. Set Hi := πi(H), where πi is the projection on G(C)i. If Hi 6= G(C)i, then

σ(G(C)i) = G(C)i.

Proof. There exists an irreducible representation R of G(C)i such that V (R)Hi 6= 0. The

rest of the proof runs as in the previous lemma.

Note that if the conditions of these lemmas are satisfied then the restriction of any

righteous automorphism of G(C) on G(C)i is a righteous automorphism of the spherical pair

(G(C)i, Hi).

According to the classification there is only three indecomposable spherical pairs

(G(C), H) such that Hi = G(C)i for some i. They are:

1) the symmetric pair of the form (H ×H,H);

2) (Sp2 × Sp4 × Sp2, Sp2 × Sp2);

3) (Sp2n × Sp2 × Sp2, Sp2n−2 × Sp2).

Let σ be an automorphism of the second or third pair (G(C), H). Assume that σ permutes

simple factors of G(C). It is easy to check that there are irreducible representations of G(C)
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containing nonzeroH-invariant vectors such that condition (c) is not satisfied. Let us indicate

the highest weights of these representations. In the second case it is $1(1) +$1(2); and in

the third one they are $1(1) +$1(2) and $1(1) +$1(3) ($i(n) being the i-th fundamental

weight of the n-th simple factor of G(C)). For more details concerning this notation see [35,

§2 of Capter 4 and Table 1 in the Reference Chapter].

Proposition 2.13. Let (G(C) = G(C)1×G(C)2, H = H1×H2) be decomposable spherical

pair. Suppose σ1 and σ2 are automorphisms of G(C)1 and G(C)2 respectively. The automor-

phism σ = σ1 × σ2 is righteous if and only if σ1 and σ2 are righteous.

Proof. We have g(C)/h = g(C)1/h1 ⊕ g(C)2/h2. Moreover, G(C)i acts trivially on g(C)j for

i 6= j Hence, condition (b)C holds for σ if and only if it holds for σ1 and σ2.

There exists a G(C)-invariant scalar product on g(C). The space g(C)/h is identified

with the orthogonal complement h⊥ to h in g(C).

Given a symmetric pair (G(C), H), denote by ϕ the involution of G(C) such that H =

(G(C)ϕ)0. Note that ϕ is righteous. Let θ be the Weyl involution from Theorem 2.8 and id

the identity mapping of G.

Krämer’s paper [25] contains the decomposition of C[Y ] into direct sum of irreducible

G(C)-modules for all simple groups G(C). This immediately shows that, in case of simple

group G(C), almost all automorphisms satisfying condition (c) are equivalent to a Weyl

involution. The exceptions are listed in Theorem 2.14.

Theorem 2.14. All indecomposable principal spherical pairs such that their righteous au-

tomorphisms are not equivalent to a Weyl involution are listed, up to local isomorphism, in

Table 2.5. All righteous automorphisms of each pair are listed up to equivalence.

Table 2.5.

(G(C), H) σ ∈ Aut(G(C), H)

1 (SLp+q, S(GLp ×GLq)), (E6, Spin10 · C∗), id, θ

(E6, SL6 × SL2), (SO4n+2, GL2n+1)

2 (SO2(p+q), SO2p × SO2q) (p > q) id, a(I1)

3 (SO2(p+q), SO2p+1 × SO2q−1) (p ≥ q) id, ϕ

4 (H ×H, H) θ, ϕ

Here I1 = diag(−1, 1, ...1).

Proof. Consider first the pairs with simple G(C). For all pairs that are not contained in

Table 2.5 condition (c) holds only for one connected component of AutG(C), more precisely,

for the connected component containing a Weyl involution. For the pairs contained in

Table 2.5, condition (c) holds for two connected components of Autg(C) (see [25]). Any
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automorphism indicated in Table 2.5 normalises H. Hence all of them are righteous by

Theorem 2.10

For a symmetric space (H × H)/H there are nonzero H-invariant vectors in each irre-

ducible representation of H ×H of the form R($i(1) +$i(2)
∗). Here {$i} are fundamental

weights of H. Suppose an automorphism Ψ preserve the diagonal of H × H and satisfied

condition (c). There are only two possibilities:

1) Ψ(p, q) = (ψ(p), ψ(q)); then R($i)
ψ = R($i)

∗ for each i, hence Ψ is equivalent to θ;

2) Ψ(p, q) = (ψ(q), ψ(p)); then R($i)
ψ = R($i) for each i, hence Ψ is equivalent to ϕ.

Now we prove that for the first eight pairs of Table 2.3 all righteous automorphisms are

equivalent to a Weyl involution. As we already know, a righteous automorphism does not

permute simple direct factors G(C)i of G(C). Recall that Hi ⊂ G(C)i is the image of the

projection of H on G(C)i. Each righteous automorphism is of the form σ = σ1× σ2× σ3 (or

σ1 × σ2), where σi is a righteous automorphism of (G(C)i, Hi).

In cases 3, 4, 6, and 8 each simple direct factor of G(C) has no outer automorphisms.

In case 5, σ1 has to be a Weyl involution and the second simple direct factor has no outer

automorphisms.

In cases 1 and 7, we point out some irreducible representations of G(C) containing non-

zero H-invariant vectors. Using these representations one can easily verify that condition

(c) holds for a single connected component of Autg(C).

Case Representations
1) $n

1 (1) ·$n+1
n (2)

7) n = 7 $4(1) ·$3(2), $3(1) · π3(2)
n = 8 $4(1) ·$3(2), $4(1) · π4(2)
n 6= 7, 8 $k(1) ·$p(2) k = [(n + 1)/2], p = [n/2]

In case 2, the identity mapping is not righteous, because there is a homogeneous polyno-

mial f ∈ C[g(C)/h]H such that deg f is odd. Consider an H-invariant space

V ⊂ g(C)/h, V = sl2 ⊕ L2,n ⊕ Ln,2 ⊂ sln+2,

where Lp,q is the space of complex p × q-matrices. Take ξ = (D,A,B) ∈ V (D ∈ sl2, A ∈
L2,n, B ∈ Ln,2), h = (u, v, w, λ) ∈ H ( u ∈ SL2, v ∈ SLn, w ∈ Sp2m−2, λ ∈ C∗). Then hξ =

(uDu−1, λn+2uAv−1, λ−n−2vBu−1). Suppose a vector η lies in the H-invariant complement

to V . Set f(ξ + η) = f(ξ) = tr(DAB). Then f ∈ C[g(C)/h]H and deg f = 3.

Now we describe the righteous automorphisms of non-principal pairs up to equivalence.

Let (G(C), H) be a non-principal indecomposable spherical pair. Then g(C) =
⊕

gi(C),

h = (
⊕

h′i) ⊕ z(h), where (g(C)i, hi) are indecomposable principal spherical pairs. For each

i, we have dim zi = 1 and z(h) ⊂
⊕

zi. (Here h′j denotes the derived algebra of hi and zi the

centre of hi.)
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It is already proved that the righteous automorphisms preserve normal subgroups. Since

(G(C), H) is indecomposable, for every i there is an element ξ ∈ h⊥ ∩ n(h) such that its

projection to gi is non-zero. Note that n(h) = h′ ⊕ (
⊕

zi). The orbit Hξ = {ξ} is closed.

Thus in order to determine a righteous automorphism of g(C), it is necessary and sufficient to

indicate in each connected component of Autg(C) a righteous automorphism σi multiplying

all vectors in zi by −1. (Of course, if such automorphism exists.)

Proposition 2.15. Up to equivalence, all righteous automorphisms of a non-principal inde-

composable spherical pair (G(C), H) are of the following form: σ = σ1 × ...× σn, where

σi =


θi, if (g(C)i, hi) 6= (so2n+2, so2 ⊕ so2n), (sl2n, s(gln ⊕ gln));

a(I1) or a(I1,2n+2), if (g(C)i, hi) = (so2n+2, so2 ⊕ so2n);

a(Sn) or θi, if (g(C)i, hi) = (sl2n, s(gln ⊕ gln)).

Here I1 = diag(−1, 1, ...1), I1,2n+2 = diag(−1, 1, ...1,−1), Sn =

(
0 En
En 0

)
.

Proof. If the pair (g(C)i, hi) does not belong to the following list

(slp+q, s(glp ⊕ glq)), (E6, so10 ⊕ C), (so2n+2, so2n ⊕ so2),

then, by Theorem 2.14, σi = θi. Each of these three pairs has two non-equivalent righteous

automorphisms. The pairs (E6, so10 ⊕C) and (slp+q, s(glp ⊕ glq)), with p 6= q, have no inner

automorphisms multiplying all vectors in the centre of h by −1. Besides all there outer

automorphisms are equivalent to Weyl involutions.

2.2.3 The real case

We assume that G(C) is simply connected. Let (G = G1 ×G2, K = K1 ×K2) be a decom-

posable weakly symmetric pair. Then its complexification (G(C) = G1(C) × G2(C), H =

H1×H2) is a decomposable spherical pair. As we already know, all righteous automorphisms

of (G(C), H) preserve G1(C) and G2(C). Hence, each righteous automorphism σ of G is the

product of automorphisms σ1 and σ2 of G1 and G2, respectively. Similarly to the complex

case we have

Proposition 2.16. The automorphism σ = σ1× σ2 is righteous if and only if σ1 and σ2 are

righteous.

Thus it suffices to describe the righteous automorphisms of indecomposable weakly sym-

metric spaces. We have proved in the first section of this chapter, that each indecomposable

weakly symmetric space is a real form of an indecomposable spherical space. Besides, we

have described non-compact weakly symmetric homogeneous spaces, Theorem 2.2.
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Lemma 2.17. Let σ ∈ AutG(C) be a righteous automorphism of a complex indecomposable

spherical pair (G(C), H). Then in the notation of Theorem 2.2 we have σϕ = ϕσ.

Proof. It suffices to prove that σ(Gϕ) = Gϕ. Observe that both these groups contain H.

For symmetric pairs our statement is tautological. For all pairs with a simple group G(C),

except (Spin8, G2), there is only one subgroup of the form G(C)ϕ containing H, [46, Lemmas

2,3].

For (Spin8, G2), the automorphism σ is inner. Hence the involutions ϕ and σϕσ−1 lies

in the same connected component of Aut(Spin8). This means that both ϕ and σϕσ−1 keep

intact some non-trivial central element of Spin8. Assume that ϕ 6= σϕσ−1. Then the group

SO8 = Spin8/Z2 has two involution acting trivially on the spherical subgroup G2. But this

is not true according to [46, Theorem 3].

Suppose G(C) = G1(C) × ... × Gm(C), where Gi(C) are simple groups. As we already

know, σ does not permute the simple direct factors of non-symmetric pairs. If σ and ϕ

preserve some Gi(C), then their restrictions to Gi(C) commute. On the other hand, if

the involution ϕ permutes two components Gi(C) and Gj(C) (which is only possible for

(Sp2 × Sp2 × Sp2k, Sp2 × Sp2k−2)), then the diagonal of Gi(C) × Gj(C) is contained in the

projection of H to Gi(C)×Gj(C), that is, σ preserves the set of ϕ-invariant elements.

Corollary. Let (G,K) and (G0, K) be weakly symmetric pairs corresponding to a spherical

pair (G(C), H). Then the sets of the righteous automorphisms of G and G0, regarded as

subsets of Aut(G(C), H), coincide.

Proof. Theorem 2.8 yields a bijection between the set of the righteous automorphisms of

G(G0) and the set of the righteous automorphisms of (G(C), H) preserving the real form

G(G0). We can assume that G = G(C)τ , where τ is a compact real structure on G(C), and

G0 = G(C)ϕτ . If σ is a righteous automorphism of (G(C), H), then

σ(G0) = G0 ⇐⇒ στϕ = τϕσ ⇐⇒ στ = τσ ⇐⇒ σ(G) = G.

Let σ be a righteous automorphism of (G,K). Then a(g)σ (g ∈ G(C)) is a righteous

automorphism of (G,K) if and only if g ∈ N(K)∩N(G). If N(G) 6= G, then some equivalent

righteous automorphisms of (G(C), H), preserving G, can be non-equivalent as righteous

automorphisms of (G,K). But for a compact real form, we have N(G) = G. Thus, righteous

automorphisms of (G,K) are equivalent as automorphisms G(C) if and only if they are

equivalent as automorphisms of G.

Assume that G is compact. For each semisimple automorphism ψ of G(C), there is a real

structure τ commuting with ψ. Each righteous automorphism of G(C) is equivalent to either

an involution or the identity mapping. Hence, we can assume that the automorphisms listed
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in the previous subsection are righteous automorphism of corresponding compact groups.

All righteous automorphisms can be obtained from them by multiplication by the elements

of Int(G,K). In particular, each righteous automorphism of G is of the form σ = a(n)δ,

where n ∈ N(K) and δ is an involutive righteous automorphism. We have

σ2 = a(nδ(n)) = a(n(n−1k)) = a(k), where k ∈ K,

i.e., the diffeomorphism s2 corresponding to σ2, acts on X as k. Hence, if we consider G as a

subgroup of Diff(M), then s2 ∈ G for each righteous diffeomorphism s. Thus, for semisimple

groups our definition of a weakly symmetric space is equivalent to the original definition

given by Selberg.

2.2.4 Non-symmetric weakly symmetric Riemannian manifolds

Let M be a connected Riemannian manifold and Isom(M) be the full isometry group of M .

Definition 13. The manifold M is said to be symmetric, if for every point x ∈ M there is

an isometry s ∈ Isom(M) such that s(x) = x and dxs = −id.

The notion of a weakly symmetric manifold is a generalisation of a notion of a symmetric

manifold.

Definition 14. The manifold M is said to be weakly symmetric, if the following equivalent

conditions hold:

(e) ∀x, y ∈M ∃s ∈ Isom(M) : s(x) = y, s(y) = x.

(f) ∀x ∈M ∀ξ ∈ Tx(M) ∃s ∈ Isom(M) : s(x) = x, dsx(ξ) = −ξ.
(The equivalence of the given conditions is proved, for example, in [6].)

The geometric meaning of Definition 14 is that for every point x ∈ M and for every

geodesic line containing x there is an isometry stabilising x and reversing the geodesic line.

Let G be a real Lie group and K ⊂ G a compact subgroup. Assume that M = G/K is

connected.

Definition 14′. The homogeneous space M is called symmetric, if there is an involution σ

of G such that (Gσ)0 ⊂ K ⊂ Gσ.

Let M be a weakly symmetric Riemannian manifold. Then, due to condition (e),

Isom(M) acts on M transitively, in particular, M is a complete Riemannian manifold. De-

note by St(x) ⊂ Isom(M) the stabiliser of a point x ∈M . We have

M = Isom(M)/St(x) = Isom(M)0/(St(x) ∩ Isom(M)0),

Isom(M) is a real Lie group, St(x) is a compact subgroup of Isom(M). It is easy to verify,

that the homogeneous space M of the group Isom(M) is weakly symmetric with respect
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to the identity map. The analogous fact concerning symmetric manifolds is well known. A

symmetric Riemannian manifoldM is a symmetric homogeneous space of the group Isom(M)

and also of the group Isom(M)0.

On the other hand, suppose that a homogeneous space M = G/K is (weakly) symmetric

with respect to some automorphism σ. Recall that σ defines an automorphism s of M by the

formula s(gK) = σ(g)K and this s satisfies condition (2.2). Let us introduce a G-invariant

Riemannian metric on M . Then s ∈ Isom(M) and G/K becomes a (weakly) symmetric

Riemannian manifold.

Thus, the notions of (weakly) symmetric Riemannian manifolds and (weakly) symmetric

homogeneous space are quite close. The difference between them lays in the fact that a

weakly symmetric Riemannian manifold M can be a weakly symmetric homogeneous space

of several groups.

The aim of this subsection is the classification of non-symmetric weakly symmetric Rie-

mannian manifolds with reductive isometry group. Among weakly symmetric homogeneous

spaces of reductive Lie groups, we distinguish non-symmetric Riemannian manifolds.

Let M = G/K be a weakly symmetric homogeneous space. Then M is also a weakly

symmetric homogeneous space of G0, see [43, Lemma 1]. From now on assume that G is

connected. This restriction is not important for our goal, i.e., classification of non-symmetric

weakly symmetric Riemannian manifolds.

A non-symmetric homogeneous space can be a symmetric Riemannian manifold. For

instance, a sphere S2n−1 = SUn/SUn−1 = SO2n/SO2n−1 is a symmetric Riemannian manifold

and simultaneously a non-symmetric weakly symmetric homogeneous space of the group

SUn.

Definition 15. Let M = G/K be a homogeneous space, µ be a G-invariant Riemannian

metric on M . We say that µ is (weakly) symmetric, if the pair (M,µ) is a (weakly) symmetric

Riemannian manifold.

To understand whether a given Riemannian metric is symmetric or not, it is sufficient to

know the isometry group of the pair (M,µ) or its connected component Isom(M)0.

Denote by m the tangent space TeK(G/K) ∼= g/k. The space m can be identified with

a K-invariant complement of k in g. Let B(m) be a set of all positive-definite K-invariant

scalar products on the vector space m. In order to determine a G-invariant Riemannian

metric on G/K, it is necessary and sufficient to choose an element of B(m).

As was proved in [43], a connected homogeneous space that is locally isomorphic to a

weakly symmetric one is also weakly symmetric. Unfortunately, the analogous statement is

not true for symmetric spaces.

Let M̃ = G̃/K̂ be a simply connected covering of M . Here G̃ is a simply connected

covering of G and K̂ ⊂ G̃ is a connected subgroup with Lie K̂ = k. Any G-invariant
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Riemannian metric µ on M can be lifted to a G̃-invariant Riemannian metric µ̃ on M̃ . Now

we will show how to decide whether M is symmetric, assuming that Isom(M̃) is known.

Suppose (M,µ) is a symmetric Riemannian manifold. Then (M̃, µ̃) is also symmetric.

Moreover, M is a symmetric homogeneous space of Isom(M̃)0.

On the other hand, suppose we know that (M̃, µ̃) is symmetric. Denote by F the group

Isom(M̃). If F acts on M , then, by the principal result of [17], M is a symmetric homoge-

neous space of F/N , where N is the ineffective kernel of F : M . Thus, M is symmetric if

and only F acts on M .

We have reduced the problem of finding all non-symmetric Riemannian manifold among

the weakly symmetric homogeneous spaces to the same problem for simply connected ho-

mogeneous spaces.

We will deal with homogeneous spaces of reductive groups. But before we restrict ourself

to this case, note that it is quite possible that M̃ is not a homogeneous space of any reductive

group even if M is. For example, there is no reductive group acting transitively on a real

line R = Ũ1.

In particular, having restricted the area of our consideration to homogeneous spaces of

reductive groups, we might loose some weakly symmetric spaces. To avoid this unhappy

event, we prove the following lemma.

Lemma 2.18. Let M = G/K be a homogeneous space of a reductive group G and F :=

G′K 6= G. Then M̃ decomposes, as a Riemannian manifold, into a product M̃ = Ms ×M0,

where Ms is a simply connected covering of the homogeneous space G′/(G′ ∩K) and M0 is

a locally euclidian symmetric manifold.

