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Introduction
Schon winkt der Wein im gold’nen Pokale,
Doch trinkt noch nicht, erst sing’ ich euch ein Lied!
Das Lied vom Kummer
Soll auflachend in die Seele euch klingen.

Fundamental groups are birational invariants of smooth algebraic varieties and for
a classification it is important to know them. Also it is interesting to see how much
of the classification is encoded in them.

These groups are known for smooth and complex quasi-projective curves.
For smooth and complex projective curves the fundamental group determines the
curve up to deformation of the complex structure. For surfaces the situation is
much more complicated. The classification of surfaces is still not complete and
mainly surfaces of general type are still not well understood. In particular, sur-
faces of general type with K2 ≥ 8χ seemed to be mysterious and were hard to
construct. Bogomolov and others conjectured that these surfaces have infinite
fundamental groups.

Miyaoka considered generic projections from smooth projective surfaces to
the projective plane and studied the Galois closures of these projections. He was
able to construct many surfaces of general type with K2 ≥ 8χ via this method.

Moishezon and Teicher showed that there are generic projections from
� 1 ×� 1 such that the corresponding Galois closures are simply connected and fulfill

K2 ≥ 8χ. These were the first counter-examples to the conjecture mentioned
above. Their proof involved a certain amount of computations and was based on
degeneration techniques and braid monodromy factorisations.

In this thesis we attack the problem of determining the fundamental group of
the Galois closure of a generic projection via determining some “obvious“ con-
tributions coming from X . So let f : X → � 2 be a generic projection of degree
n and let Xgal be the corresponding Galois closure. It is known that Xgal embeds
into Xn which induces a homomorphism of fundamental groups

π1(Xgal) → π1(X)n . (1)

If we denote by K(G, n) the kernel of the homomorphism from Gn onto Gab then
the image of (1) is precisely K(π1(X), n). We prove this by purely algebraic
methods. In particular, we obtain this result also for étale fundamental groups
and generic projections defined over algebraically closed fields of characteristic
6= 2, 3.

Over the complex numbers there is the algorithm of Zariski and van Kampen
to determine the fundamental group of the complement of a curve in the affine or
projective plane. Since the monodromy at infinity is a little bit tricky, it is easier
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to look at the affine situation first, i.e. to look at the fibre of f and fgal over a
generically chosen affine plane in

� 2. We refer to these fibres as Xaff and Xaff
gal,

respectively.
In the affine situation there is also a surjective homomorphism from π1(Xaff

gal)

onto K(π1(Xaff), n) as in (1). Using the algorithm of Zariski and van Kampen we
obtain a quotient

π1(Xaff
gal) � K̃(π1(Xaff), n). (2)

Here, K̃(G, n) is a purely group theoretical construction that can be defined for
every finitely generated group G and every natural number n ≥ 3. It is related to
K(G, n) via a short exact and central sequence

0 → H2(G, � ) → K̃(G, n) → K(G, n) → 1 (3)

where H2(G, � ) denotes the second group homology with integral coefficients.
Even though the computation of K(G, n) for a given group G is usually not so
complicated it is quite hard to say something about K̃(G, n) and therefore about
about the quotient (2) of π1(Xaff

gal) in general.
Also we deduce from (3) that the quotient of π1(Xaff

gal) computed by (2) is
usually larger than the one given by (1).

It remains to determine the kernel of the homomorphism (2). We show that it
is a naturally defined subgroup that can be formulated independent of the specific
situation. We denote by Rgal ⊂ Xgal the ramification locus of fgal. This divisor is
ample but it is not irreducible. Then the kernel of (2) is trivial if the inverse image
of Rgal in the universal cover of Xaff

gal has certain connectivity properties. Thus if
these hold true then π1(Xaff

gal) is isomorphic to K̃(π1(Xaff), n).
It is interesting to see that in all known examples (except the projection from

the Veronese surface of degree 4 - but this surface has to be excluded in many
situations of classical algebraic geometry) computed by Moishezon, Teicher and
others the kernel of (2) actually is trivial. Whether this is a coincidence or a
general phenomenon does not seem to be clear.

The author would like to note that he originally believed that the quotient of
π1(Xaff

gal) he wanted to construct using the algorithm of Zariski and van Kampen
was K(π1(Xaff), n) and so a subgroup of π1(Xaff)n. The appearance of (3) and
the second homology group was quite some surprise and seems still to be rather
mysterious.

One application where it is actually easy to compute the quotient given by (2)
is the case when we start with a simply connected surface X . In this case we can
also say something about π1(Xgal): Namely, suppose that the generic projection
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is defined by a line bundle L on X . The degree n of f is precisely the self-
intersection number of L. If we denote by d the divisibility index of L in the
Picard group of X then our quotients take the form

π1(Xaff
gal) � � dn−1

π1(Xgal) � � dn−2.

Detailed description of the sections
1 We have a glimpse on fundamental groups of complex algebraic curves and

surfaces. After that we give a rather sketchy motivation why complements
of divisors on

� 1 and
� 2 (may) give some insight into the classification

problem of algebraic curves and surfaces. Also, generic projections and
their Galois closures enter the picture.

2 We introduce the notion of a good generic projection that is a little bit more
restrictive than the usual notion of a generic projection.

After that we recall some general facts on Galois closures of (good) generic
projections. Important for this thesis are the results on the geometry of the
ramification loci due to Miyaoka and Faltings.

For a good generic projection f : X → � 2 we let fgal : Xgal →
� 2

be its Galois closure. We let ` be a generic line in
� 2 and let � 2 be the

complement
� 2 − `. Then we define the following objects:

projective situation: f : X → � 2

fgal : Xgal → � 2

affine situation: f : Xaff := X − f−1(`) → � 2

fgal : Xaff
gal := Xgal − fgal

−1(`) → � 2

3 For a given group G and a natural number n ≥ 3 we define K(G, n) to
be the kernel of the homomorphism from Gn onto Gab. The action of the
symmetric group Sn on n letters on Gn given by permuting the factors
respects K(G, n). We then form the semidirect product of K(G, n) by Sn

via this action:

1 → K(G, n) → E(G, n) → Sn → 1.

We give some of the basic properties ofK(G, n), prove a universality result,
and compute some examples.
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4 We describe a certain quotient of the fundamental group of the Galois clo-
sure of a good generic projection.

This is done most naturally within the framework of Galois theory. We
have therefore given the proof in this setup yielding the result for the étale
fundamental group.

Given a generic projection from X of degree n with Galois closure Xgal

there is a short exact sequence

1 → π1(Xgal) → π1(Xgal, Sn) → Sn → 1 (4)

coming from geometry. Here, π1(Xgal,Sn) is a generalised fundamental
group that classifies covers of Xgal together with a Sn-action.

Using inertia groups we see that this short exact sequence partly splits. Then
we take a naturally defined quotient of this exact sequence to force a split-
ting. Using the universality result forK(−, n) from Section 3 we then obtain
surjective homomorphisms

π1(Xgal) � K(π1(X), n)

π1(Xaff
gal) � K(π1(Xaff), n).

This yields a proof of what we have said about the image of (1) above.

To make this proof also work in the topological setup we have to describe
how this generalised fundamental group can be defined topologically. To
achieve this we use ideas of Grothendieck’s [SGA1] and the notion of the
orbifold fundamental group.

Having introduced this machinery it is not complicated to carry the results
above for the étale fundamental groups over to topological fundamental
groups.

5 This is again a purely group theoretical and somewhat technical section
which is important for the main results of Section 6.