Proof. Let µ be a G-invariant Riemannian metric on M , determined by an element b ∈ B(m).

Denote by m1 an orthogonal complement of f/k in m. Evidently, m1 ⊂ z(g). There is an

equality of Riemannian manifolds M̃ = Ms×M0, where M0 is a locally euclidian symmetric

Riemannian manifold and Ms is a simply connected covering of F/K endowing with a F -

invariant Riemannian metric determined by a scalar product b|f/k. To conclude the proof,

note that because F = G′K, we have F/K = G′/(G′ ∩K).

Corollary. A Riemannian manifold M̃ is symmetric if and only if Ms is symmetric;

moreover, if Ms is symmetric, then Isom(Ms) is semisimple and there is an equality

Isom(M̃) = Isom(Ms)× Isom(M0).

Proof. The product of two Riemannian manifolds is symmetric if and only if each of them

is symmetric, hence the first statement is true.

Suppose Ms is symmetric. Assume that Isom(Ms) is not semisimple, i.e., Ms is locally

isomorphic to the product M1 × Rn, where M1 is a symmetric homogeneous space of a

semisimple group Isom(M1) and n ≥ 1. According to the conditions of the lemma, the

group G̃′ acts on Ms transitively. Hence, G̃′ has a non-trivial connected centre. This leads
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to a contradiction, because G′ is semisimple. Since Ms is a symmetric homogeneous space

of a semisimple group, each isometry of M̃ preserves Ms and M0, see [20].

From now on, we assume that G is connected and reductive, G/K is simply connected,

and G = G′K.

Theorem 2.19. [47, Theorem 1] Suppose (G,K) = (G1, K1) × (G2, K2) is a weakly sym-

metric pair, and set Mi = Gi/Ki. Then, regardless of the choice of a G-invariant symmetric

metric on M = G/K, there is a decomposition M = M1 ×M2 in the sense of Riemannian

manifolds.

If NG1(K1)
0 = K1 or NG2(K2)

0 = K2, then it is true for any G-invariant metric. In the

general case the statement is more complicated. As a corollary of Theorem 1 we have: each

symmetric metric on M is a product of symmetric metrics on M1 and M2. In particular, a

symmetric metric on M exists if and only if such metrics exist on both M1 and M2. Thus,

in order to classify all weakly symmetric non-symmetric Riemannian manifolds, it suffices

to consider only indecomposable weakly symmetric homogeneous spaces.

Denote by Z(G) the centre of G. Set Kr := K/(K∩Z(G)). A homogeneous space G′/Kr

is called the central reduction of G/K. Recall that G/K is weakly symmetric if and only of

the central reduction of G/K is weakly symmetric.

Suppose a pair (P,Q) of Lie groups is an extension of (G,K). If P is a symmetric

subgroup of Q, we call (P,Q) a symmetric extension of (G,K).

Let M = G/K be a homogeneous space. Suppose the pair (G,K) is effective, i.e., K

contains no non-trivial normal subgroups of G. (Note that a pair (Isom(M), St(x)) is always

effective.) For each G-invariant Riemannian metric µ on M , the pair (Isom(M), St(x)) is an

extension of (G,K), if of course G 6= Isom(M). In order to find all symmetric G-invariant

Riemannian metrics on M it is necessary and sufficient to describe all symmetric extensions

of (G,K). Or equivalently, to each symmetric pair find out all weakly symmetric pair which

it extends. As was shown above, if M is a symmetric manifold, then Isom(M) is semisimple.

Remark 2. It can be shown, that Isom(M) is always reductive. Moreover, ifM is a symmetric

homogeneous space ofG, then, due to results of Cartan and Helgason we haveG = Isom(M)0.

If N is a normal subgroup of G and N ⊂ K, then G/K = (G/N)/(K/N) and N

acts on M trivially. Therefore, we consider only effective pairs. Recall that a G-invariant

Riemannian metric on M is determined by an element of the set B(m), i.e., by a K-invariant

scalar product on m. Note that the normaliser NG(K) naturally acts on m = g/k.

Lemma 2.20. Let G/K be a weakly symmetric homogeneous space. Then each K-invariant

scalar product on m is also NG(K)-invariant.

Proof. According to Corollary 2 of Lemma 2.6, the orbits of K and N(K) on m coincide.

Hence, these groups have the same invariants in R[m]. In particular, S2(m)K = S2(m)N(K).
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Corollary 1. The set B(m) depends only on the pair (g, k), i.e., the set of weakly symmetric

invariant Riemannian metrics on a simply connected homogeneous space G/K coincides with

the analogous set on any homogeneous space locally isomorphic to G/K.

Suppose (G,K) is a weakly symmetric pair such that N(K)0 6= K. Then G/K =

(N ×G)/N(K), where N = N(K)/K acts on G/K by right multiplications.

Corollary 2. Each G-invariant Riemannian metric on G/K is also (N ×G)-invariant.

Let M = G/K be a weakly symmetric homogeneous space. Suppose G has a non-trivial

connected centre, i.e., G′ 6= G. A pair (G′, G′ ∩K) is called a truncated weakly symmetric.

Denote by K” a group G′ ∩ K. Note that a truncated weakly symmetric pair might be

or might be not weakly symmetric. For example, a pair (SUn+1, SUn) is a truncation of

(Un+1,Un) and a non-weakly symmetric pair (SU2n, SUn × SUn) is a truncation of a weakly

symmetric pair (U2n,Un × SUn).

Corollary 3. If (G′, K”) is a weakly symmetric pair, then the sets of G- and G′-invariant

Riemannian metrics on M coincide.

The last statement means that the homogeneous spaces G/K and G′/K” correspond

exactly to the one and the same weakly symmetric Riemannian manifold.

As proved in [1], N is an Abelian group. In particular, replacing G by G × N is, in a

sense, a process inverse to a truncation.

Lemma 2.21. Let (G,K) be an indecomposable weakly symmetric pair, where z(g) 6= 0.

Suppose the corresponding truncated pair is decomposable, i.e., (G′, G′ ∩ K) = (G1, K1) ×
(G2, K2). Then there are weakly symmetric pairs (Ǧ1, Ǩ1) and (Ǧ2, Ǩ2) such that their

product is an extension of (G,K) and the sets of G- and (Ǧ1 × Ǧ2)-invariant Riemannian

metrics on G/K coincide.

Proof. Set (Ǧ1, Ǩ2) := (G/G2, K/(K ∩ G2)) and (Ǧ2, Ǩ2) := (G/G1, K/(K ∩ G1)). Note

that there is a decomposition Ǧ1 × Ǧ2 = G′(Ǩ1 × Ǩ2). The group G is embedded in a

natural way into Ǧ1 × Ǧ2, here the centre of G is embedded diagonally into the product of

centres of G/G2 and G/G1. Evidently, (G/G2)× (G/G1) = G(Ǩ1× Ǩ2), hence, the product

(Ǧ1, Ǩ2)× (Ǧ2, Ǩ2) is really an extension of (G,K).

The pair (G/G2×G/G1, K) is weakly symmetric, because its central reduction coincides

with the central reduction of (G,K). Evidently, K/(K ∩G2)×K/(K ∩G1) ⊂ N(K) (here

we consider the normaliser in Ǧ1 × Ǧ2). In particular, the orbits of K and Ǩ1 × Ǩ2 in

m = g1/k1 ⊕ g1/k2 are the same. To conclude the proof, note that TeK(G/K) is isomorphic

to m as a K-, N(K)- and, hence, Ǩ1 × Ǩ2-module.

Corollary. Every symmetric metric on G/K is a product of symmetric metrics on G1/K1

and G2/K2.

In what follows we will consider only those weakly symmetric spaces G/K, whose trun-

cated pairs (G′, K”) are indecomposable. As was already shown, (G′, NG′(K”)) is a weakly
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symmetric pair, moreover, it is indecomposable if (G′, K”) is indecomposable. In particular,

we can assume that the list of the indecomposable truncated pairs is known.

Recall that a weakly symmetric space G/K under consideration is also a homogeneous

space of semisimple group G′.

Theorem 2.22. An indecomposable (as a homogeneous space) non-symmetric non-compact

homogeneous space of a semisimple group G is not a symmetric Riemannian manifold re-

gardless of the choice of a G-invariant metric.

Proof. Assume thatM = G/K is symmetric. Decompose it into a product of indecomposable

Riemannian manifolds. Let Mn be a product of all non-compact factors, i.e., a symmetric

space of negative curvature. Suppose a semisimple group H ⊂ Isom(Mn) acts transitively

on Mn. By the Karpelevich theorem, see [23, Theorem 1], there is a Cartan involution σ of

Isom(Mn) such that σ(H) = H and σ|h is a Cartan involution of h. In particular, h = k1⊕m1,

m1 ⊂ m. But then m1 = m. Because [m,m]⊕m = isom(Mn), we have h = isom(Mn). Hence,

any connected semisimple subgroup of Isom(Mn) acting transitively on Mn coincides with

Isom(Mn)
0. The group Isom(Mn) can not act non-trivially on a compact or locally euclidian

symmetric Riemannian manifold. This means that G contains Isom(Mn)
0 as a factor. Thus,

if M = Mn, then the homogeneous space G/K is symmetric and if M 6= Mn, then G/K is

reducible (as a homogeneous space).

In Table 2.6 we present the principal result of [47]. We give the list of all simply con-

nected compact indecomposable weakly symmetric homogeneous spaces of reductive Lie

groups whose central reductions are principal indecomposable homogeneous spaces. If a

homogeneous space M in Table 2.6 admits a G-invariant symmetric metric, then we also

indicate the identity component P of the isometry group, and the stabiliser Q in P of a

point in M . The pair (P,Q) is a symmetric extension of (G,K). The dimensions of the

cones of K-invariant and Q-invariant (in brackets) positive-definite scalar products on the

space m = g/k, i.e., the dimensions of the sets of weakly symmetric and symmetric metrics,

are given in the fifth column of Table 2.6.

Suppose G has a non-trivial connected centre and G/K is also a weakly symmetric

homogeneous space of G′. Clearly G/K = G′/(G′ ∩ K). In Table 2.6 we list only one of

these two homogeneous spaces, usually the former. In rows 5, 7, 17, 23b and 24 the group

Isom(G/K)0 is equal not to P but to its quotient by some central subgroup.

It can be seen that for almost all homogeneous spaces listed in Table 2.6 there are G-

invariant metrics on M , which are not P -invariant for any P . Thus, there are non-symmetric

weakly symmetric Riemannian metrics on these homogeneous spaces. Cases 14 and 16 are

the only exceptions.
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Table 2.6.
M = G/K P=Isom(M)0 Q dim B(m)

1a SUn/SUn−1 SO2n SO2n−1 2(1)
1b SUn/(SUn−k×SUk) (n 6= n− k)
1c U2n/(Un×SUn)
2 SU2n+1/(Spn×U1)
3 SU2n+1/Spn SU2n+2 Spn+1 3(1)
4 (U1×Spn)/Un

5 Spn/(Spn−1×U1) SU2n U2n−1 2(1)
6 (U1×Spn)/(Spn−1×U1)
7 SO2n+1/Un SO2n+2 Un+1 2(1)
8 (U1×SO2n+1)/Un

9 (U1×SO4n+2)/U2n+1

10 SO10/(Spin7×SO2)
11 (U1×SO10)/(Spin7×SO2)
12 SO9/Spin7 SO16 SO15 2(1)
13 Spin8/G2 SO8 × SO8 SO7 × SO7 3(2)
14 Spin7/G2 SO8 SO7 1(1)
15 E6/Spin10

16 G2/SU3 SO7 SO6 1(1)
17 (Un+1 × SUn)/Un SUn+1×SUn+1 SUn+1 2(1)
18 (SUn×Spm)/(Un−2×SU2×Spm−1)
19a (Spn × Spl × Spm)/

(Spn−1 × Sp1 × Spl−1 × Spm−1)
19b (Spn × Sp1 × Spm)/ SO4n × SO4m SO4n−1×SO4m−1 6(2)

(Spn−1 × Sp1 × Spm−1)
19b′ (Sp1 × Spn × Sp1)/ SO4n × SO4n SO4n−1×SO4n−1 5(2)

(Sp1 × Spn−1 × Sp1)
20 (Spn × SU4)/(Spn−2 × SU4)
21 (SUn×Spm)/(SUn−2×SU2×Spm−1)
22a (Spn × Sp2 × Spm)/

(Spn−1 × Sp1 × Sp1 × Spm−1)
22b (Sp1 × Sp2 × Sp1)/(Sp1 × Sp1) Sp2 × Sp2 Sp2 3(1)
23 (SOn+1 × SOn)/SOn SOn+1×SOn+1 SOn+1 2(1)
24a (Spn×Spm)/(Spn−1×Sp1×Spm−1)
24b (Spn × Sp1)/(Spn−1 × Sp1) SO4n SO4n−1 3(1)
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Chapter 3

Commutative homogeneous spaces of

Heisenberg type

In this chapter, we consider homogeneous spaces of the form (N hK)/K. Here S(g/k)K =

S(n)K . Therefore,we may assume that n is a non-Abelian Lie algebra.

Decompose n/n′ into a sum of irreducible K-invariant subspaces, namely n/n′ = w1 ⊕
. . .⊕wp. According to [43, Prop. 15], if X is commutative, then [wi,wj] = 0 for i 6= j, also

[wi,wi] = 0 if there is j 6= i such that wi
∼= wj as a K-module. Denote by ni := wi⊕ [wi,wi]

the subalgebra generated by wi. Let vi be a K-invariant complement of ni in n. Denote by

Ki be the identity component of K∗(v
i).

Theorem 3.1. ([48, Theorem 1]) In the above notation, G/K is commutative if and only if

each Poisson algebra S(ni)
Ki

is commutative.

Note that the Poisson algebra S(ni)
Ki

is commutative for any K-invariant subspace wi ⊂
n/n′, not necessary irreducible.

For convenience of the reader we present here the classification results of [22], [43] and

[44]. All maximal commutative homogeneous spaces of Heisenberg type with n/n′ being an

irreducible K-module are listed in Table 3.1. The following notation is used:

n = w⊕ z, where z = n′ is the centre of n;

H0 is the space of purely imaginary quaternions;

Cm ⊗Hn is the tensor product over C;

Hm ⊗Hn is the tensor product over H;

HΛ2Dn, where D = C or H, is the skew-Hermitian square of D;

HS2
0Hn is the space of Hermitian quaternion matrices of order n with zero trace.

For all items of Table 3.1 the commutation operation w×w 7→ z is uniquely determined by

the condition of K-equivariance up to a conjugation by elements of the centraliser ZSO(w)(K).

Notation (U1×)F means thatK can be either F or U1×F . The cases in which U1 is necessary
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are indicated in the column “U1”. Some spaces are not maximal. This is indicated in the

column “max”.

Table 3.1.

K w z U1 max

1 SOn Rn Λ2Rn = son
2 Spin7 R8 R7

3 G2 R7 R7

4 U1 × SOn Cn R n 6= 4

5 (U1×)SUn Cn Λ2Cn ⊕ R n is odd

6 SUn Cn Λ2Cn

(n is odd)

7 SUn Cn R
(n is odd)

8 Un Cn HΛ2Cn = un
9 (U1×)Spn Hn HS2

0Hn ⊕H0

10 Un S2Cn R
11 (U1×)SUn Λ2Cn R n is even

(n > 3)

12 U1 × Spin7 C8 R7 ⊕ R
13 U1 × Spin9 C16 R
14 (U1×)Spin10 C16 R
15 U1 ×G2 C7 R
16 U1 × E6 C27 R
17 Sp1 × Spn Hn H0 = sp1 n > 2

18 Sp2 × Spn H2 ⊗Hn HΛ2H2 = sp2

19 (U1×)SUm × SUn Cm ⊗ Cn R m = n

(m,n > 3)

20 (U1×)SU2 × SUn C2 ⊗ Cn HΛ2C2 = u2 n = 2

21 (U1×)SUn × Sp2 Cn ⊗H2 R n 6 4 n > 3

22 U2 × Spn C2 ⊗Hn HΛ2C2 = u2

23 U3 × Spn C3 ⊗Hn R n > 2

Remark. There is a small inaccuracy in tables of [43] and [44]. The homogeneous space

(N h Un)/Un, where n = Cn ⊕ Λ2Cn ⊕ R, is commutative regardless of the parity of n.

Suppose (N hK)/K is a principal commutative homogeneous space and n′ 6= 0. There

is a non-Abelian subspace w1 ⊂ n/n′. Denote by Ke the maximal connected subgroup of K

acting on w1 locally effectively. Then K = Ke ×H, where H acts on n1 trivially. The pair

(Ke, n1) is either in item or a a central reduction of an item of Table 3.1.
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The classification of maximal principal indecomposable Sp1-saturated commutative

spaces of Heisenberg type is being done in the following way. For each commutative ho-

mogeneous space (N1 h Ke)/Ke with n1/n
′
1 = w1 being an irreducible Ke-module, we find

out all commutative space (NhK)/K such that K = Ke×H, n = n1⊕v1. The classification

tools are Theorem 3.1, Table 3.1, and the tables of all irreducible representation of simple

Lie algebras with non-trivial generic stabilisers [14].

For example, if Ke = SOn, n1 = Rn⊕Λ2Rn, then K = Ke, n = n1. Here the homogeneous

space (N1 h F )/F , is not commutative for any proper subgroup F ⊂ SOn, see [3]. Hence,

πe(K
1) = Ke and, by Lemma 1.7, either the action SOn : v1 is trivial or (N h K)/K does

not satisfy condition (3) of Definition 8.

We say that the action K : n is commutative if the corresponding homogeneous space

(N hK)/K is commutative.

Lemma 3.2. Suppose that Ke = K ′
e × U1, [w1,w1] 6= 0 and w1 = W ⊗ R2, where K ′

e acts

on W and U1 on R2. Let F be a proper subgroup of K ′
e. If the action F : W is reducible

then (N1 h (F × U1))/(F × U1) is not commutative.

Proof. We show that the action of H = (SOn × SOm) × SO2 on n1
∼= (Rn ⊕ Rm) ⊗ R2 ⊕

[w1,w1] cannot be commutative. Assume that it is commutative and apply Theorem 3.1.

We have H∗(Rn ⊗R2)0 = SOn−1 × SOm. The subspace Rm ⊗R2 is a sum of two isomorphic

SOn−1×SOm-modules. Hence, Rm⊗R2 is a commutative subalgebra of n1. This can happen

only if [w1,w1] = 0.

Lemma 3.3. Let (N h K)/K be a commutative homogeneous space from row 1, 5, 6, 8,

9, 12, 18, 20 or 22 of Table 3.1. Suppose a subgroup F ⊂ K acts on n/n′ reducibly. Then

(N h F )/F is not commutative.

Proof. Assume that (N h F )/F is commutative. Then due to [43, Prop. 15] there are at

list two subspaces V1, V2 ⊂ n/n′, such that V1⊕ V2 = n/n′ and [V1, V2] = 0. Evidently, this is

not true in cases 1, 5, 6, 8. For the same reason, in cases 18, 20 and 22 F contains the first

simple factor of K, either Sp2 or SU2.

In case 9 F has to be a subgroup of Spm × Spn−m. But subspaces Hm and Hn−m do not

commute with each other.

Consider case 12. It follows form Lemma 3.2 and [43, Prop. 15] that F = U1×H, where

H ⊂ Spin7 and the representation H : R8 is irreducible. Since F : (R2⊗R8) is reducible,

we have H ⊂ SU4. Now (n/n′) ∼= C4⊕C4 as an F -module. But these two subspaces do not

commute with each other. This contradicts [43, Prop. 15].

In case 18, we have F ⊂ Sp2 × Spm × Spn−m, F∗(H2 ⊗ Hm) ⊂ Sp1 × Sp1 × Spn. The

subspace H2 ⊗ Hn−m is a sum of two isomorphic F∗(H2 ⊗ Hm)-modules. According to [43,

Prop. 15], H2 ⊗Hn−m should be an Abelian subalgebra of n. But this is not so.
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In case 20, F is a subgroup of either SU2 × Um × Un−m or SU2 × Spm/2 for even m. If

F ⊂ SU2×Um×Un−m, we apply the same reasoning as in case 18. If F ⊂ SU2×Spm/2, then

n/n′ = Hm/2 ⊕Hm/2 is a direct sum of two isomorphic F -modules. Hence by [43, Prop. 15],

n should be Abelian. The 22-d case is exactly the same.

Lemma 3.4. Let F ⊂ Spn, n ≥ 2 and (F∗(Hn))0 = {e}. Then the image of the generic

stabiliser (F × Spm)∗(Hn ⊗Hm) under the projection on F is Abelian.

Proof. Assume that this is not the case, i.e., the image contains Sp1. Stablisers of decompos-

able vectors are contained in a generic stabiliser (F × Spm)∗(V ) up to conjugation. Hence,

the restriction F |ξH contains Sp1 for each non-zero ξ ∈ Hn. Due to Lemma 1.7, we have

F = Spn. But then F∗(Hn) = Spn−1.

Recall that n = n1 ⊕ v1, K = Ke × H, where H acts on n1 trivially. Denote by πe the

natural projection K → Ke.

Lemma 3.5. Suppose (N hK)/K is commutative, [n1, n1] 6= 0, and πe(K
1) = (U1)

n. Then

n1 = R2n ⊕ R, Ke = Un.

Proof. An irreducible representation of U1 on a real vector space is either trivial (R) or

R2. If w1 is the direct sum of more than n K1-invariant summands, then two of them are

isomorphic and there is a non-zero η ∈ w1 such that [η,w1] = 0. But Keη = w1 ⊂ z(n1).

By the same reason w
(U1)n

1 = 0. Because the action (U1)
n : w1 is locally effective, w1 = R2n.

We have Λ2R2 = R, hence K1 acts on n′1 trivially. Each element of Ke is contained in

some maximal torus, that is up to conjugation in πe(K
1). Hence Ke acts on n′1 trivially and

Ke ⊂ Un. The group Un has no proper subgroups of rank n acting on R2n irreducibly. Thus

we have Ke = Un, n′1 = (Λ2Rn)Un ∼= R.

From now on, let (N h K)/K be an indecomposable maximal Sp1-saturated principal

commutative space with n1 6= n. In particular, the connected centre Z(Ke) of Ke acts on v1

trivially. Let a ⊂ n be a K-invariant subalgebra. Clearly, if the action K : n is commutative,

then K : a is also commutative. We assume that K : n is not a “subaction” of some larger

commutative action.

Decompose n into a direct sum of K-invariant subspaces n = n1 ⊕ V2 ⊗D2 V
2 ⊕ . . . ⊕

Vq ⊗Dq V
q ⊕ Vtr, where Vi are pairwise non-isomorphic irreducible non-trivial K ′

e-modules,

Vtr and V i are trivial Ke-modules, and H acts on each Vi trivially. In order to classify all

commutative spaces (N h K)/K with a given action Ke : n1, we have to describe possible

Vi, then dimensions of V i, afterwards the actions K :
q⊕
i=2

Vi⊗ V i and K : Vtr. Once again we

use Élashvili’s classification [14]. Note that, according to Lemma 3.5, Vi could be isomorphic

to k′e only if (Ke, n1) = (Un,Cn ⊕ R).
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Assume for the time being that K ′
e is simple and denote it by K1. (In general, K ′

e is a

product of at most two simple direct factors.) Suppose (K1)∗(Vi) is finite for some Vi such

that Vi ⊗Di
V i ⊂ v1. Then πe(K

1) is Abelian. For Di = R or C, the statement is clear. For

Di = H, it follows from Lemma 3.4. Thus, (K1)∗(Vi) is non-trivial (infinite) for all Vi, unless

(Ke, n1) = (U2,C2 ⊕ R).

First we consider pairs (Ke, n1) such that n′1 is a non-trivial Ke-module.

Example 9. Let (Ke, n1) be the second item of Table 3.1. We show that n ⊂ n1 ⊕ R7 ⊗ R2.

All representations of Spin7 are orthogonal, so here all Di equal R. The group Spin7 has only

three irreducible representations with infinite generic stabiliser, namely so7, R7 and R8. If

Vi = R8 for some i, then K1 has a non-zero invariant in w1, which commute with w1. This

is a contradiction. Thus n = n1 ⊕ R7 ⊗ V 2 ⊕ Vtr. If dimV 2 ≥ 3, then πe(K
1) ⊂ SU2 × SU2.

But the action SU2× SU2 : (C2⊕C2)⊕R7 is not commutative. In case dimV 2 = 2 we have

πe(K
1) = Spin5 = Sp2. The pair (Sp2,H2 ⊕R7) is a central reduction of item 9 of Table 3.1

with n = 2 by a subgroup corresponding to H0 (here HS2
0H2 ∼= R7 as an Sp2-module).

Since dimV 2 ≤ 2, the maximal connected subgroup of K acting on n1⊕R7⊗V 2 locally

effectively is either Spin7 or Spin7×SO2. Anyway, because (N h K)/K is principal, this

subgroup acts trivially on Vtr. Hence, Vtr ⊂ n′ and K ⊂ Spin7×SO2. Clearly, Vtr ∩ n′1 = {0}.
Assume that there is a non-Abelian subspace w2 ⊂ n. Then it is either R7 or R7 ⊗R2. The

first case is not possible, because Λ2R7 ∼= so7 as a Spin7-module. In the second case we apply

Theorem 3.1 to w2 = R7⊗R2. We have (Spin7)∗(R8⊕R7) ⊂ Spin6. Hence K2 ⊂ Spin6×SO2.

By Lemma 3.2, the action SO6×SO2 : w2 ⊕ [w2,w2] is commutative only if [w2,w2] = 0.

Thus, n′ = n′1, Vtr = 0 and n ⊂ n1 ⊕ R7⊗R2. The corresponding commutative space is

indicated in the 13-th row of Table 3.2.

For convenience of the reader, we list all irreducible representations of sun with non-trivial

generic stabiliser. They are described by the highest weights of the complexifications.

Table An−1.

n representation (SUn)∗(V )0

R($1)⊕R($1)
∗ SUn−1

R($2)⊕R($2)
∗ (SU2)

[n/2]

R($1 +$∗
1) (U1)

n−1

4 R($2) Sp2

6 2R($3) (U1)
2

Note that the action (SUn)∗(V ) : Cn is irreducible only in one case: n = 4, V = R($2) ∼= R6.

There are 9 pirs (Ke, n1) such that Ke has two simple direct factors. Namely, seven last

items of Table 3.1 and their central reductions. Let K1 �Ke be a simple normal subgroup.

Similar to the case of simple K ′
e, one can show that if K1 6= SU2, then (K1)∗(Vi) is infinite

for each Vi such that Vi ⊗Di
V i ⊂ v1.
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According to Lemma 3.3, for items 1, 5, 6, 8, 9, 12, 18, 20, 22 of Table 3.1, the action

K1 : w1 have to be irreducible. This leaves only a few possibilities for Vi. The obtained

commutative spaces are listed in rows 2, 4, 5 of Table 3.2.

The Lie group G2 has only two irreducible representations with non-trivial generic sta-

biliser, namely adjoint one and R7. Thus, if (Ke, n1) is the pair from the 3-d row of Table 3.1,

then K = Ke and n = n1.

Calculations in cases ((U1)×Spn,Hn⊕H0), ((U1)×Spn,Hn⊕R) and (Sp1×Spn,Hn⊕sp1)

do not differ much. By our assumptions subgroups U1 and Sp1 act on v1 trivially. The result

is given in rows 8–12 of Table 3.2.

If n′ is a trivial K-module, the calculations are even simpler. However, we have more

such cases. Recall that w1(C) = W1 ⊕W ∗
1 as a K-module. We have to check whether the

action πe(K
1) : W1 is spherical or not. If (Ke, n1) is item 10, 13, 15, 16, 21, 23, 4 with n 6= 8

or a central reduction of item 22 of Table 3.1, then K = Ke, n = n1. One can prove it using

tables of [14] and in some cases Lemma 3.2. For all other pairs (Ke, n1) with n′1 being trivial

K-module, n can be larger than n1. We will consider one typical example in full details.

Other cases are very similar to it.

Example 10. Here we prove that all principal Sp1-saturated maximal commutative pairs

(K, n) with (Ke, n1) = ((U1×)SUn,Cn ⊕ R) and K 6= Ke are items 1, 3, 7, 19, 24, and 25 in

Table 3.2. Commutativity of all items of Table 3.2 is proved below, see Theorem 3.6. Recall

our notation: K = Ke ×H, n/n′ =
⊕p

i=1 wi, n1 = w1 ⊕ [w1,w1], and n = n1 ⊕ v1.

First suppose that n = 2. Let w2 ⊂ v1 ∩ (n/n′) be an irreducible K-invariant subspace

on which SU2 acts non-trivially. Then w2 = V2 ⊗D V
2, where D ∈ {R,C,H}, V2 is an SU2-

module, and V 2 is an H-module. Assume that D = H. Then dimV2 > 1 due to condition

(3) of Definition 8 and πe(K∗(w2)) = {e}.
Thus D is either R or C, πe(K∗(w2)) = U1 up to a local isomorphism, and SU2 acts

trivially on w3⊕ . . .⊕wp. In case D = R, we get V2 = R3, V 2 = R, and, hence, n = n1⊕ su2.

In case D = C, we have V2 = C2. Let v1 = w2 ⊕ V be a K-invariant decomposition.

Then πe((SU2×H∗(V ))∗(w2)) = U1. Hence, H∗(V ) acts on a generic subspace C2 ⊂ V 2

as (S)U2. In particular, H∗(V ) is transitive on a (2m−1)-dimensional sphere, where m =

dimV 2. It follows, see e.g. [32], that H∗(V ) acts on V 2 as one of the following groups:

Um, SUm,U1×Spm/2, Spm/2. Thus, either V is a trivial K-module and H is one of the groups:

Um, SUm,U1×Spm/2, Spm/2; or H = (S)U4, V = R6. These commutative homogeneous

spaces are items 7, 19, 24, and 25 of Table 3.2.

Suppose now that n > 2. Here (sun)∗(Vi) is non-trivial for each Vi. Moreover, according

to Lemma 3.5 and Table An−1, if (sun)∗(Vi) is Abelian, then Vi = sun and V i = R. Thus,

each Vi is one of the following three spaces: sun; Cn; Λ2Cn with n > 4 and R6 in case

n = 4. Suppose sun ⊂ v1 is an irreducible K-invariant subspace. Let (U1)
n−1 ⊂ SUn−1

be a maximal torus. Then the action (U1)
n : (v1/sun) is trivial due to Lemma 3.5. Thus

v1 = sun. This commutative space is the first item of Table 3.2. Below, we assume that sun
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is not contained in v1.

Consider case n = 4. We have v1 = C4⊗V 2⊕R6⊗Rs⊕Vtr. Note that (SU4)∗(R6 ⊗ R3) is

finite, so s ≤ 2. Also (U1×U4)∗(C4⊕R6⊗R2) = (U1)
3 and C4 is not a spherical representation

of (C∗)3. Hence, if s = 2, then (K, n) = ((S)U4(×SO2),C4 ⊕ R ⊕ R6 ⊗ R2). If s = 1, then

dimV 2 = 1 and (K, n) = (U4×U1, (C4⊕R)⊕(C4⊕R)⊕R6). If s = 0, then v1 = Cn⊗V 2⊕Vtr.

This last possibility is the same for general n and is dealt upon below.

Note that (SUn)∗(Λ
2Cn⊕Λ2Cn) = U1 and (SUn)∗(Λ

2Cn⊕Cn) = {e}. Thus, either n =

n1⊕(Λ2Cn⊕R) or n = n1⊕Cn⊗D2V
2⊕Vtr. Here D2 equals C or R. If D2 = R and dimV 2 > 1,

then πe(K
1) is contained in U1×Un−2 ⊂ U2×Un−2. Evidently, the (U1×Un−2)-module Cn is

not spherical. Hence, D2 = C.

Suppose that H∗(Vtr) acts on V 2 as F ⊂ Ur, where r = dimV 2. Set d := min(n, r). Then

πe(K
1) = πe((Un×F )∗(Cn ⊗Cr)) ⊂ (U1)

d ×Un−d. Since the action K1 : n1 is commutative,

πe(K
1) contains (U1)

d × SUn−d. It follows that F acts on a generic subspace C2 ⊂ V 2 as

(S)U2. Also, if r > 2, then F acts on a generic subspace C3 ⊂ V 2 as (S)U3. Thus F = (S)Ur,

H∗(Vtr) = H, and, hence, Vtr is a trivial K-module. We conclude that n = n1⊕C2⊗Cs⊕R.

This commutative spaces is item 3 of Table 3.2.

Theorem 3.6. All indecomposable Sp1-saturated maximal principal commutative homoge-

neous spaces (N hK)/K such that n 6= 0 and n/n′ is a reducible K-module are presented in

Table 3.2 (in the sense that n is a K-invariant subalgebra of nmax).

Explanations to Table 3.2. The algebra nmax is described in the following way. Each

subspace in parentheses represents a subalgebra wi ⊕ [wi,wi]. The spaces given outside

parentheses are Abelian. The actions K : nmax are uniquely determined by the condition

that representations K : wi are irreducible. Notation (SUn,Un,U1×Spn/2) means that this

normal subgroup of K can be equal to either of these three groups. Appearance of the

symbol Spn/2 means that n is even.

Proof. It was already explained that all such commutative spaces are contained in Table 3.2.

Now using Theorem 3.1, Table 3.1, and the list of the spherical representations from [24],

we prove that all these spaces are commutative.

It is proved in [3] that the spaces contained in rows 3, 7, 8, 16, 19 and 20 are commutative.

Suppose n contains an Abelian K-invariant ideal a. According to Theorem 3.1, K : n is

commutative if and only if K∗(a) : n/a is commutative. For items 2, 4, 5 of Table 3.2 take

a = R6. ThenK∗(a) : n/a appears in Table 3; hence, these three spaces are commutative. For

items 6, 21, 24, the pairs K∗(R6) : n/a, where a = R6 correspond to spherical representations.

Analogously, for item 23 pair K∗(a) : n/a, where a = R6 ⊕ R6, corresponds to a spherical

representation.

Let (N h L)/K be commutative. Consider the K-module l/k as Abelian Lie algebra.

Then n ⊕ (l/k) is a 2-step nilpotent Lie algebra, and it follows from Theorems 1.3 and 3.1

that the action K : n ⊕ (l/k) is commutative. The pairs in rows 1, 12, and 15 are obtained
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in this way from the commutative spaces ((Hn h Un) × SUn)/Un, (H2n h U2n)/Spn, and

(H8 h(SO8×SO2))/(Spin7×SO2), respectively. Since one obtains commutative homogeneous

space of Euclidian type in case [n, n] = 0, these are the only non-trivial examples given by

this construction.

Table 3.2.

K nmax
1 Un (Cn ⊕ R)⊕ sun

2 U4 (C4 ⊕ Λ2C4 ⊕ R)⊕ R6

3 U1 × Un (Cn ⊕ R)⊕ (Λ2Cn ⊕ R)

4 SU4 (C4 ⊕HS2H2 ⊕ R)⊕ R6

5 U2 × U4 (C2 ⊗ C4 ⊕HΛ2C2)⊕ R6

6 SU4 × Um (C4 ⊗ Cm ⊕ R)⊕ R6

7 Um × Un (Cm ⊗ Cn ⊕ R)⊕ (Cm ⊕ R)

8 U1 × Spn × U1 (Hn ⊕ R)⊕ (Hn ⊕ R)

9 Sp1 × Spn × U1 (Hn ⊕H0)⊕ (Hn ⊕ R)

10 Sp1 × Spn × Sp1 (Hn ⊕H0)⊕ (Hn ⊕H0)

11 Spn × (Sp1,U1, {e})× Spm (Hn ⊕H0)⊕Hn ⊗Hm

12 Spn × (Sp1,U1, {e}) (Hn ⊕H0)⊕HS2
0Hn

13 Spin7 × (SO2, {e}) (R8 ⊕ R7)⊕ R7 ⊗ R2

14 U1 × Spin7 (C7 ⊕ R)⊕ R8

15 U1 × Spin7 (C8 ⊕ R)⊕ R7

16 U1 × U1 × Spin8 (C8
+ ⊕ R)⊕ (C8

− ⊕ R)

17 U1 × Spin10 (C16 ⊕ R)⊕ R10

18 (SUn,Un,U1 × Spn/2)× SU2 (Cn ⊗ C2 ⊕ R)⊕ su2

19 (SUn,Un,U1 × Spn/2)× U2 (Cn ⊗ C2 ⊕ R)⊕ (C2 ⊕ R)

20 (SUn,Un,U1×Spn/2)×SU2× (Cn ⊗ C2 ⊕ R)⊕ (C2 ⊗ Cm ⊕ R)

×(SUm,Um,U1×Spm/2)

21 (SUn,Un,U1×Spn/2)×SU2×U4 (Cn⊗C2⊕R)⊕(C2⊗C4⊕R)⊕R6

22 U4 × U2 R6 ⊕ (C4 ⊗ C2 ⊕ R)⊕ su2

23 U4 × U2 × U4 R6⊕(C4⊗C2⊕R)⊕(C2⊗C4⊕R)⊕R6

24 U1 × U1 × SU4 (C4 ⊕ R)⊕ (C4 ⊕ R)⊕ R6

25 (U1×)SU4(×SO2) (C4 ⊕ R)⊕ R6 ⊗ R2

In the remaining nine cases we use Theorem 3.1. For instance, take item 11 with K =

Spn × Spm. Here n contains only one non-Abelian subspace w1
∼= Hn. Set d = |n−m| and

s = min(n,m). Then K1 = K∗(Hn ×Hm) = (Sp1)
d × Sps. Anyway, (Sp1)

n is a subgroup of

πe(K
1). To conclude, observe that the action Sp1 : (H ⊕ H0) is commutative according to

Table 3.1.
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Chapter 4

Final classification

4.1 Trees and forests

We use notation of previous sections. As we have seen in Section 1.5, in order to classify all

commutative spaces, one has to describe triples (F, F̌ , V ) such that f ⊂ so(V ),

F = Sp1 × F̌ and F = F∗(V )F̌ . (∗∗)
Suppose F = (F1×F2) is acting on V . Then we denote by (F1)~(V ) the image of F∗(V ) under

the natural projection F → F1. Recall that (F1)∗(V ) is a normal subgroup of (F1)~(V ) (see

Lemma 1.8). For F = Sp1×F̌ , condition F = F∗(V )F̌ is equavalent to (Sp1)~(V ) = Sp1.