First we introduce the groups Sn(d), d ≥ 1 that generalise the symmetric
groups Sn. These groups should be thought of as symmetric groups with d
layers, cf. Section 5.1. It turns out that Sn(d) for n ≥ 5 is isomorphic to
E(Fd−1, n) where Fd−1 is the free group of rank d − 1 and where E(−, n)
is as defined in Section 3.

For a finitely generated group G and a natural number n ≥ 3 we choose
a presentation Fd/N of G. Using this presentation we construct a quotient
of E(Fd, n) that we denote by Ẽ(G, n). Then we show that this quotient
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depends only on G and n and not on the presentation chosen. There is
a split homomorphism from Ẽ(G, n) onto Sn yielding a split short exact
sequence

1 → K̃(G, n) → Ẽ(G, n) → Sn → 1.

This construction is related to the one in Section 3 by a central extension

0 → H2(G, � ) → K̃(G, n) → K(G, n) → 1

where H2(G, � ) denotes the second group homology with coefficients in
the integers. Then we give some basic properties of K̃(G, n) and compute
it in some cases.

In two appendices we discuss some elementary properties of the second
group homology and the connection of Ẽ(−, n) with some finite and some
affine Weyl groups.

6 We first recall the algorithm of Zariski and van Kampen to compute the
fundamental group of the complement of a curve in the affine or projective
complex plane.

In Section 4 we introduced a certain quotient to split the short exact se-
quence (4). We show how to use the groups Sn(d) introduced in Section
5 as a sort of frame when computing this quotient of π1(Xaff

gal). Using the
isomorphism of Sn(d) with E(Fd−1, n) of Section 5 we see that all relations
coming from a given generic projection lead exactly to a presentation of
K̃(π1(Xaff), n). Hence we obtain a surjective homomorphism

πtop
1 (Xaff

gal) � K̃(πtop
1 (Xaff), n).

The kernel of this map is the one needed to split (4). It is closely related
to connectivity results of the inverse image of the ramification locus Rgal of
fgal in the universal cover of Xaff

gal.

Then we study what happens in the projective case. After that we apply our
results to generic projections from simply connected surfaces and end this
section by some general remarks on symmetric products.

7 In this short section we apply our results to good generic projections from� 2,
� 1× � 1, the Hirzebruch surfaces and surfaces in

� 3. For generic projec-
tions from geometrically ruled surfaces we can compute at least our quotient
for the abelianised fundamental group of the Galois closure.

We end this section with the discussion of a sufficiently general projection
from the Veronese surface of degree 4 in

� 5. Here it is known that the kernel
of (2) is non-trivial.
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1 A short reminder on fundamental groups
Wenn der Kummer naht,
Liegen wüst die Gärten der Seele,
Welkt hin und stirbt die Freude, der Gesang.
Dunkel ist das Leben, ist der Tod.

1.1 Algebraic curves
Let C be a smooth complex projective curve of genus g(C). For g ≥ 1 we define
the following group by generators and relations

Πg := 〈a1, b1, ..., ag, bg |
g∏

i=1

[ai, bi] = 1〉.

Then it is known that
g(C) C is isomorphic to πtop

1 (C)

0
� 1 1

1 an elliptic curve � 2 ( = Π1)
≥ 2 a curve of general type Πg(C)

Also the universal covers of algebraic curves are known:
� 1 is homeomorphic to

the 2-sphere and its own universal cover. Elliptic curves are the quotient of � 2 by
� 2. Curves of general type are uniformised by the upper half-plane and so their
fundamental groups occur as subgroups of SL2( � ).

1.2 Algebraic surfaces
Now let S be a smooth complex projective surface. Since the fundamental group
is a birational invariant of smooth varieties we can restrict ourselves to a suitable
minimal model of S. We denote by κ(S) the Kodaira dimension of S. We recall
the Enriques-Kodaira classification (see e.g. [Bea] or [BHPV]):

κ(S) S is birational to πtop
1 (S)

−∞ a
� 1-bundle over a smooth curve C πtop

1 (C)

0 a K3 surface 1
an Enriques surface � 2

an abelian surface � 4

a bielliptic surface see below

1 an elliptic surface see below

2 a surface of general type unknown in general

1



We recall that a surface S is called elliptic if there exists a flat morphism from
S onto a smooth curve C such that the general fibre is a smooth elliptic curve.
The singular fibres of such a morphism can be singular curves (nodal or cuspidal
rational curves) and they can be multiple.