We assume that the triple (F, F̌ , V ) is indecomposable, i.e., there is no decomposition F̌ =

F1 · F2, V = V1 ⊕ V2 such that Sp1 × F1 acts on V2 trivially and F2 acts trivially on V1.

Consider a rooted tree Tq with vertices 0, 1, . . . , q, where 0 is the root. To each vertex i

we attach a weight d(i), which is either a positive integer d(i) or ∞. Assume that d(0) = 1,

each vertex i with d(i) = ∞ has degree 1 and if (i, j) is an edge with d(j) = ∞, then

d(i) > 1. We say that a vertex i is finite if d(i) <∞ and an edge (i, j) is finite if both i and

j are finite. Let F be a product of Spd(i) over all finite vertices, and F̌ be a product of Spd(i)
over all finite vertices except the root. To each finite edge (i, j) we attach a vector space

Wi,j := Hd(i) ⊗H Hd(j) and to an edge (i, j) with d(j) = ∞, a vector space Wi,j := HS2
0Hd(i).

Note that, since Tq is connected, if d(j) = ∞, then d(i) <∞ for the single vertex i connected

with j by an edge. Let V be a direct sum of Wi,j over all edges.

The group Spd(i) naturally acts on a subspace (
⊕
(i,j)

Wi,j) ⊂ V . This gives rise to a

representation F : V and to an embedding f ⊂ so(V ). For example, a tree with two vertices

corresponds to a linear representation Sp1 × Spd(1) : Hd(1).

Lemma 4.1. The indecomposable triples (F, F̌ , V ), where F = Sp1 × F̌ , (Sp1)~(V ) = Sp1

are in one-to-one correspondence with the described above rooted trees Tq such that

(I) if d(i) > 1, then the vertex i has degree at most 2;

62



(II) if d(i) > 1, d(j) > 1 and vertices i and j are connected by an edge, then one of

then has degree 1.

We have to make a few preparations before we give a proof. First of all, denote vertices by

a corresponding numbers d(i). Thus, the triple from Example 8 corresponds to the following

tree.

1 1 1 1 . . . 1 1 1

Here the root is the first vertex, but it can be any of them. A generic stabiliser of (Sp1)
n : nH

equals to Sp1 embedded diagonally in (Sp1)
n.

Suppose we have a weighted graph Γq, i.e., to each vertex i of Γ we have attached either a

positive integer d(i) or have set d(i) := ∞. Suppose there is at list one vertex with d(i) = 1

and each infinite vertex has degree 1. Then we can choose one vertex i of Γq with d(i) = 1

as a root and constructed a triple (F, F̌ , V ) by the same principle as for a tree. Let (i, j) be

an edge of Γq such that neither i nor j is the root. Denote by Γ̃q−1 the graph obtained from

Γq by contracting (i, j) to a vertex of weight 1. Informaly speaking, we erase the edge (i, j)

and replace vertices i, j by one vertex with weight 1. The new vertex is connected by edges

with all old vertices which were connected by edges with either i or j.

Let Wi,j ⊂ V be an F -invariant subspace corresponding to an edge (i, j). If (F, F̌ , V )

satisfies condition (∗∗), then (Sp1)~(V1) = Sp1 for any F -invariant subspace V1 ⊂ V , i.e.,

the triple (F, F̌ , V1) also satisfies condition (∗∗). In particular, (Sp1)~(Wi,j) = Sp1 and

F∗(V/Wi,j) = Sp1 × F̌∗(V/Wi,j). Thus, if the triple (F, F̌ , V ) satisfies condition (∗∗), then

(F∗(Wi,j), F̌∗(Wi,j), V/Wi,j) also does.

Recall that a direct factor Spd(r) acts onWi,j trivially if r 6= i, j. Suppose that d(i) ≤ d(j).

Set d = d(j) − d(i), if d(j) = ∞, we assume that d = 0. Then (Spdi
× Spdj

)∗(Wi,j) =

(Sp1)
d(i) × Spd. We illustrate the passage from Γq and corresponding triple (F, F̌ , V ) to

(F∗(Wi,j), F̌∗(Wi,j), V/Wi,j) and then to Γ̃q−1 by the following picture.

Γq (F∗(Wi,j), F̌∗(Wi,j), V/Wi,j) Γ̃q−1
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d(i)
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1

d(s)

Picture 1.
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Here d(t) and d(s) are vertices connected with d(i) and d(j). In the second diagram we have

either d(i) + 1 or 1 (if d(i) = d(j) = 1) new vertices instead of two old ones; and in the third

one we choose one vertex among d(i) new ones. Note that, in case d(j) = ∞, we have no

vertex s.

Lemma 4.2. Suppose a triple (F, F̌ , V ) corresponds to a graph Γq and satisfies condition

(∗∗). Then the triple corresponding to Γ̃q−1 also satisfies it.

Proof. Assume that d(i) ≤ d(j). When we replace (F, F̌ , V ) by (F∗(Wi,j), F̌∗(Wi,j), V/Wi,j),

we remove the vertices i, j and the edge (i, j) from Γq and add d(i)+1 or d(i) new vertices and

several new edges, as shown on Picture 1. Let Γ′q be the graph corresponding to F∗(Wi,j) :

V/Wi,j. Then Γ̃q−1 is a subgraph of Γ′q. It contains the root of Γq (which is also the root of Γ′q)

and corresponds to an F∗(Wi,j)-invariant subspace in V/Wi,j. Thus, the triple corresponding

to Γ̃q−1 satisfies condition (∗∗).

Proof of Lemma 4.1. Let (F, F̌ , V ) be an indecomposable triple satisfying condition (∗∗).
We construct a graph Γq corresponding to it. We start with the root (the vertex 0) which

has a weight d(0) = 1. This vertex corresponds to Sp1 direct factor of F .

Let W ⊂ V be an irreducible F -invariant subspace. Suppose Sp1 acts on W non-trivially.

Then according to Lemma 1.7, W ∼= H1 ⊗ Hn and F acts on Hn as Spn, where Spn � F .

We put a vertex with a weight n in Γq and an edge connecting it with the root. By this

procedure we construct the first level (all vertices connected with the root) of Γq. Let us

check, that it has no double edges. We have (Sp1 × Spn)∗(Hn ⊕ Hn) = U1 × Spn−2. Thus,

if the graph contained a double edge, then (Sp1)~(V ) ⊂ U1. Here is a picture of “the first

level” part of the graph.

1 – the root

d(1)

lllllllllllllllllllllll
d(2)

rrrrrrrrrrrrrrr
d(3)

���������
d(4) d(5)

==========
. . . d(i)

SSSSSSSSSSSSSSSSSSSSSSS
d(i+ 1)

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

Denote by W1 ⊂ V the maximal F -invariant subspace such that W
Sp1
1 = 0, i.e.,

W1 =
⊕

W0,j, where the sum is taken over all edges (0, j). Clearly, W1 is an F -invariant

complement of W 1 := V Sp1 .

Suppose a vertex i with d(i) = n is connected by an edge with the root. Then there is

an F -invariant subspace Hn ⊂ V , on which both Spn and Sp1 act non-trivially. We have

(Sp1× Spn)∗(Hn) = H1×H2, where H1
∼= Sp1 ⊂ Sp1× Spn and H2

∼= Spn−1 ⊂ Spn. Assume

that the action Spn : W 1 is non-trivial and take some irreducible F -invariant subspace W ⊂
W 1 which is a non-trivial Spn-module. Let Spn×H be the maximal connected subgroup of F

acting on W locally effectively. Clearly, the action (H1×H2)×H on W satisfies conditions of

Lemma 1.7. Thus, if H is non-trivial, then H = Spm, W = Hr⊗Hm and the restriction Hr|H1
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contains only one-dimensional (over H) representations of Sp1. Moreover, if (Hr)Sp1 6= Hr−1,

then (H1)~(W ) ⊂ U1 and also (Sp1)~(V ) ⊂ U1. It follows that r = n.

The restriction of Spn : Hn to (Spn)~(W 1) have to be a sum of (Spni
: Hni) where∑

ni = n. If H is trivial, then W is an irreducible representation of Spn and (Spn)~(W 1) ⊂
(Spn)∗(W ). In particular, (Spn)∗(W ) contains (Sp1)

n. According to [14], W = HS2
0Hn and

(Spn)∗(W ) = (Sp1)
n. In this case, we inset an infinite vertex j, which corresponds not to a

direct factor of F , but to a subspace HS2
0Hn ⊂ V . Clearly, j has degree 1.

Assume that n > 1 and W 1 contains two different non-trivial Spn-modules Hn⊗Hm and

Hn ⊗Hl. We make another calculation:

(Spn × Spm × Spl)∗(Hn ⊗Hm ⊕Hn ⊗Hl) ⊂ (Sp1 × Spn−2)× Spm × Spl,

where Sp1 ⊂ Sp1×Sp1 ⊂ Sp1×Sp1×Spn−2 ⊂ Spn. Clearly, (Spn)~(W 1) ⊂ Sp1×Spn−2, which

is not allowed. Similar, W 1 cannot contain two copies of HS2
0Hn or HS2

0Hn⊕Hn⊗Hm.

By the same reasoning, if Spm acts non-trivially on some other irreducible F -invariant

subspaces, then it is of the form Hm ⊗Hl. Another calculation shows that if both n,m > 1

then Spm acts trivially on V/(Hn ⊗Hm).

So far we have constructed a graph of the following type.

1

d(1)

mmmmmmmmmmmmmmmmmmmm
1

ttttttttttttttt
d(3)

���������
d(4) d(5)

999999999

. . . d(i)

QQQQQQQQQQQQQQQQQQQQQ
1

TTTTTTTTTTTTTTTTTTTTTTTTTTTT

1 d(j) 1 ∞ 1

On this picture all integers d(s) are greater then 1. Boxes around vertices with weights 1

are drawn because we have not described the actions of the corresponding groups Sp1.

Let H ∼= Sp1 be a normal subgroup corresponding to a vertex a labeled by 1 . Then

either there is an edge (0, a) or two edges (0, i), (i, a). Anyway, either H~(V/W0,a) = H or

H~(V/(W0,i ⊕Wi,a)) = H. We apply the procedure of this lemma to H. Thus, arguing by

induction, we construct a connected graph Γq corresponding to some indecomposable triple

(in general a subtriple of (F, F̌ , V )). But, since (F, F̌ , V ) is indecomposable, all direct factors

of F are vertices of Γq and each F -invariant subspace of V corresponds to an edge of Γq.

Assume that Γq is not a tree. Let Γc be the smallest connected subgraph of Γq containing

the root and the cycle. We may assume that either Γc has two vertices and a double edge

(0, 1); or it has three vertices and a double edge (1, 2). If this is not the case, we apply

Lemma 4.2 and replace an edge by a vertex of weight 1. But neither Sp1×Spn : Hn⊕Hn nor

Sp1×Spn×Spl : Hn ⊕Hn⊗Hl ⊕Hn⊗Hl satisfies condition (∗∗). Thus we have shown that if

a graph is not a tree, then the corresponding triple (F, F̌ , V ) cannot satisfy condition (∗∗).
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Assume that condition (I) is not fulfilled. Then there is a vertex i such that d(i) > 1

which is connected with at least three vertices, say j, t, s. Assume that j is not the root. Set

d := |d(i) − d(j)|. Consider F∗(Wi,j) : V/Wi,j. Clearly, the corresponding graph contains a

subgraph with a cycle, either

d(t)
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if d(i) ≤ d(j). In the second case we have d(i) vertices of weight 1.

Assume now that condition (II) is not fulfilled. Then we have edges (i, j) and (j, t) such

that d(i), d(j), d(t) > 1. According to (I), the vertex j has degree 2. If i and t are both of

degree 1, then the triple (F, F̌ , V ) is decomposable. Assume that i has degree 2. Replace

F : V by F∗(Wj,t) : V/Wj,t, as shown on Picture 1. We will have at least min(d(j), d(t))

new vertices connected with i. Thus in the new graph i has degree at least 3, which is not

allowed by condition (I).

Now we prove that if the triple (F, F̌ , V ) corresponds to a tree Tq described in the

lemma, then it satisfies condition (∗∗). We argue by induction on the number of vertices.

If F = Sp1×Spn we have nothing to prove (this was considered in Lemma 1.7). More-

over, if all vertices of Tq are connected by edges with the root, then (Sp1)~(V ) = Sp1 by

Lemma 1.7. Take a vertex i of degree 1, which is not connected by an edge with the root,

and let (i, j) be an edge of Tq. Clearly, (F, F̌ , V ) satisfies condition (∗∗) if and only if

(F∗(Wi,j), F̌∗(Wi,j, V/Wi,j) satisfies it.

Suppose d(j) > 1. Then j has degree 2 and is connected by an edge with a vertex s

such that d(s) = 1 (we use conditions (I) and (II)). The edge (i, j) is replaced by several

new vertices, which are connected only with the vertex s (see Picture 1). If d(i) > d(j)

and d(i) < ∞, then F∗(Wi,j) has a direct factor Spd(j)−d(i) acting trivially on V/Wi,j. It

corresponds to an isolated vertex. Another connected component is a tree. If d(i) ≤ d(j) or

d(i) = ∞, then the new graph is a tree. In all cases it satisfies conditions (I) and (II).

If d(j) = 1, then to obtain a new graph (or the connected component containing the

root) we just erase the vertex i and the edge (i, j). 2

Suppose Tq is a rooted tree satisfying conditions (I) and (II) of Lemma 4.1. Suppose

d(i) = 1 and i 6= 0. Consider a path from 0 to i and a direct sum W (i) of all subspaces

corresponding to the edges of this path.

1 = d(0) d(s) d(t) d(j) . . . d(r) d(a) d(i) = 1
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One can calculate, that (Sp1 × Spd(i))~(W (i)) = Sp1 is embedded diagonally in Sp1 × Spd(i).

Note that, each vertex i with d(i) = 1 could be chosen as a root of Tq.

Theorem 4.3. Let X be a principal indecomposable commutative homogeneous space. Sup-

pose L1 = Sp1 is a simple direct factor of L� and L1 ∩K = π1(K) = U1. Then n = V is an

Abelian Lie algebra, L = F = L1 × F̌ , K = U1 × F̌ , and the triple (F, F̌ , V ) corresponds to

some rooted tree Tq satisfying conditions (I) and (II) of Lemma 4.1.

Proof. According to Lemma 1.14, π1(L∗) = Sp1. Thus there is an L-invariant subspace

V ⊂ n, such that the triple (L�, L�/L1, V ) corresponds to a rooted tree Tq. In particular,

each direct factor Lj of L� is Spn. If n > 1, then Lj ⊂ K according to Theorem 1.17

and Proposition 1.18. Suppose L2 = Sp1 ⊂ L�/Sp1 is not contained in K. Then either

π2(K) = U1 or π2(K) = Sp1. But (L1 × L2)~(n) ⊂ Sp1, so if the first case takes place, then

the equality L = L∗K is impossible.

If π2(K) = Sp1, then there is L3 � L such that a direct factor Sp1 of K is diagonally

embedded in L2 × L3.

L3 × L2 = Sp1 Sp1

Sp1

||||||||

6666666

U1

Replacing L by a smaller subgroup containing K, we may assume that L3 = Sp1. Since

L = L∗K, we have (L3 × L2 × L1)~(n) = Sp1 × Sp1. The projection of K∗ to L1 × L2 × L3

is U1 which is not a spherical subgroup of Sp1 × Sp1.

Thus (L�/L1) ⊂ K. Since X is principal, U1 ⊂ L1. Because X is indecomposable, P

is trivial. To conclude, we show that n is Abelian. Any irreducible L-invariant subspace

Wi,j ⊂ V is either HS2
0Hn or Hn ⊗ Hm. If [Wi,j,Wi,j] 6= 0, then, according to Table 3.1,

d(i) = 1 and [Wi,j,Wi,j] = spd(i). But spd(i) is not contained in V . Hence, [V, V ] = 0. Since

X is indecomposable, n = V .

We have not checked yet, that each space (V h F )/(U1 × F̌ ) is really commutative.

Condition (A) of Theorem 1.3 is satisfied by construction of Tq. The Lie algebra V is

Abelian, thus condition (C) is also satisfied. Recall that F∗(V ) = Sp1 × F̌∗(V ), hence,

(U1 × F̌ )∗(V ) = U1 × F̌∗(V ). Thus (U1 × F̌ )∗(V ) is a spherical subgroup of F∗(V ) and

condition (B) holds.

We illustrate the structure of such a space by the following diagram.

U1 Sp1
// Tq

Here the direct factor Sp1 of L corresponds to the root of Tq.

From now on we assume that πi(K) = Li for each Li ∼= Sp1 ⊂ L�. Let L4 be a normal

subgroup of L. Denote by π4 the projection L→ L4.
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Lemma 4.4. Let L4 = L1×L2×L3×L4×L5, where Li = Sp1. Suppose π4(K) = Sp1 × Sp1,

where the first direct factor is diagonally embedded in L1×L2×L3 and the secong in L4×L5.

Then π4(L∗) = L1×L2×L3 × (L4×L5)~(n).

Proof. We have L4 = π4(L∗)π
4(K). Thus (Sp1)

3 ⊂ π4(L∗). According to Lemma 1.14,

(L1×L2×L3)~(n) = L1×L2×L3. If the statement of this lemma is not true, then there

is a direct factor Sp1 of π4(L∗), which has non-trivial projections on, say, L3 and L4. In

particular, π4(L∗) ⊂ (Sp1)
4. There are three different possibilities for π4(L∗), namely (Sp1)

4,

(Sp1)
3 × U1 and (Sp1)

3, but π4(K∗) is never a spherical subgroup of π4(L∗).

Denote by Frm the forest of m rooted trees, satysfying conditions (I) and (II) of

Lemma 4.1. We say that a triple (F, F̌ , V ) corresponds to a forest Frm if it is a product (V

is a direct sum) of m triples (Fi, F̌i, Vi) corresponding to trees of this forest.

Theorem 4.5. Let X be an indecomposable commutative homogeneous space. Suppose

(L,K) contains a subpair (L4, K4), where L4 = (Sp1)
3, K4 = Sp1, and L4 ⊂ L�. Then

there is a triple (F, F̌ , V ) corresponding to a forest Fr3 such that L = F , K = Sp1 × F̌ and

n = V is an Abelian Lie algebra.

Proof. Due to Lemma 1.14, (L4)~(n) = L4. Thus we can construct three differnt trees

starting from direct factors of L4. These trees do not intersect, because otherwise L4
~(n)

would be a subgroup of Sp1×Sp1.

The rest of the proof is similar to the proof of Theorem 4.3. Assume that there is a vertex

i of the first tree such that d(i) = 1 and L4 = Spd(i) is not contained in K. Then there is

L5 � L such that a direct factor Sp1 of K is diagonally embedded in L4 × L5.

L5 × L4 = Sp1 Sp1 × Sp1 × Sp1

Sp1

��������

2222222

Sp1

}}}}}}}}

AAAAAAAA

We may assume that L5 = Sp1. Clearly, (L4×L1)~(n) = Sp1 is embedded diagonaly into

L4×Spd(0), where Spd(0) is a direct factor of L4. This contradicts Lemma 4.4.

Thus (L�/L4) ⊂ (K/K4). Because X is indecomposable, P is trivial. Applying the

same argument as in Theorem 4.3, we get [V, V ] = 0 and n = V . To conclude, we show

that condition (B) of Theorem 1.3 holds. Here (Sp1 × F̌ )∗(V ) = Sp1 × F̌∗(V ) is a spherical

subgroup of F∗(V ) = (Sp1 × Sp1 × Sp1)F̌∗(V ).

This space is shown on the second diagram in Theorem 4.11.

Note that the proof is valid in cases L1 ⊂ L�, L2 × L3 ⊂ P (where we would have one

non-trivial tree) and L1 × L2 ⊂ L�, L3 ⊂ P (which corresponds to a forest Fr2).
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Lemma 4.6. Let L4 = P1×L1×L2×L3, where Li = Sp1, P1 = SUn ⊂ P . Suppose π4(K) =

(S)Un−1×Sp1×Sp1, where the last direct factor Sp1 of π4(K) is diagonally embedded in

L2×L3. Then π4(L∗) = P1×L1 × (L2×L3)~(n).

Proof. We pair (π4(L∗), π
4(K∗) is spherical and P1 ⊂ π4(L∗). Hence, (L1)~(n) = L1. If

the statement of this lemma is not true, then (L1×L2)~(n) = Sp1 is embedded diagonally

in L1×L2. Hence, π4(L∗) = P1×Sp1×(L3)~(n), π4(K∗) = (S)Un−1×(L3)~(n), and the pair

(π4(L∗), π
4(K∗)) cannot be spherical.

Example 11. Let (L,K) = (Spn×Sp1, Spn−1×Sp1) × (Sp1×Sp1, Sp1) × (Sp1, Sp1). Suppose

n = H ⊕ H is an Abelian Lie algebra, Spn ⊂ P , and the action (L/P ) : n is defined by the

following diagram.

Spn−1 Sp1

||
||

||
|

Sp1

//
//

/

��
��
�

Sp1

Spn × Sp1

,,
,,

,
×Sp1

��
��
�

× Sp1

,,
,,

,
×Sp1

��
��
�

H H

Then X = (N h L)/K is commutative. Here L∗ = Spn×Sp1×Sp1, K∗ = Spn−1×Sp1. The

graph corresponding to (L/P ) : n is a forest with two (not four) trees.

1 1 1 1

Consider a slight modification of this example.

Example 12. Let (L,K) = (Spn×Sp1, Spn−1×Sp1)×(Sp1×Spm, Sp1×Spm−1). Suppose n = H
is an Abelian Lie algebra, (Spn×Spm) ⊂ P , and each of Sp1 direct factors of L acts on n

non-trivially. Then X = (N h L)/K is commutative. Here L∗ = Spn×Sp1×Spm, K∗ =

Spn−1×Sp1×Spm−1. The graph corresponding to (L/P ) : n is a vertex, i.e., it is one tree

instead of two.

We will see that we can insert any tree Tq satisfying conditions (I), (II) of Lemma 4.1,

instead of this vertex. The following diagram

Spm−1 Sp1

||
||

||
|

Sp1

BB
BB

BB
B

Spn−1

Spm × Sp1

��,
,,

,,
× Sp1

����
��
�

× Spn

Tq
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illustrates that both direct factors Sp1 are vertices of weight 1 in one and the same tree.

Suppose we have a triple (F, F̌ , V ), where F = Sp1 × F̌ and (Sp1)~(V ) = U1. Then

we can construct a commutative homogeneous space (V h L)/K with L = (Sp1×Sp1)× F̌ ,

K = Sp1 × F̌ , where the direct factor Sp1 of K is embedded diagonaly in Sp1×Sp1. Thus,

we have to describe all such triples (F, F̌ , V ).

Lemma 4.7. Suppose F : V is an irreducible faithful representation of a connected compact

group F = Sp1·F̌ and F∗(V ) = U1·F̌∗(V ). Then there are three possibilities:

F̌ = {e}, V = R3; F̌ = (S)Un, V = C2⊗Cn; F̌ = U1·Spn, V = C2⊗C2n.

Proof. We have V = V1 ⊗D V
2, where D ∈ {R,C,H}, Sp1 acts only on V1 and F̌ only on

V 1. Cases D = R and D = C were considered in Example 10. They yield exactly the three

possibilities of this lemma.

Suppose D = H. Then the complexefication of V1 ⊗H V2 is an irreducible representation

W = V1⊗CV2 of F (C) such that F̌ (C) ⊂ Sp(V2). Moreover, the stabiliser (SL2)x of a generic

point x ∈ PV1 is infinite (here PV1 stands for the the projectification of V1). Hence, V1 = C2.

If dimV 2 = 1, then F∗(V ) = F̌ = U1. But the representation (Sp1·U1) : H is reducible.

Thus dimV 2 > 1. Since V2 is an irreducible symplectic representation of F̌ (C), the group

F̌ is semisimple. Now we use the second classification of Elashvili [15]. We represantation

F̌ (C) : V2 cannot have a tensor “factor” SLm : Cm with m > 2. Hence, according to [15, §3],

the pair (F (C),C2 ⊗ V2) is contained in Tables 5 and 6 of [15]. Note that there are a few

inaccuracies in these tables, which are corrected in [39].

Anyway, we have three possibilities: F̌ (C) = SL2 × SL4, V2 = C2 ⊗ C4; F̌ (C) = SL6,

V2 =
∧3 C6 and F̌ (C) = SO12, V2 being a “half-spinor” representation. But in all three cases

a generic stabiliser (F (C))∗(W ) is contained in F̌ (C). Thus, if D = H, dimV > 1 and V is

irreducible, then either F∗(V ) = F̌∗(V ) or F∗(V ) = Sp1·F̌∗(V ).

Lemma 4.8. Let Γq be a connected weighted graph with q+1 vertices. Suppose F =
∏
i

Spd(i),

V =
⊕
(i,j)

Wi,j, where Wi,j = Hd(i)⊗Hd(j). If Γq contains two different minimal cycles, then

(Spd(i))~(V ) is finite for each i such that d(i) = 1.

Proof. Suppose (Spd(i))~(V ) is either Sp1 or U1. The statement of Lemma 4.2 is true in this

more general situation. Thus, we can pass to Γ̃q−1. In other words, we may assume that

q ≤ 3 and that Γq contains two double edges or one triple edge. In each case one can verify

that (Sp1)~(V ) is finite.

Let Γq be a weighted graph with several special vertices a1, . . . , ak such that d(aj) = 1.

Suppose that Γq contains no triple edges, each infinite vertex has degree 1 and if (i, j) is an

infinite edge with j = ∞, then 1 < d(i) < ∞ and there is at most one infinity vertex t 6= j

such that (i, t) is an edge of Γq. We construct a compact group H = H(Γq), a vector space
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V = V (Γq), and a linear action H : V by the following principle. For each non-special finite

vertex i we set H(i) = Spd(i). To special vertex j we attache a group H(j) and a vector

space V̌ (j). There are several possibilities: H(j) = U1, V̌ (j) is a zero-dimensional vector

space; H(j) = Sp1, V̌ (j) = R3; H(j) = Sp1×(S)U4, V (j) is either C2⊗C4 or C2⊗C4 ⊕ R6;

H(j) = Sp1×(S)Um(j) where m(j) ≥ 1, m(j) 6= 2, 4, V̌ (j) = C2⊗Cm(j). Set Ĥ :=
∏
i

H(i)

and H := Ĥ× (U1)
r× (U1)

s, where r is the number of double edges, s is the number of pairs

of infinite edges (i, j), (i, t) with d(j) = d(t) = ∞ and j 6= t; V :=

(⊕
(i,j)

Wi,j

)
⊕

⊕
special j

V̌ (j),

where Wi,j are defined in the same way as for the tree Tq. Each group H(i) acts on Wi,j, also

for each special vertex j the group H(j) naturally acts on V̌ (j). Thus the actions H(i) : V

are well-defined. Each U1 ⊂ (U1)
r acts on a subspace Hd(i)⊗Hd(t)⊕Hd(i)⊗Hd(t) corresponding

to a finite double edge (i, t), and each U1 ⊂ (U1)
s acts on a subspace HS2

0Hd(i) ⊕HS2
0Hd(i),

corresponding to infinity edges (i, j), (i, t).

We call a triple (F, F̌ , V ) principal if the action F : V satisfies the second condition of

Definition 6.

Lemma 4.9. Each principal indecomposable triple (F, F̌ , V ) such that f ⊂ so(V ), F =

Sp1×F̌ , and (Sp1)~(V ) = U1 corresponds to a described above graph Γq in a sense that

Ĥ ⊂ F ⊂ H(Γq) and Sp1 is a subgroup attached to a vertex i of Γq with d(i) = 1. Con-

versely, suppose a triple (F, F̌ , V ) corresponds to a graph Γq. Then (F, F̌ , V ) is principal

and (Sp1)~(V ) = U1 if and only if one of the following four possibilities takes place.

(1) Γq is a tree Tq satisfying conditions (I), (II) of Lemma 4.1 with one special vertex j,

and if H(j) = U1, then j has degree 1.

(2) Γq satisfies conditions (I), (II), contains one minimal cycle and no special vertices.

(3) Γq is a tree, it contains no special vertices, satisfies condition (II), there is only one

vertex i of degree 3 such that d(i) > 1, all other vertices with d(j) > 1 have degrees at most

2, if d(i) > 2 and i has degree three, then d(t) = 1 for each edge (i, t).

(4) Γq is a tree, it contains no special vertices, satisfies condition (I), there is only one

edge (i, j) such that d(i), d(j) > 1 and both vertices i and j have degree 2, for that edge

d(i) = 2 and if d(j) > 2, then d(t) = 1 for the unique edge (j, t) such that t 6= i.

Proof. Suppose we have such a triple (F, F̌ , V ). A graph Γq can be constructed by the same

procedure as in Lemma 4.1. Again we start with the vertex 0 (the root) of weight d(0) = 1.

If V = W1⊕W2 and (Sp1)~(W1) = (Sp1)~(W2) = U1, then (Sp1)~(V ) is finite. Hence, there

is at most one irreducible F -invariant subspace W ⊂ V such that (Sp1)~(W ) = U1.

Suppose such W exists. Then 0 is a special vertex. Let Sp1×H ⊂ F be the maximal

connected subgroup acting on W locally effectively. Then (Sp1×H) : W satisfies conditions

of Lemma 4.7. Moreover, (Sp1×H~(V/W )) : W also satisfies those conditions. It can be

easily seen, that either H = U2, W = H1 ⊗C C2 or Sp1×H is one of the groups that can be

attached to a special vertex. In case H = U2 we put a vertex i with d(i) = 1 into Γq and a
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double edge (0, i). The centre of U2 will be a direct factor in (U1)
r ⊂ H(Γq). Consider the

second case, where Sp1×H = H(0). If H 6= SU4, then the action H : (V/W ) is trivial and

we set V̌ (0) = W . In case H = SU4, either V̌ (0) = W⊕R6 or V̌ (0) = W . Clearly H acts

on W/V̌ (0) trivially, and the triple (F/H, F̌ /H, V/W ) satisfies condition (∗∗). Thus we can

construct a tree Tq by Lemma 4.1.

Suppose now the root is not a special vertex. Then each irreducible F -invariant subspace

W ⊂ V on which Sp1 acts non-trivially is of the form H1⊗Hn and we construct the first

level of the graph. Unlike the situation of Lemma 4.1, it can contain double edges. Also if

n = 1, then F can act on H1⊗Hn as Sp1×U1. Nevertheless, we proceed in the same manner

as in Lemma 4.1 and construct a graph Γq.

Now we prove that Γq belongs to one of the four types listed in this lemma. Suppose the

root is a special vertex, then V = V̌ (0) ⊕ Ṽ , where Ṽ is an F -invariant complement, and

(Sp1)~(V̌ (0)) = U1. Thus, (Sp1)~(Ṽ ) = Sp1 and Γq is a tree Tq by Lemma 4.1. Assume that

the root is not a special vertex.

For each special vertex j, we can replace H(j) by H(j)∗(V̌ (j)) = U1 and V̌ (j) by a zero-

dimensional vector space without any alteration of (Sp1)~(V ). On the other hand, suppose

we have a double edge (j, t) such that d(j) = d(t) = 1, H(j) = H(t) = Sp1 and t has degree

2. Then we can erase this double edge and replace H(i) by H(i)~(2H) = U1. Thus, we may

insert instead of each special vertex j a double edge (j, t) where H(j) = H(t) = Sp1 and t is

a new vertex of degree 2.

Recall that infinite vertices corresponds to irreducible F -invariant subspacesHS2
0Hn ⊂ V .

In particular, if d(i) = ∞, then i has degree 1 and is not contained in any minimal cycle of

Γq. Thus we can apply Lemma 4.8 to Γq. It follows that Γq contains at most one minimal

cycle and if it contains a special vertex, then it is a tree and has no other special vertices.

If condition (I) or (II) is not satisfied, we erase one edge (i, j) and replace H by H∗(Wi,j).

According to Picture 1, the graph corresponding to H∗(Wi,j) : V/Wi,j contains a cycle.

Thus, there is only one place in Γq in which one of this conditions is not satisfied. Other

possibilities yield a contradiction by the same argument. Note that, since F : V is principal,

if H(j) = U1, then H(j) acts non-trivially on the only one irreducible F -invariant subspace

and j has degree 1.

One can prove by induction that if Γq is one of the four graphs described in this lemma,

then (Sp1)~(V ) = U1 (see the last part of the proof of Lemma 4.1).

In the following Tq stands for a tree satisfying conditions (I) and (II) of Lemma 4.1, Γq
for a graph of one of the four types described in Lemma 4.9.

Lemma 4.10. Suppose a triple (F, F̌ , V ) corresponds to Γq. Let n be a non-Abelin Lie algebra

such that V ⊂ n, n is generated by V , and n = V⊕Rt, where Rt is a trivial F -module. If the

action F : n is commutative then either

• Γq contains a double edge (i, j), F = Ĥ(Γq)×U1, and n′ = [2Wi,j, 2Wi,j] = R;
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• or Γq contains a special vertex j and the Lie algebra structure on n depends on H(j)

in the following way:

− if H(j) = U1, then there is a single vertex i connected with j by an edge and

n′ = [Wj,i,Wj,i] = R;

− if H(j) = Sp1×(S)Um, then n′ = [V̂ (j), V̂ (j)] = R;

− if H(j) = Sp1, then V̂ (j) = R3 ∼= sp1 and n = V with [Wj,i,Wj,i] = V̂ (j) for

some edges (j, i).

Proof. Assume Γq contains no special vertices and no double edges. Then each irreducible

F -invariant subspace W ⊂ V is either Wi,j or HS2
0Hd(i)⊗CC. According to Table 3.1, [W,W ]

could be non-trivial only if W = H⊗Hn. In that case [W,W ] = H0. But the action F : H0 is

non-trivial and H0 is not a subspace of V . A contradiction. By the same reason, if neither

j nor i is special and (i, j) is not a double edge, then [Wi,j,Wi,j] = 0.

Suppose Γq contains a double edge (i, j). Then both vertices i and j has degree at

least two. Hence by condition (II) one of them, assume that i, has weight 1. According

to Table 3.1, the action (U2×Spn) : C2⊗Hn ⊕ R is commutative, but without the central

subgroup U1, it is not.

Now let j be a special vertex. If H(j) = U1, then j has degree 1. Let i be the unique

vertex connected with j by an edge. According to Table 3.1, [Wi,j,Wi,j] ⊂ HS2
0Hd(i) ⊕ H0,

where H0 = u1 ⊕ R as an U1-module. Clearly, u1 is not a subspace of V . In case d(i) = 1,

the space HS2
0Hd(i) is zero-dimensional. If d(i) > 1, then i has degree 2 and there is no edges

(s, i) with d(s) = ∞. Thus, in this case HS2
0Hd(i) is not a subspace of V and [Wi,j,Wi,j] = R.

If H(j) = Sp1×(S)Um, then we again use Table 3.1, to check that [V̌ (j), V̌ (j)] = R.

Consider the last case H(j) = Sp1. Here [Wi,j,Wi,j] can be either V̌ (j) or zero for each edge

(i, j). Since all actions Spd(i) : Wi,j⊕R3 are commutative, F : n is also commutative.

In the following, the attache to a graph Γq not only a triple (F, F̌ , V ), but also a Lie

algebra n = n(Γq) be the principle of Lemma 4.10. A diagram Sp1 −→ Tq(Γq) means that

Sp1 corresponds to a vertex of weight 1 of Tq or Γq.

Theorem 4.11. Let X be a maximal principal indecomposable commutative homogeneous

space of non-reductive group G. Suppose X is not Sp1-saturated and is not of Hiesenberg

type. Then it belongs to one of the following 11 clases.

U1

Sp1

��
Tq

Sp1

��
��
��
�

77
77

77
7

Sp1

��

×Sp1

��

×Sp1

��
Tq1 Tq2 Tq3

Sp1

��
��

��
�

EEEEEEEE
Spn−1

Sp1

��

×Sp1

��

×Spn(Spn−1,1)

Tq1 Tq2

Sp1

UUUUUUUUUUUUUUUUUUUU

GGGGGGGG
Spm−1 Spn−1

Sp1

��

×Spm(Spm−1,1)×Spn(Spn−1,1)

Tq
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Sp1

JJJJJJJJJJ SUn−2

Sp1

��

× (S)Un((S)Un−2,2)

Tq

Sp1

��
��
��

88
88

88
8

Sp1

��
��

��
�
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,,

,,

Sp1

��

× Sp2(Sp1,1) × Sp1

��
Tq1 Tq2

Sp1

��
��
��

88
88

88
8

Sp1

��
��

��
�

==
==

==
=

Spn−1

Sp1

��

× Sp2(Sp1,1) × Spn(Spn−1,1)

Tq

Sp1

��
��
��

//
//

//
Sp1

HH
HH

HH
HH

Spn−1

Sp1

��

× Sp1

��.
..