Now let S → C be a relatively minimal elliptic surface that has at least
one fibre with singular reduction. Suppose there are exactly k multiple fibres
above points P1, ..., Pk of C with multiplicitiesm1, ..., mk. By results of Kodaira,
Moishezon and Dolgachev there is an isomorphism

πtop
1 (S) ∼= πorb

1 (C, {Pi, mi})

where πorb
1 denotes the orbifold fundamental group (cf. Section 4.4 for a definition

of this group). We refer the reader to [Fr, Chapter 7] for details and references.

So if the Kodaira dimension κ of a surface is less than 2 we have some ideas
of how its fundamental group looks like. For surfaces of general type the situation
is more complicated:

1. Smooth surfaces of degree ≥ 5 in
� 3 are simply connected.

2. There are quotients of the latter surfaces by finite groups giving surfaces
with finite and non-trivial fundamental groups.

3. If C1 and C2 are two curves of genus g1 ≥ 2 and g2 ≥ 2, respectively then
C1×C2 has fundamental group Πg1×Πg2 which is non-abelian and infinite.

At the moment no pattern in the fundamental groups of surfaces of general type is
known. Also, it is unclear what these groups can tell us about the classification of
surfaces of general type.

We end this section by an example and refer the interested reader to [Hu] for
further details and references:

By the Bogomolov-Miyaoka-Yau inequality a minimal surface of general type
fulfills K2 ≤ 9χ where χ denotes the holomorphic Euler characteristic. It is
not so complicated to find surfaces with K2 ≤ 8χ using complete intersections,
fibrations or ramified covers. Moreover, Persson [Per] has given examples of
minimal surfaces of general type with χ = a andK2 = b for almost all admissible
pairs (a, b) with a ≤ 8b.

There where some hints and hopes that surfaces with K2 ≥ 8χ are uni-
formised by non-compact domains. Maybe these surfaces were the analogues
of the curves of genus ≥ 2 that are uniformised by the upper half-plane? This
lead to the so-called “watershed conjecture“:

Conjecture 1.1 (Bogomolov et al.) A surface of general type with K2 ≥ 8χ has
an infinite fundamental group.
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Miyaoka [Mi] gave a construction of surfaces of general type withK2 ≥ 8χ using
Galois closures of generic projections (cf. Section 2.2 for a precise definition).
He also showed that every surface has a finite ramified cover that is a surface of
general type with K2 ≥ 8χ.

Applying this construction to generic projections from
� 1 × � 1, Moishezon

and Teicher [MoTe1] have shown that there is an infinite number of surfaces of
general type withK2 ≥ 8χ and trivial fundamental group that are not deformation
equivalent. In particular, Conjecture 1.1 is false:

Theorem 1.2 (Moishezon-Teicher) There do exist simply connected surfaces of
general type with K2 ≥ 8χ.

1.3 Complements of branch divisors
Another application of fundamental groups are complements of branch divisors.
Some of the following ideas go back to Riemann in the 19th century. We have
taken the presentation from [GH, Chapter 2.3]:

LetC be a smooth projective curve of genus g ≥ 2. Taking the complete linear
system to a divisor of degree n > 2g we get an embedding of C into

� n−g as a
curve of degree n. Choosing an arbitrary projection onto

� 1 (linearly embedded
in
� n−g) we obtain a ramified cover

f : C → � 1

of degree n with a branch divisor B ⊂ � 1 of degree 2n + 2g − 2. On the other
hand, to give a morphism of degree n from C to

� 1 we have to choose a divisor
D of degree n on C and a section of OC(D). So, at least heuristically, a curve of
genus g ≥ 2 should depend on

(2n+ 2g − 2) − (n+ h0(C,OC(D)))

= (2n+ 2g − 2) − (n+ (n− g + 1))

= 3g − 3

parameters - which is in fact the right number.
For x0 ∈

� 1 − B we define a homomorphism

ϕ : πtop
1 (
� 1 − B, x0) → Sn

where Sn is the symmetric group on n letters: We fix a numbering of the n points
in the fibre f−1(x0). If we lift a loop based at x0 inside

� 1 − B to C − f−1(B)
we get a permutation of the points in the fibre and hence an element of Sn.

We now assume that f is “generic“ in the sense that the divisor B consists of
2n+2g−2 distinct points and that there is no point with ramification index bigger

3



than 2. Knowing B and the homomorphism ϕ we can reconstruct C out of these
data since ϕ tells us how to cut and glue different copies of

� 1 −B to get C.

The ideas outlined above may generalise in some way to surfaces:
We let D ⊂ � 2 be the branch divisor of a generic projection f : S → � 2 of

degree n ≥ 5. In a similar fashion as above we define a homomorphism

πtop
1 (
� 2 −D, x0) → Sn

and recover S out of these data by [Ku, Proposition 1]. Moreover, there is even
the following

Conjecture 1.3 (Chisini) Assume that D ⊂ � 2 is the branch divisor of a generic
projection of degree ≥ 5. Then there is a unique generic projection having D as
branch divisor.

For the proof of this conjecture in some important cases and the work of Kulikov
and Moishezon on it we refer to [Ku].

There are still discrete invariants missing to distinguish between different com-
ponents of the moduli space of minimal surfaces of general type with fixed χ and
K2. The results above suggest that it may be possible to get such invariants out of
πtop

1 (
� 2 −D) where D is the branch curve of a generic projection.

So it may be that generic projections turn out to be important for the classifi-
cation of algebraic surfaces of general type.
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2 Generic projections and their Galois closures
Herr dieses Hauses!
Dein Keller birgt die Fülle des goldenen Weins!
Hier, diese Laute nenn’ ich mein!
Die Laute schlagen und die Gläser leeren,
das sind die Dinge, die zusammen passen.

2.1 Sufficiently ample line bundles
Let X be a smooth projective surface over the complex numbers.

Definition 2.1 We call a line bundle L on X sufficiently ample if

1. L is an ample line bundle with self-intersection number at least 5,

2. for every closed point x ∈ X the global sections H0(X,L) generate the
fibre

Lx/m4
x · L,

3. for any pair {x, y} of distinct closed points of X the global sections of L
generate the direct sum

Lx/m3
x · L ⊕ Ly/m3

y · L,

4. for any triple {x, y, z} of distinct closed points of X the global sections of
L generate the direct sum

Lx/m2
x · L ⊕ Ly/m2

y · L ⊕ Lz/m2
z · L.

To produce such line bundles later on we will use the following lemma that already
appeared as a remark in [Fa, Section 2]:

Lemma 2.2 If a line bundle is the tensor product of at least five very ample line
bundles it is sufficiently ample.

PROOF. Let Li, i = 1, ..., 5 be very ample line bundles and M their tensor
product. Since the intersection of Li with Lj for all i, j is a positive integer it
follows that the self-intersection ofM is at least 25 and so even bigger than 5.

For each closed point x ∈ X the global sections of each Li generate the fibre
Li,x/m2

x since Li is very ample. It follows that the global sections of Li ⊗ Lj
generate the fibre (Li ⊗ Lj)x/m3

x and that the global sections of Li ⊗ Lj ⊗ Lk
generate the fibre (Li ⊗ Lj ⊗ Lk)x/m4

x.