..
× Sp1

����
��
�

× Spn(Spn−1,1)

Tq1 Tq2

Spm−1 Sp1

vv
vv

vv
vv

Sp1

GG
GG

GG
GG

Spn−1

Spm(Spm−1,1)×Sp1

��,
,,

,,
× Sp1

����
��
�
×Spn(Spn−1,1)

Tq

Sp1

��
��

�
88

88

Sp1

��

× Sp1

��
Γr(Tr) Tq

Sp1

PPPPPPPPP Spn−1

Sp1

��

× Spn(Spn−1,1)

Γq(Tq)

Proof. Suppose there is a direct factor Li ⊂ L� such that πi(K) 6= Li. If Li 6= Sp1, then X

is contained in Table 1.2b due to Proposition 1.18 and X is Sp1-saturated. Hence, Li = Sp1

and Li ∩K = U1. By Theorem 4.3, X corresponds to a tree Tq satisfying conditions (I) and

(II). This space is shown on the first diagram. From now on assume that πi(K) = Li for

each simple direct factor Li � L�.

Suppose P is non-trivial. Then there is a simple direct factor K1 ⊂ K, which is contained

in neither P nor L�. If K1 6= Sp1, then by Theorem 1.17, X is ((Rn h SOn)× SOn)/SOn or

((Hn h Un)× SUn)/Un. But both these spaces are Sp1-saturated. Thus K1 = Sp1, and each

simple normal subgroup Li � L� such that Li 6= Sp1 is contained in K.

Note that if L1 ⊂ P and π1(K) 6= L1, then we can replace L1 by another real form of

L1(C). For example, if L1 = Spn and π1(K) = Spn−1 × Sp1, then L1 can also be Spn−1,1. In

calculations we assume P to be compact.

Let (L4, K4) be an indecomposable spherical subpair of (L,K) such that L4 6= K4.

Because X is indecomposable, L4 is not contained in P , i.e., there is Li ⊂ (L4 ∩ L�). Since

Li 6⊂ K, we have Li = Sp1. According to Theorem 1.3, L4 = (L4)~(n)K4 and the pair

((L4)~(n), (K4)~(n)) is spherical. There are only one spherical pair (L4, K4) such that

(L4)~(n) can be a proper subgroup of L4, namely (Spn × Sp1, Spn−1 × Sp1). In that case

(L4)~(n) can be Spn×U1. It follows that (Li)~(n) is either Sp1 or U1 for each Li = Sp1 �L,

Li 6⊂ K. Starting from each Li = Sp1 ⊂ L�, which is not contained in K, we construct

either a tree Tq = Tq(Li) or Γq = Γq(Li). If two different trees (or graphs) have a non-trivial
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intersection, then they coincide and (Li × Lj)~(n) is either Sp1 or U1. The second case is

never possible in view of conditions (A) and (B) of Theorem 1.3.

In cases L4 = L1 × Spm × Spn, L
4 = L1 × (S)Un, and L4 = L1 × Sp2 × Spn, where

L1 = Sp1 all subgroups corresponding to the vertices of Tq(L1) are contained in K. It can

be proved by the same arguments as Theorem 4.5 and Lemma 4.6. These spaces are shown

on the last 3 diagrams of the first row and in the second row. For each item one can directly

verify that conditions (A) and (B) of Theorem 1.3 are satisfied. In all these cases n is Abelian

by the same reason as in Theorems 4.3, 4.5.

From now assume that (L,K) is a product of pairs (Spn × Sp1, Spn−1 × Sp1) and a pair

(K1, K1), whereK1 is a compact Lie group. It can happen that (Spn×Sp1×Sp1×Spm)~(n) =

Spn×Sp1×Spm, where Sp1 is the diagonal of Sp1×Sp1. In this case both subgroups Sp1 of

L are vertices of one and the same tree Tq. One can show that for all other vertices of

Tq groups Spd(i) are contained in K. If n = 1 or m = 1 or both, we can construct trees

corresponding to these factors. They do not intersect, otherwise (Spn×Sp1×Sp1×Spm)~(n)

would be smaller. Here n = V is also Abelian. As an example, we check that conditions

(A) and (B) hold for the second space in the third row. Here the product of Spd(i) over

all finite vertices of Tq equals (Sp1×F0×Sp1) and L = Spm×Sp1×F0×Sp1×Spn. We have

L∗ = Spm×Sp1×(F0)∗(V )×Spn, K∗ = Spm−1×Sp1×(F0)∗(V )×Spn−1. Clearly, L = L∗K and

the pair (L∗, K∗) is spherical (see item 3 of Table 2.3).

Finally, it is possible that (Spn×Sp1)~(n) = Spn×U1. Then we construct a graph Γq
starting with Sp1. It is enough to show that these graphs do not intersect for Sp1 from two

different pairs of the type (Sp1×Sp1, Sp1). If two direct factors L1
∼= L3

∼= Sp1 corresponds

to one and the same Γq, then ((Sp1)
4)~(n) ⊂ Sp1×U1×Sp1. Due to condition (A) of Theo-

rem 1.3 this group contains Sp1×Sp1. But then for the subgroup (Sp1×Sp1) � K we have

(Sp1×Sp1)~(n) = U1 and U1 is not a spherical subgroup of Sp1×Sp1.

According to Lemma 4.10, in the last two cases n can be non-Abelin, and we have to

check condition (C) of Theorem 1.3. Recall that m = l/k. Let (i, j) be a double edge of Γq
with d(i) = 1. If d(j) > 1, then j has degree 2, i.e., Spd(j) acts on V/2Wi,j trivially. Thus

K∗(m⊕(V/2Wi,j)) acts on 2Wi,j = C2⊗Hd(j) as U1×U1×Spd(j). The action (U1×U1×Spd(j)) :

2Wi,j ⊕ R is item 8 of Table 3.2. Hence, it is commutative. Suppose now d(j) = 1. If we

erase the double edge (i, j), then either i or j is not connected with the root (it follows from

the fact that Γq contains only one minimal cycle). Hence, in this case K∗(m ⊕ (V/2Wi,j))

also acts on C2⊗H1 as U1×U1×Spd(j).

Let j be a special vertex of Γq. Suppose H(j) = U1. Then j has degree 1 and there is

the unique edge (j, i). According to Lemma 4.10, Wi,j is the only non-Abelian subspace of

n and [Wi,j,Wi,j] = R. If d(i) = 1, K∗(m⊕ (V/Wi,j)) acts on Wi,j ⊕R ∼= H⊕R as U1 ×U1.

This action is commutative. Suppose d(i) > 1, then i has degree 2. Since i is connected with

the root, there is an edge (i, t) with t 6= j such that t has degree at least 2. According to

condition (II) of Lemma 4.1 d(t) = 1. We calculate that K∗(m⊕ (V/Wi,j)) acts on Wi,j ⊕R
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as U1×U1×Spd(i)−1. This action is also commutative.

Suppose now H(j) = Sp1×(S)Um. Here V̂ (j) is the only non-Abelian subspace of n and

K∗(m⊕(V/V̌ (j))) acts on V̌ (j) as U1×(S)Um. Sincem 6= 2 the action (U1×(S)Um) : V̂ (j)⊕R
is commutative.

Finally, suppose that H(j) = Sp1 and V̌ (j) = R3 ∼= sp1. For each edge (i, j) the stabiliser

K∗(m⊕ (V/Wi,j)⊕ V̌ (j)) acts on Wi,j and on Wi,j⊕ V̂ (j) as a product Spn1
× . . .×Spnr

×Sp1,

where
∑
ns = d(i). This action is commutative.

Now we consider non-Sp1-saturated commutative spaces of Heisenberg type.

Example 13. Suppose K1 = SO3, n1 = R3 ⊕ sp1 and a triple (F, F̌ , V ) corresponds to a tree

Tq with Spd(0)/{±e} = K1. Set K = SO3 × F̌ , n = n1 ⊕ V . The Lie algebra structure on n

is given by the formulas [W0,i,W0,i] = sp1 for each edge (0, i), [Wi,j,Wi,j] = 0 for all other

edges. Then X = (N h K)/K is commutative and maximal. Indeed, (K1)~(V ) = K1 and

for each W0,i we have Spn1
× · · · × Spnr

⊂ K∗(R3 ⊕ (V/W0,i)), where
∑
ns = d(i), hence the

action K∗(R3 ⊕ (V/W0,i)) : W0,i ⊕ [W0,i,W0,i] is commutative. We illustrate the structure of

X by the following diagram.

SO3

��

: R3 ⊕ sp1

Tq

Let X0 = (N0 hK0)/K0 be an Sp1-saturated commutative space of Heisenberg type with

n′0 6= 0. SupposeK0 = Z(L)×L1×· · ·×Ls×Ls+1×· · ·×Lm, where L1 = L2 = · · · = Ls = Sp1

and a triple (F, F̌ , V ) corresponds to Frs. We assume that each Li corresponds to the root

of the i-th tree of Frs. Set K = Z(L) × Ls+1 × · · · × Lm × (Sp1)
s × F̌ , n = n1 ⊕ V , where

for each edge (j, t) of the i-th tree [Wj,t,Wj,t] is non-zero only if j = 0 and li ⊂ n′0, in that

case [W0,t,W0,t] can be li. We do not require that [W0,t,W0,t] = li for all edges (0, t) of the

i-th tree. By the same argument as in Example 13, one can show that X = (N h K)/K

is commutative. We say that such X is a space of a wooden type. Our goal is to classify

commutative indecomposable homogeneous spaces of a non-wooden type.

Let X be an indecomposable maximal principal commutative homogeneous space of

Heisenberg type. Suppose it is not Sp1-saturated, i.e., the third condition of Definition 8 is

not fulfilled. Then there is a direct factor Li ⊂ K and an irreducible K-invariant subspace

wj ⊂ n/n′ such that the action Li : wj is non-trivial, the action (Z(L) × Li) : wj is irre-

ducible, and Lj acts non-trivially on (n/n′)/wi. Clearly, Li = Sp1 and wi = Hn. We enlarge

K replacing Li by Sp1×Sp1, where first Sp1 acts non-trivially only on wi and the second on

(n/n′)/wi; and replace n by ni⊕ (vi+[vi, vi]). Note that if the intersection n′i∩ [vi, vi] is non-

zero, then it is isomorphic to li. Repeating this procedure we obtain an Sp1-saturation X̃ of

X, which is a product X̃ = X1× . . .×Xr of several principal indecomposable Sp1-saturated

commutative spaces of Heisenberg type. Each Xi is either a maximal commutative space or a
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central reduction of a maximal indecomposable commutative space. Let Xi = (Ñih K̃i)/K̃i.

Then ñi/ñ
′
i ⊂ n/n′ and each K̃i contains a normal subgroup Sp1.

Lemma 4.12. Suppose ñi is not Abelian, then ñi can be identify with a subalgebra of n and

K̃i is isomorphic to a maximal connected subgroup of K acting on it locally effectively.

Proof. Let ñi = W ⊕ ñ′i be a K̃i-invariant decomposition. Then we can consider W as a

subspace of n such that W ∩ n′ = 0. Assume that (W + [W,W ]) ⊂ n is not isomorphic to

ñi. It means that (W + [W,W ]) was “enlarged”. Hence, there are direct factors L1, L2 of

K̃i such that L1
∼= L2

∼= Sp1, and ñ′i contains a subspace isomorphic to l1⊕l2. According

to Tables 3.1 and 3.2, this is possible only in two cases: K̃i = SO4, ñi = R4 ⊕ so4 and

K̃i = Sp1 × Spn × Sp1, ñi = (Hn ⊕ sp1) ⊕ (Hn ⊕ sp1). But in both of them the action of

Sp1 × (K̃i/(L1 × L2)), where Sp1 is a diagonal of L1 × L2, on ñi/sp1 is not commutative.

Thus ñi ∼= (W + [W,W ]).

Assume that K̃i is larger then the maximal connected subgroup of K acting on ñi locally

effectively. Then (Sp1×Sp1) � K̃i and the action of Sp1× (K̃i/(L1×L1)), where the first Sp1

is the diagonal of (L1×L2) = (Sp1×Sp1), on ñi is commutative.

Let ñi/ñ
′
i = w1⊕· · ·⊕wr be the decomposition into the sum of irreducible K̃i-subspaces.

If both L1, L2 act on wj non-trivially and [wj,wj] 6= 0, then either wj = H or wj = C2⊗C2.

But in both cases the action of Sp1 × (K̃i/(L1×L2)) on wj ⊕ [wj,wj] is not commutative.

According to Table 3.2, the only other possebilities for K̃i : ñi are U2×U2 : (C2⊕R) ⊕
C2⊗C2, U2×U2×U2 : (C2⊗C2⊕R) ⊕ (C2⊗C2⊕R), item 10 of Table 3.2; and central reduc-

tions of these spaces. But in each case the action of Sp1 × (K̃i/(L1 × L2)) on ñi is not

commutative.

In the following we consider ñi as a subalgebra of n and K̃i as a subgroup of K.

Lemma 4.13. Preserve the notation introduced above. If K̃i = (Sp1)
s×H and for any proper

subgroup H1 ⊂ (Sp1)
s the action (H1×H) : ñi is not commutative, then X is of wooden type.

Proof. By Lemma 4.12, K̃i ⊂ K and ñi ⊂ n. Let V be a K-invarint complement of ñi in n.

The subgroup H acts on V trivially. On the other hand, ((Sp1)
s)~(V ) = (Sp1)

s. Thus we

can construct a forest Frs. Since X is indecomposable, it is of wooden type.

Lemma 4.14. If Xi is listed in Table 3.2, but not in rows 9, 10, 11 or 12, then X is of

wooden type.

Proof. Preserve the notation of Lemma 4.13. Assume that for some proper subgroup H1 ⊂
(Sp1)

s the action (H1×H) : ñi is commutative. As we have seen in the proof of Lemma 4.12,

H1 contains no diagonals of Sp1×Sp1, hence, H1 ⊂ U1×(Sp1)
s−1. But then the action

K̃i : ñi ⊕ R3, where the first Sp1 factor of (Sp1)
s acts on R3, is commutative. If it is Sp1-

saturated, then Xi is not listed in Table 3.2. Note that this action can be non-Sp1-saturated

only for spaces from rows 9, 10, 11 and 12 of Table 3.2.
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Suppose n = ñi⊕V , ñ′i 6= 0 and K̃i = (Sp1)
s×H. Then (Sp1)

s
~(V ) = H1×· · ·×Hs, where

Hj ⊂ Sp1. If Hj is Sp1 or U1 we can construct either a tree Tq or a graph Γr. Similar to the

proof of Lemma 4.12, one can show that two graphs corresponding to distinct direct factors

of K̃i do not intersect. Let V (Tq) ⊂ V and V (Γr) ⊂ V be the corresponding subspaces.

Possible non-trivial Lie algebra structures on V (Tq) and V (Γr) are described in Lemma 4.10

and Example 13. But if Hj is trivial or finite, we cannot say anything.

Recall that K = L = Li×Li×Z(L). In Table 4.1 we peresent four examples of commu-

tative spaces (N h K)/K such that the action (Z(L)×Li) : n is commutative. This direct

factor Li is put into a box.

Table 4.1.

Sp1 × Spn : (Hn ⊕ sp1)⊕HS2
0Hn Sp1 × Spn × Spm : (Hn ⊕ sp1)⊕Hn ⊗Hm

Sp1 × Spn × Sp1

��

: (Hn ⊕ sp1)⊕Hn

Tq

Sp1 × Sp1

��

: H⊕ sp1

Tq

Note that the spaces in the second row are Sp1-saturated only if the trees Tq are trivial.

Theorem 4.15. Suppose X is a principal maximal indecomposable non-Sp1-saturated com-

mutative space of Heisenberg type and n′ 6= 0. If there is a K-invariant non-commutative

subspace w1 ⊂ (n/n′) such that the action Ke : n1 is not (Sp1×Spn) : H⊕ sp1 and X is not

of wooden type, then X is one of the following spaces.

U1×SU2

��

×Spn : C2⊗C2n⊕R

Γq

SU2

��

× (S)Um : C2⊗Cm⊕R

Γq

SU2

��

×U4 : (C2⊗C4⊕R)⊕R6

Γq

U1 × SU2

��

: C2 ⊕ R

Γq

U1×SU2

��

×SU2

��

: C2 ⊗ C2 ⊕ R

Tq Γr

U1×Spm×Sp1

��

: (Hm ⊕ R)⊕Hm

Γr

Here [V (Tq), V (Tq)] = 0 if V (Tq) ⊂ n corresponds to a tree Tq and (V (Γq)+[V (Γq), V (Γq)]) =

n(Γq), where n(Γq) is a Lie algebra attached to Γq by the rules of Lemma 4.10.

Proof. Let X̃ = X1× . . .×Xr be an Sp1-saturation of X. We may assume that n1 ⊂ ñ1. Let

V be a K-invariant complement of ñ1 in n. Suppose that X is not of wooden type. Repeat

the argument we used to prove Lemma 4.14. Either the action K̃1 : ñ1 ⊕ R3 is contained

in Table 3.2; or there is a subspace w2 = Hn⊗H such that K̃1 acts on it as H×Sp1, where

H is an irreducible subgroup of Spn. First assumption yields five possibilities for X̃1, which
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are given in the first rows of the first five diagrams. If K̃1 contains only one direct factor

isomorphic to Sp1 and U1 ⊂ (Sp1)~(V ), then we construct a graph Γq. The fifth case

K̃1 = U1×Sp1×Sp1 is different. Here (Sp1×Sp1)~(V ) contains Sp1×U1 and we construct a

tree Tq and a graph Γr. They do not intersect, because, otherwise the group (Sp1×Sp1)~(V )

would be smaller. Since X is indecomposable, V equals to a vector space corresponding to

Γq or Tq and Γr.

Assume now that there is w2 = Hn⊗H ⊂ (ñ1/ñ
′
1) such that K̃1 acts on it asH×Sp1 andH

is an irreducible subgroup of Spn. Then, according to Tables 3.1 and 3.2, H = Spn, n1 is either

Hm⊕R or Hm⊕H0, ñ1 is either n1 ⊕ (Hm⊕H0) or n1 ⊕ Hm⊗Hn and K̃i = (U1×)Spm×Spn.

Thus either n or m equals 1.

Suppose m = 1. In case Ke = U1×Sp1, n1 = H⊕H0, X is of wooden type, because

the action (U1×U1) : n1 is not commutative. Commutative spaces X with n1 = H⊕R are

described by the fourth diagram.

If m > 1 and ñ1 = (Hm⊕R)⊕ (Hm⊕H0), K̃i = U1×Spm×Sp1, then X is of wooden type

by Lemma 4.13. The last case K̃i = U1×Spm×Sp1, ñ1 = (Hm⊕R) ⊕ Hm is shown on the

sixth diagram.

Consider a commutative space X with K = Sp1×Spn, n = Hn ⊕ sp1. There are two

minimal subgroups H ⊂ K such that the action H : n is commutative, namely, (Sp1)
n ⊂ Spn

and Sp1 × U1×(Sp1)
n−1, where U1×(Sp1)

n−1 ⊂ Spn.

Lemma 4.16. Let X be a maximal indecomposable principal commutative homogeneous

space such that there is a Lie subalgebra n1 = (Hn ⊕ sp1) ⊂ n with Ke = Sp1 × Spn. If X

is not of wooden type and Sp1 × U1 × (Sp1)
n−1 ⊂ (Ke)~(v1) ⊂ Sp1 × U1 × Spn−1, where

U1 × Spn−1 ⊂ Spn, then X is one of the following spaces.

Sp1

��

× Spn × Sp1

��

: n1 ⊕Hn

Tq Γr

Sp1

��

× Sp1

��

: n1

Tq Γr

Proof. Suppose first that n = 1, i.e., Ke = Sp1×Sp1. By our assumptions (Sp1×Sp1)~(v1) =

Sp1×U1. Thus we can construct a tree Tq and a graph Γr with trivial intersection.

Suppose now that n > 1. Take a group H ∼= Sp1 and consider an action H × Sp1 × Spn :

Hn⊕v1, where H acts non-trivially only on Hn. Clearly, H~(Hn⊕v1) = U1 and we can con-

struct a graph Γr+2 where Spd(0) = H, Spd(1) = Spn. This graph has trivial intersection with

Tq corresponding to Sp1 ⊂ Ke. In particular, (Sp1×Spn)~(v1) = (Sp1)~(v1)× (Spn)~(v1).

If the vertex 1 of Γr+1 has degree 3, then (Spn)~(v1) ⊂ Sp1×Spn−2 ⊂ Sp1×Sp1⊂Spn−2,

But this is not allowed. Similar, if there is an edge (1, s) with 1 < d(s) <∞, then Spd(s) acts

on v1/W1,s trivially. Thus, either (Spn)~(v1) = (Sp1)
n or the vertex 1 of Γr+2 has degree 1

and is connected with the vertex 2 of weight 1. On the first diagram Γr is a subgraph of

Γr+2 containing all vertices except 0 and 1.
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Take r commutative spaces X̂i containing in Table 4.1. Suppose X̂i = (N̂i h K̂i)/K̂i and

K̂i = Sp1×Hi, where Sp1 is the direct factor in the box. Take any linear representation V

of a compact group (Sp1)
s × F . Set K := H ×H1 × . . . ×Hr × F , where H is a subgroup

of (Sp1)
r × (Sp1)

s, n := n1 ⊕ . . . ⊕ nr ⊕ V , where V is a commutative subspace, and let

X = (N hK)/K be a homogeneous space of G = N hK.

Theorem 4.17. Suppose X is a principal maximal indecomposable non-Sp1-saturated space

of Heisenberg type. Then either X is listed in Theorem 4.15 or Lemma 4.16, or is obtained

by the described above procedure.

Proof. Let w1 be a non-commutative K-invariant subspace of n/n′. Assume that Ke : n1 is

(Sp1×Spn) : Hn ⊕H0. If this is not the case, then X is listed in Theorem 4.15.

Let Li = Sp1 be a direct factor of K, for which the third condition of Definition 8 is

not satisfied. If li ⊂ n′, we replace Li by Sp1×Sp1 and maybe enlarge n. If it is not, we

do nothing. We repeat this procedure as many times as possible. Let X̂ = Ĝ/K̂ be the

space obtained. We have n ⊂ n̂ ⊂ ñ. In particular, n1 ⊂ n̂. Note that, according to the

construction of X̂, the direct factor Sp1 of Ke ⊂ K̂ acts on (n/n′)/w1 trivially. Clearly,

(Spn)~(v1) = (Spn)~(n̂/w1) for Spn � Ke. If (Spn)~(v1) ⊂ U1×Spn−1, then X is listed in

Lemma 4.16. We suppose that (Sp1)
n ⊂ (Spn)~(v1). In particular, Spn corresponds to the

first vertex of a tree Tq (here we use we same argument as we used to prove the previous

lemma). Thus, there is an indecomposable direct factor X̂1 of X, such that n1 ⊂ n̂1 and X̂1 is

contained in Table 4.1. Hence, we get a decomposition X̂ = X̂1× . . .× X̂r×Y , such that X̂i

are commutative spaces contained in Table 4.1 and Y = (V h ((Sp1)
s×F ))/((Sp1)

s×F ) is a

commutative space of Euclidean type. For each space X̂i there is only one direct factor Sp1 of

K̂i such that sp1 ⊂ n̂′i. According to our construction K is of the form H×H1× . . .×Hr×F ,

where H ⊂ (Sp1)
r × (Sp1)

s.

We show that the action K : n̂ is commutative. Indeed, for each wi = Hn the group

Ki contains Spn and the action Spn : Hn ⊕ H0 is commutative. In general, n is a central

reduction of n̂. But since X is maximal n = n̂ = n1 ⊕ . . .⊕ nr ⊕ V .

4.2 Centres

Let Z(P ) be the connected centre of P . Since the action G : (G/K) is assumed to be

locally effective and K is connected, the intersection Z(P ) ∩ K is trivial. Clearly, G/K is

commutative if and only if (G/Z(P ))/K is commutative. In the following we suppose that

P is semisimple.

Let X = G/K be a non-principal maximal indecomposable commutative space. We can

enlarge groups L and K and obtain a principal commutative space X̃, such that L̃′ = L′,

K̃ ′ = K ′ and Ñ = N . In general X̃ is decomposable X̃ = X1 × · · · × Xr. Each Xi =
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(Ñi h L̃i)/K̃i is a central reduction (maybe trivial) of a maximal principal indecomposable

commutative space. For each i either L̃i or K̃i has a non-trivial connected centre.

Suppose we have such a product X̃ = X1×· · ·×Xr. Let Ci be the connected centre of L̃i
and Zi of K̃i. We have to describe all subgroups Z(L) ⊂ C1×· · ·×Cr and Z(K) ⊂ Z1×· · ·×Zr
such that Z(K) ⊂ Z(L)× L̃′ and X = (N h (Z(L)× L̃′))/(Z(K)× K̃ ′) is commutative.

Let X1 be either (a central reduction of) a space corresponding to row 1 of Table 1.2b or

Sp1

OOOOOOOOO Un−1

Sp1

��

× SUn(SUn−1,1)

Tq .

Then (N h L)/K, where L = Z(L) × L̃′, K = Z(K) × K̃ ′, is commutative if and only if

((N/Ñ1) h (L/L̃1))/(K/K̃1) is commutative. This statement is also true, if X1 = L̃1/K̃1 is

a commutative homogeneous space of a semisimple group and K̃ ′
1 is a spherical subgroup of

L̃1. In the following we suppose that X̃ does not contain direct factors of these three types.

We decompose X̃ in a slightly different manner, namely X̃ = X̃1 × · · · × X̃s × X̃Heis ×
X̃red, where X̃Heis is a commutative space of Heisenberg type and X̃red is a commutative

homogeneous space of a redactive (semisimple) group. Each X̃i is one of the following six

commutative spaces up to central reduction.

(R2n h SO2n)/Un ((R2 ⊗ R8) h (SO2 × SO8))/(SO2 × Spin7) ((Hn h Un)× SUn)/Un

U1

Sp1

��
Tq

Sp1

��
�� 88

88

Sp1

��

× Sp1

��
Γr Tq

Sp1

NNNNNNNN Spn−1

Sp1

��

× Spn(Spn−1,1)

Γq

Here each Γq contains either a special vertex j with H(j) = U1 or a double edge, or a triple

of vertices i, j, t such that d(j) = d(t) = ∞ and j, t are connected with i by edges. Note

that the connected centre Ci of K̃i is one-dimensional. According to Table 1.2b, ((R2 ⊗
R8)hSO8)/Spin7 is also commutative. If X̃i is one of the last two spaces, then (Ñih L̃′i)/K̃

′
i

is commutative if and only if [V (Γq), V (Γq)] = 0 and there is no special vertices such that

H(j) = U1.

Denote by Z~ a connected central subgroup of L̃Heis = K̃Heis such that (L̃Heis)∗(n)L̃′Heis =

Z~ × L̃′Heis. Let Z(L) be a subgroup of C1 × · · · × Cs × Z(L̃Heis) and Z(K) a subgroup of

Z1 × · · · × Zs(K̃Heis)× Z(K̃red). Assume that Z(K) is contained in L := Z(L)× L̃′ and set

K := Z(K)× K̃ ′, X = (N h L)/K.

Suppose Z(L) = T1 × T2, where T2 = (Z(K)L′)/(L′). According to Theorem 1.3, X

is commutative if and only if (G/T1)/K is commutative and T1 acts trivially on S(n)K =
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S(n)T2×L′ , i.e., T1 ⊂ L∗L
′. In our situation, T1 can be any subgroup of Z~×

∏
Ci, where the

product is taken over all i such that X̃i is (a central reduction of) ((Hn h Un) × SUn)/Un.

In the following we assume that T1 is trivial, i.e., we have to describe only possible centres

of K. We make another reduction. Suppose (Ñ1 h L̃′1)/K̃
′
1, is commutative. Set L̂ :=

L ∩ (L̃2 × · · · × L̃s × L̃Heis × L̃red), K̂ := L̂ ∩ K. Then X is commutative if and only if

((N/Ñ1) h L̂)/K̂ is commutative.

Theorem 4.18. Suppose X̃ = X̃1×· · ·×X̃s×X̃Heis×X̃red is a commutative principal homo-

geneous space such that there is no spherical subgroups in L̃red between K̃ ′
red and K̃red; and

(Ñi h L̃′i)/K̃
′
i is never commutative. Assume that Z(L) ⊂ Z(K)L′. Then X is commutative

if and only if Z(K) is a product T1 × T2 such that

T1 ⊂

(
s∏
i=1

Zi

)
× Z~ × Z(K̃red), T2 = Z(K) ∩ Z(K̃Heis),

(
s∏
i=1

Zi

)
× Z(K̃red) ⊂ T1Z~,

and the action T2 × K̃ ′
Heis : ñHeis is commutative.

Proof. We apply Theorem 1.3. Note that X̃ satisfies all three conditions (A), (B) and

(C). The equality L = L∗K holds if and only if L′ = (L∗)
′K ′ and Z(L) ⊂ Z(K)L∗, see

[32], [34]. Clearly, (L̃∗)
′ ⊂ (L′)∗(n). Thus, L′ = L̃′ = (L̃∗)

′K̃ ′ ⊂ (L′)∗(n)K ′ ⊂ L∗K. By

our assumptions Z(L) ⊂ Z(K)L′. More precisely, Z(L) ⊂ Z(K)L̃red since
s∏
i=1

Zi ⊂ T1Z~.

Because L̃red ⊂ L∗, we get Z(L) ⊂ Z(K)L∗.

Condition on the subgroup T1 given here is equivalent to (B). To conclude, note that

K∗(m⊕ (
s⊕
i=1

ñi)) acts on ñHeis as T2 × K̃ ′
Heis.

It remains to describe possible connected centres of K for commutative spaces of Heisen-

berg type. Now we return to the fist decomposition of X̃ = X1 × · · · ×Xr. Note that, Z~

is a direct product of ((K̃i)∗K̃
′
i)/K̃

′
i. For each indecomposable principal commutative space

X̃i one can easily calculate this group ((K̃i)∗K̃
′
i)/K̃

′
i. We will not do it here. Denote by Zi

~

the product of ((K̃j)∗K̃
′
j)/K̃

′
j over all j 6= i.

Lemma 4.19. In the notation of this section, homogeneou space X of Heisenberg type is

commutative if and only if for each i such that ñ′i 6= 0 the action of (Z(K)∩ (Zi×Zi
~))× K̃ ′

i

on ñi is commutative.

Proof. This readily follow from Theorem 3.1.
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Chapter 5

Weakly symmetric spaces

The question whether each commutative homogeneous space is weakly symmetric or not was

posed by Selberg [41]. It was answered a few years ago in a paper by Lauret [26], where he

constructed the first counterexample. That example is a commutative homogeneous space of

Heisenberg type. On the other hand, commutative homogeneous spaces of reductive groups

are weakly symmetric, see [1]. In this chapter we find out which commutative homogeneous

spaces described in previous chapters are weakly symmetric.

Example 14. Consider commutative homogeneous space X = (N h L)/K corresponding to

row 4b of Table 1.2b, i.e., L = SO8, K = Spin7 and N is a simply connected commutative

Lie group with n = R2 ⊗ R8. Assume that X is weakly symmetric with respect to some

automorphism σ ∈ Aut(G,K). Then, in particular, σ(L) = L. Each automorphism of SO8

preserving Spin7 is a conjugation a(k) by an element k ∈ Spin7. Thus σ = σ′a(k), where σ′

acts on L trivially. Clearly, X is weakly symmetric with respect to σ′. Note that −ξ ∈ Kξ

for each ξ ∈ n. Thus, σ′ preserves K-orbits in n and acts on n as ±id. Since, the image of

K in GL(n) contains −1, we may assume that σ′ acts on n as −id.

Consider a vector v = η + ξ1 + ξ2 ∈ g/k̂ such that η ∈ l/k ∼= R7, ξ1 + ξ2 ∈ n and ξ1,

ξ2 are linear independent vectors of R8. Note that the stabiliser K(ξ1+ξ2) of ξ1 + ξ2 equals

Kξ1 ∩Kξ2 = Spin7 ∩ SO6 = SU3. If σ′(v) = −kv for some k ∈ K, then kξ1 = ξ1, kξ2 = ξ2
and kη = −η. In particular, k ∈ K(ξ1+ξ2). Recall that l/k ∼= R7 as a K-module. There is

a non-zero K(ξ1+ξ2)-invariant vector η0 ∈ l/k. Clearly, vectors v0 = η0 + ξ1 + ξ2 and −σ′(v)
does not lie in the same K-orbit. Thus, X is not weakly symmetric.

Let X be a commutative space from Example 14 and µ a G-invariant Riemannian metric

on X. The metric µ is defined by an element b ∈ B(g/k), i.e., by a K-invariant scalar

product on g/k. Note that each b is also (SO2 ×K)-invariant. Hence, the isometry group of

X contains N h (L× SO2). We will see below, that X is a weakly symmetric homogeneous

space of N h (L× SO2). Thus, X is a weakly symmetric Riemannian manifold regardless of

the choice of a G-invariant metric.

Let X be a commutative homogeneous space of Heisenberg type with irreducible action
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K : n/n′, i.e., a space from Table 3.1. Then n = w ⊕ z, where z is the centre of n. The

commutation operation w×w → z is determined by the condition of K-equivariance up to

a conjugation by elements of the centraliser ZSO(w)(K). This means, that there is only one

embedding z ↪→
∧2

w up to the action of ZSO(w)(K).

Lemma 5.1. Suppose X = (N h L)/K is commutative. Then there is a Weyl involution θ

of L such that θ(K) = K and θ acts on n as an automorphism of a Lie algebra.

Proof. Let θ be a Weyl involution of L preserving K. It exists, since (L,K) is a spherical

pair, see [1]. Let wi ⊂ (n/n′) be an irreducible L-invariant subspace. Since wi is a self-

dual representation of L, we can define an L-equivariant action of θ on wi. Suppose that

[wi,wi] = zi 6= 0. We have to show that there is an L-invariant subspace a ⊂
∧2

wi such

that a ∼= zi as an L-module and θ(a) = a.

Let a ∼= zi be any L-invariant subspace of
∧2

wi. Then θ(a) = h ·a, where h ∈ ZGL(wi)(L).

Suppose θ acts on wi as a matrix A ∈ GL(wi). If we replace A by h−1A, we get a required

action of θ.

We say that θ ∈ AutG is a Weyl involution of G = N hL if θ definies a Weyl involution

of G/N . Set n−θ := {ξ ∈ n| θ(ξ) = −ξ}.

Lemma 5.2. Let (N hL)/K be a commutative homogebeous space. Suppose there is a Weyl

involution θ of G such that L(n−θ) = n and for (generic) ξ ∈ n−θ the retriction of θ to Lξ is

also a Weyl involution. Then (N h L)/K is weakly symmetric with respect to θ.

Proof. We may assume that θ(K) = K. If this is not the case, we replace θ by a conjugated

Weyl involution a(l)θa(l)−1, where l ∈ L.

The homogeneous space X is weakly symmetric with respect to θ if and only if θ(η) ∈
K(−η) for generic η ∈ g/k. We have η = η0 + ξ, where η0 ∈ l/k and ξ ∈ n. Since L(n−θ) = n,

there is an element l ∈ L such that θ(lξ) = −lξ. According to condition (A) of Theorem 1.3,

Lξ = Kξ. Thus, we may assume that l ∈ K or that θ(ξ) = −ξ. Then θ(Lξ) = Lξ and the

restriction of θ is a Weyl involution of Lξ (we assume that ξ is generic). Clearly, θ(Kξ) = Kξ.

To conclude, note that Lξ/Kξ is commutative (see condition (B) of Theorem 1.3), hence,

it is weakly symmetric with respect to any Weyl involution of Lξ, preservingKξ, see [1]. Thus,

θ(η0) = −ad(k)η0 for some k ∈ Kξ and θ(η) = θ(η0)− ξ = −(ad(k)η0 + kξ) = −kη.

Lemma 5.3. Suppose L : V is either SUn : Cn, SOn : Rn, or L : f, where F is a normal

subgroup of a compact group L. Then there a Weyl involution θ of L such that L(V −θ) = V

and for generic ξ ∈ n−θ the retriction of θ is a Weyl involution of Lξ.

Proof. For the first case, we set θ(A) = A, where A ∈ SUn and is the complex conjugation,

θ(η) = η for each η ∈ V . The non-zero L-orbits on V are spheres S2n−1, in particular,

L(V −θ) = V and the restriction of θ to the stabiliser SUn−1 is also the complex conjugation,

i.e., a Weyl involution.
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If L = SOn, a Weyl involution is a conjugation by a diagonal matrix I ∈ On, which

acts on Rn in a natural way. We assume that I ∈ SOn for odd n. Here also the non-zero

L-orbits on V are spheres Sn−1 and L(V −θ) = V . If θ(ξ) = −ξ, then the restriction of θ to

Lξ = SOn−1 is a Weyl involution.

Consider the third case. Each Weyl involution of L preserves F . Let t ⊂ f be a maximal

torus such that θ|t = −id. Since L is compact, each L (or F ) orbit on f intersect t. Hence,

L(f−θ) = f. For generic ξ ∈ t, the stabiliser Lξ is locally isomorphic to (L/F )× T , where T

is a commutative compact group. Clearly, the restriction of θ is a Weyl involution of Lξ.

Theorem 5.4. Each commutative space contained in Table 1.2b, but not in the row 4b, is

weakly symmetric. Commutative spaces ((HnhUn)×SUn)/Un and ((RnhSOn)×SOn)/SOn

are also weakly symmetric.

Proof. Let X = (N h L)/K be one of these commutative spaces. One have to check, that

conditions of Lemma 5.2 are satisfied for (L/P ) : n. If n is commutative and the action

(L/P ) : n is one of the three actions listed in Lemma 5.3, then X is weakly symmetric. This

is the case for items 2a, 3, 4c and 4d of Table 1.2b and for ((Rn h SOn)× SOn)/SOn.

Consider three remaining cases. For (L/P ) : n = (S)Un : (Cn ⊕ R) we take the same θ

as in Lemma 5.3, i.e., θ(A) = A, θ(η) = η for each η ∈ Cn. Here θ(ξ) = −ξ for ξ ∈ n′ ∼= R.

The rest of the proof do not difer from the proof of this case in Lemma 5.3.

Suppose L = Spin7, n ∼= R8 is a commutative algebra. Here L∗ = G2. This space

is weakly symmetric with respect to an involution σ such that σ(g) = g for g ∈ L and

σ(ξ) = −ξ for ξ ∈ n. Indeed, take η = η0 + ξ ∈ g/k, where η0 ∈ l/k and ξ ∈ n. Assume that

Lξ = L∗ = G2. The group G2 has no auter automorphisms, so identity map is a righteous

automorphism of G2/K∗. Hence, there is an element k ∈ K∗ such that ad(k)η0 = −η0 and

ad(k)σ(η) = ad(k)η0 − ξ = −η. Here θ is an inner automorphism of L, hence, X is also

weakly symmetric with respect to θ.

The last case is 4a, where L = SO8×SO2 and either n ∼= R8⊗R2, then it is commutative,

or n = h8. Take θ = θ1 × θ2, where θi are Weyl involutions of SO8 and O2, respectively.

Then θ|n′ = −id. We have n//L = n/L ∼= R2×n′. For any L-orbit Lξ ⊂ n where is a vector

ξ0 ∈ Lξ such that θ(ξ0) = −ξ0. If θ(ξ0) = −ξ0, then the restriction of θ is a Weyl involution

of Lξ0 . Here Lξ0 = SO6 if Lξ is a generic orbit.

Thus, in class of Sp1-saturated principal maximal commutative spaces our task is reduced

to spaces of Heisenberg type. Note that spaces of Euclidian type are symmetric. We suppose

that [n, n] 6= 0.

Let X = G/K be a commutative homogeneous space of Heisenberg type.

Theorem 5.5. If n is a direct sum of several K-invariant Hiesenberg algebras, then X is

weakly symmetric.
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Proof. Set H := K(C). Since there is a non-degenerate skew-symmetric K-invariant bilinear

form on n/n′, we have an isomorphism of H-modules n(C) ∼= W ⊕W ∗ ⊕mC, where C is a

trivial H-module. Moreover, the induced Lie algebra structure on n(C) satisfies the following

equalities: [W,W ] = [W ∗,W ∗] = [n(C),mC] = 0, [W,W ∗] = mC. The action H : C[W ] is

multiplicity free, see [3], i.e., W is a spherical representation of H.

Let C[W ] =
⊕

λ∈Γ(W )

Vλ be the decomposition into the direct sum of irreducible H-invariant

subspaces. Then

C[n(C)]H = C[W ⊕W ∗]H ⊗ C[x1, . . . , xm] =
⊕

λ∈Γ(W )

(Vλ ⊗ V ∗
λ )H ⊗ C[x1, . . . , xm],

where xi are linear functions on the centre of n(C).

Define an action of Ĥ := C∗×H on W ⊕W ∗ by z(v1 +v2) = zv1 +z−1v2, for each z ∈ C∗,

v1 ∈ W , v2 ∈ W ∗. Clearly, this action extends to an action on the Lie algebra n(C). Let

K̂ : n be a real form of Ĥ : n(C), in particular, K̂ = U1 ×K.

Let θ be a Weyl involution of Ĥ preserving K̂. Then θ(K) = K. We can define an

action of θ on the Lie algebra n. Then θ acts also on n(C) and θ(W ) = W ∗. According to

[37, Proposition 1], θ acts trivially on C[W ⊕W ∗]H . In particular, θ preserves vectors in

(W ⊗W ∗)H ⊂ (S2(W ∗⊕W ))H . Recall that each xi is an H-invariant vector in (W ∗⊗W ) ⊂∧2(W ∗ ⊕W ). Since θ(W ) = W ∗, we have θ(xi) = −xi. Clearly, H-invariants in Vλ ⊗ V ∗
λ

are of even degree and each xi is of the odd degree 1. Thus θ(f) = (−1)deg ff for each

homogeneous H-invariant polinomial f ∈ C[n(C)]. We conclude that X is weakly symmetric

with respect to θ.

In [9] similar statement is proved for K = Un, N = Hn. It is also shown there that

X = (NhK)/K is weakly symmetric in the following five cases: K = U1×Spn, n = Hn⊕C;

K = Spn × Sp1 × Spm, n = Hn ⊕ Hm ⊕ H0, where [Hn,Hn] = [Hm,Hm] = H0; K = Sp2,

n = H2 ⊕HS2
0H2; K = SU4, n = C4 ⊕ R6; and K = Spin7, n = R8 ⊕ R7.

Suppose n = w⊕ z, where w ∼= (n/n′) and z = n′. Take a linear function α ∈ z∗. Denote

by α̂ a skew-symmetric form on w given by α̂(ξ, η) = α([ξ, η]) for each ξ, η ∈ w. Let Ker α̂

be the kernel of α̂. We identify z and z∗. For any β ∈ Ker α̂ we denote a stabiliser of β in

Kα by Kα,β.

Lemma 5.6. Suppose there is a Weyl involution θ of G such that K(z−θ) = z,

Kα((Ker α̂)−θ) = Ker α̂ for each (generic) α ∈ z−θ and for each (generic) β ∈ Ker α̂ the

restriction of theta to Kα,β is also a Weyl involution. Then G/K is weakly symmetric.

Proof. We prove that −θ(ξ + α) ∈ K(ξ + α) for a generic vector (ξ + α) ∈ n, where ξ ∈ w,

α ∈ z. Let ( , )z be a K-invariant positive definite symmetric form on z. We identify α with

the linear function (α, )z on z. Since K(z−θ) = z, we may assume that θ(α) = −α. Let
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w = wα ⊕ Ker α̂ be a Kα-invariant decomposition. Suppose ξ = ξ0 + η, where ξ0 ∈ wα,

η ∈ Ker α̂. There is an element k ∈ Kα such that θ(kη) = −kη.
It remains to prove that −θ(ξ0) ∈ Kα,ηξ0. Note that wα⊕Rα has aKα-invariant structure

of a Heisenberg algebra, namely, put [ξ1, ξ2] = (α, [ξ1, ξ2])zα. By our assumptions θ is a Weyl

involution of Kα,η and θ(α) = −α. Moreover, the action Kα,η : (wα ⊕ Rα) is commutative,

see [3], [43, §4 of Chapter 2]. It follows from the proof of Theorem 5.5, that ξ0 and −ξ0 lie

in the same Kα,η-orbit.

Consider the complexificationsHα,η = Kα,η(C) and wα(C) = Wα⊕W ∗
α, where [Wα,W

∗
α] =

Cα. There is a Weyl involution θ1 of Hα,η preserving Kα,η and acting on wα(C) such that

θ1(α) = −α and θ1(Wα) = W ∗
α. Clearly, θ·θ1 preserves the non-degenerate skew-symmetric

form α̂ on wα(C). Hence, (θ·θ1)(Wα) = Wα and θ(Wα) = W ∗
α. Then, according to [37, Prop.

1], θ preserves Kα,η-orbits on wα and θ(ξ0) ∈ Kα,η(−ξ0).

Corollary. If n is a direct sum of several K-invariant Heisenberg algebras, then G/K is

weakly symmetric with respect to any Weyl involution of G acting on n′ as −id.

Let us consider commutative homogeneous spaces with irreducible action K : (n/n′), i.e.,

spaces from Table 3.1. Here z = n′ is the centre of n and n = w⊕ z.

Theorem 5.7. Table 3.1 contains only one homogeneous space which is not weakly symmet-

ric, namely item 9 with K = Spn.

Remark 3. Note that the space from row 9 was the first example of a commutative, but not

weakly symmetric homogeneous space, constructed by Lauret in [26].

Proof. According to Theorem 5.5, we have to consider only those cases where dim z > 1. We

apply Lemmas 5.3 and 5.6. We always assume that α ∈ z∗ is a generic point. Note that the

space from the second row was shown to be weakly symmetric in [9].

In cases 1, 3, 8, 12, 17, 18, 20 and 22, we have Ker α̂ = 0. Thus, it is enough to check

that there is an involution θ of G such that K(z−θ) = z and the restriction of θ is a Weyl

involution of Kα. For cases 1, 8, 17, 18, 20 and 22 it follows from Lemma 5.3.

The remaining four spaces we consider case by case.

3. Here θ is an inner automorphism of K. Suppose α ∈ z∗ and θ(α) = −α. Then Ker α̂ ∼= R
and θ|Ker α̂ = −id. Moreover, K(Rα) = z∗ and the restriction of θ to Kα = SU3 is a Weyl

involution.

5(6). Take θ(A) = A and θ(ξ) = ξ for A ∈ K, ξ ∈ n. Thus ξ|z = −id. Here Ker α̂ is zero if n

is even and C if n is odd. Suppose n = 2m+1, then Kα = (SU2)
m ·U1 acts on Ker α̂ ∼= C as

U1 and θ|C is a complex conjugation. Clearly, U1(iR) = C and Kα,β = (SU2)
m. If n = 2m,

then Kα = (SU2)
m and Ker α̂ = 0. In both cases the restriction of θ is a Weyl involution of

Kα,β.

9. Here we suppose that K = U1 × Spn. Let θ1 × θ2 = a(g1) × a(g2) be a Weyl involution

of Spn × Sp1 such that g1 ∈ Spn, g2 ∈ Sp1 and g2U1g
−1
2 = U1. Let θ be the restriction

87



of θ1 × θ2 to Spn × U1. Recall that H0
∼= sp1, in particular, Spn acts on H0 trivially. We

have H0 = R⊕ C as an U1-module. Clearly, θ preserves this decomposition and θ|R = −id,

H−θ ∼= R⊕ R.

We have an isomorphism HS2
0Hn ∼= (su2n/spn). There is a so called Cartan subspace

c ⊂ HS2
0Hn such that Spnc = HS2

0Hn and (Spn)c = (Sp1)
n, i.e., there is a subgroup (Sp1)

n

acting trivially on c. We may assume that g1 ∈ (Sp1)
n. Thus a(g1) acts on HS2

0Hn trivially.

But a(g2) acts on it as −id. Summing up, we get K(z−θ) = z. Here Kerα̂ = 0 and

Kα = (Sp1)
n ⊂ Spn. Since we assumed that g1 ⊂ (Sp1)

n, the restriction of θ is a Weyl

involution of (Sp1)
n. Note that, commutative space (NhSpn)/Spn with n = Hn⊕HS2

0Hn⊕R2

is also weakly symmetric.

12. In this case Ker α̂ = 0. Take θ = θ1 × θ2, where θ1 is the inversion on U1 and θ2 is a

Weyl involution of Spin7, which is well known to be inner. One can easily check that θ1 acts

on R as −id and on R7 trivially. We have (R7)−θ2 = R3 and Kz−θ = z. If θ(ξ) = −ξ, then

Kξ = U1 · Spin6 and the restriction of θ to Kξ is also a Weyl involution.

Suppose K = Spn and Hn⊕H0 ⊂ n. Then X = (NhK)/K is not weakly symmetric, see

[26]. Indeed, let σ be any automorphism of G preserving N . Then σ acts on n as an element

of Spn × Sp1, in particular, σ|H0 6= −id. Hence, X is not weakly symmetric with respect

to σ. There are positive definite symmetric forms b ∈ B(H0), which are not U1-invariant

for any U1 ⊂ Sp1. For example 3x2
1 + 2x2

2 + x2
3, where x1, x2, x3 is an orthonormal basis of

H0 = R3 with respect to the Sp1-invariant scalar product. Thus, we can choose a G-invariant

Riemannian metric on X such that X is not a weakly symmetric Riemannian manifold.

On the other hand, there is always an extension G̃ of G such that X = G̃/K̃ is a weakly

symmetric homogeneous space, namely G̃ = N h (U1 × Spn), K̃ = U1 ×K.

Example 15. Commutative homogeneous space X = (NhL)/K given in row 13 of Table 3.2

is not weakly symmetric. We suppose that K = Spin7 × SO2. Assume that X is weakly

symmetric with respect to some σ ∈ Aut(G,K). Similar to Example 14, we may assume

that σ = a(g) for some element g ∈ O2, σ|R8 = −id and, hence, σ|n′ = id.

Let v + ξ + η be a vector of n, where v ∈ R8, ξ ∈ n′, η ∈ R7 ⊗ R2. Then σ(v) − v,

Kv = G2 × SO2. If X is weakly symmetric with respect to σ, then σ acts as −id on Kv-

invariants in R[(R7 ⊕ R7 ⊗ R2)] of odd degree. We have

S2R7⊗S2R2 ⊂ R7⊗(R7⊗S2R2) ⊂ R7⊗(Λ2R7⊗S2R2) ⊂ R7⊗S2(R7⊗R2) ⊂ S3(R7⊕R7⊗R2)

and S2R7 ⊗ S2R2 contains a non-zer Kv-invariant, which is also O2-invariant.

Here G is an isometry group of X for any G-invariant Riemannian metric. Thus, there

is no group Ĝ acting on X such that G ⊂ Ĝ and X is a weakly symmetric Riemannian

homogeneous space of Ĝ.

Theorem 5.8. All commutative spaces contained in Table 3.2, except items 11 with K =

Spn × Spm, 12 with K = Spn, 13, and 25 with K = (U1×)SU4 are weakly symmetric.
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Proof. In cases 3, 7, 8, 16, 19 and 20 n is a direct sum of several Heisenberg algebras, hence,

this homogeneous spaces are weakly symmetric by Theorem 5.5.

Suppose that n = h ⊕ V , where h is a direct sum of several K-invariant Heisenberg

algebras and [V, V ] = 0. If there is a Weyl involution of K such that K(V −θ) = V and for

each (generic) v ∈ V −θ the restriction of θ is a Weyl involution of Kv, then X is weakly

symmetric. Indeed, we may assume that θ acts as −id on the centre of h. Each (generic)

vector of ξ ∈ n is of the form ξ0+v, where ξ0 ∈ h and v ∈ V . We may assume that θ(v) = −v,
then by the corollary of Lemma 5.6, θ(ξ0) ∈ Kv(−ξ0).

In view of Lemma 5.3, this argument works in cases 1, 2, 5, 6, 15, 17, 18, 21–24; in case

14 one have to make additional calculation for Spin7 : R8.

Consider case 4. Recall that R6 is a real form of
∧2 C4. We have proved that the

homogeneous space corresponding to item 5 of Table 3.1, i.e., to SU4 : (C4 ⊕
∧2 C4 ⊕ R), is

weakly symmetric. It follows that item 4 of Table 3.2 is also weakly symmetric.

In cases 9 and 10 we apply Lemma 5.6. Here Ker α̂ = 0 and evidently K(z−θ) = z.

Homogeneous space corresponding to row 12 is commutative if and only if K = Spn×U1

or K = Spn×Sp1. Argument here does not differ from one given for U1×Spn : (Hn ⊕
HS2

0Hn ⊕ H0). As was shown in Example 15, item 13 is not weakly symmetric. Consider

the remaining two cases.

11. Suppose K = Spn×(Sp1,U1)×Spm. Let θ = a(g1) × a(g2) × a(g3), where g1 ∈ Spn,

g2 ∈ Sp1, g3 ∈ Spm be a Weyl involution of K. We assume that g2 normalise U1. Set

θ(v) = −g1vg
−1
3 for v ∈ Hn ⊗ Hm. One can calculate, that (Hn ⊗ Hm)−θ = Hd, where

d := min(n,m), and K(Hn ⊗ Hm)−θ = (Hn ⊗ Hm). We have (Sp1)
n×(U1, Sp1) ⊂ Kv for

generic v ∈ (Hn ⊗Hm)−θ. We only need to know, that Kv((n
′)−θ) = n′. But this is already

true for the action of U1 or Sp1. If K = Spn×Spm, then the corresponding homogeneos

space is not weakly symmetric. It follows form the fact that item 9 of Table 3.1 is not

weakly symmetric for K = Spn.

25. If K = (U1×)SU4 × SO2, we take θ = θ1 × θ2, where θ1 is a Weyl involution of SU4 and

θ2 of SO2. Then each K-orbit in R6 ⊗ R2 contains a vector η such that θ(η) = −η and the

restriction of θ is a Weyl involution of Kη = (U1×)Sp1 × Sp1. Clearly, θ|n′ = −id and X is

weakly symmetric. If K = (U1×)SU4, then X is not weakly symmetric. It can be shown in

the same way as in Example 15.

We do not consider non-principal or non-Sp1-saturated commutative space. For each

particular X one can verify whether X is weakly symmetric or not following the strategy of

this chapter.
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Abstract

Let K ⊂ G be a compact subgroup of a real Lie group G. Denote by D(X)G the

algebra of G-invariant differential operators on the homogeneous space X = G/K. Then

X is called commutative or the pair (G,K) is called a Gelfand pair if the algebra D(X)G

is commutative. Symmetric Riemannian homogeneous spaces introduced by Élie Cartan

and weakly symmetric homogeneous spaces introduced by Selberg in [41] are commutative.

In this Dissertation we prove an effective commutativity criterion and obtain the complete

classification of Gelfand pairs.

If X = G/K is commutative, then, up to a local isomorphism, G has a factorisation

G = N h L, where N is either 2-step nilpotent or abelian and L is reductive with K ⊂ L,

see [43]. In Chapter 1 we impose on X two technical constrains: principality and Sp1-

saturation. These conditions describe the behaviour of the connected centres Z(L) ⊂ L,

Z(K) ⊂ K and normal subgroups of K and L isomorphic to Sp1. Under these constraints,

the classification problem is reduced to reductive case (G = L) and Heisenberg case (L = K).

In Chapter 1, we describe principal commutative homogeneous spaces such that there is a

simple non-commutative ideal li 6= su2 of LieL which is not contained in LieK.

In Chapter 2, G is supposed to be reductive. In this case the notions of commutative and

weakly symmetric homogeneous spaces are equivalent; moreover, weakly symmetric spaces

are real forms of complex affine spherical homogeneous spaces, see Akhiezer-Vinberg [1].

Spherical affine homogeneous spaces are classified by Krämer [25] (G is simple), by Brion

[10] and Mikityuk [30] (G is semisimple). Classifications of [10] and [30] are not complete.

They describe only principal spherical homogeneous spaces. In Chapter 2, we fill in the gaps

in these classifications and explicitly describe commutative homogeneous spaces of reductive

groups. This chapter also contains a classification of weakly symmetric structures on G/K.

We obtain many new examples of weakly symmetric Riemannian manifolds. Most of them

are not symmetric under some particular choice of a G-invariant Riemannian metric.

In Chapter 3, we complete classification of principal Sp1-saturated commutative spaces

of Heisenberg type, started by Benson-Ratcliff [3] and Vinberg [43], [44].

In Chapter 4, constraints of principality and Sp1-saturation are removed. Thus, all

Gelfand pairs are classified.

In Chapter 5, we classify principal maximal Sp1-saturated weakly symmetric homoge-

neous spaces. The question whether each commutative homogeneous space is weakly sym-

metric was posed by Selberg [41]. It was answered a few years ago in a negative way by

Lauret [26]. On the other hand, commutative homogeneous spaces of reductive groups are

weakly symmetric, see [1]. We prove that if X = (N h K)/K is commutative and N is a

product of several Heisenberg groups, then X is weakly symmetric. Several new examples

of commutative, but not weakly symmetric homogeneous spaces are obtained.
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