5



For two distinct closed points x, y ∈ X there exists a global section of Li
that is non-zero in Li/mx and vanishes in Li/my. Using such sections (“partitions
of unity“) and the results above we see that the global sections of M fulfill the
conditions of Definition 2.1. �

For his conclusions in [Fa] he also needed that KX ⊗L⊗3 is ample. However,
this is automatic under our ampleness assumptions:

Lemma 2.3 Let L be a sufficiently ample line bundle. Then the line bundle KX ⊗
L⊗3 is very ample.

PROOF. This is an application of Reider’s theorem [Re]: We denote by L the
class of L in PicX . By assumption we have L2 ≥ 4 and so in particular (3L)2 ≥
10. Since L is ample every curve E on X fulfills (3L)E ≥ 3. Now, if the
linear system to KX ⊗ L⊗3 had a base point or if it could not separate (possibly
infinitely near) points, Reider’s theorem would provide us with a curve E such
that (3E)L < 3 which is impossible. From this we conclude that the line bundle
KX ⊗ L⊗3 is very ample. �

Definition 2.4 We letX be a smooth complex projective surface and we letL be a
sufficiently ample line bundle onX . Let E be a three-dimensional linear subspace
of H0(X, L). We call such a subspace generic if

1. E generates L, i.e. there is a well-defined finite morphism

f = fE : X → �
(E) =

� 2

of degree n equal to the self-intersection number of L,

2. the ramification locus R ⊂ X of fE is a smooth curve,

3. the branch locus D ⊂ � 2 of fE is a curve with at worst cusps and simple
double points as singularities and

4. the restriction fE|R : R→ D is birational.

We call the finite morphism fE associated to a generic three-dimensional linear
subspace E a generic projection.

We denote by � (k, V ) the Grassmannian parametrising k-dimensional linear sub-
spaces of the vector space V . To justify the name introduced in Definition 2.4
there is the following well-known

Proposition 2.5 Let L be a sufficiently ample line bundle on the smooth complex
projective surfaceX . Then there is a dense and open subsetG′ of � (3, H0(X,L))
such that all E ∈ G′ are generic and determine generic projections.

A proof of this proposition under our ampleness assumptions can be found in [Fa,
Proposition 1]. �
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2.2 Galois closures of generic projections
Let f : X → Y be a finite morphism between normal surfaces over the complex
numbers. Then f induces an extension of the function fields K(X)/K(Y ) of
degree n = deg f . Let L be the Galois closure of this field extension. Its Galois
group is a subgroup of the symmetric group Sn. Let Xgal be the normalisation of
X (or, equivalently, of Y ) inside L. We denote by fgal : Xgal → Y the induced
morphism.

Definition 2.6 Given a finite morphism f : X → Y between normal surfaces
we call the normal surface Xgal together with its morphism fgal : Xgal → Y the
Galois closure of the morphism f : X → Y .

Now let X be a smooth complex projective surface and L be a sufficiently ample
line bundle on X with self-intersection number n. The following result is again
well-known

Proposition 2.7 There exists an open dense subset G′ of � (3, H0(X, L)) such
that for all E ∈ G′

1. the map fE associated to E is a generic projection,

2. the Galois closure Xgal of fE is a smooth projective surface,

3. the Galois group K(Xgal)/K(
� 2) is the symmetric group Sn and

4. the branch curve D ⊂ � 2 of fE is an irreducible divisor.

For a proof of this proposition in our setup we refer to [Fa, Proposition 1]. �
So let X be a smooth projective surface with canonical line bundleKX and let

L be a sufficiently ample line bundle on X . We denote by L and KX the classes
of L and KX in Num(X), respectively.

Proposition 2.8 Let E be a three-dimensional linear subspace of H 0(X, L) that
belongs to the G′ of Proposition 2.7. Let f = fE be the corresponding generic
projection of degree n := L2 and let fgal : Xgal →

� 2 be its Galois closure.

1. The branch locus D ⊂ � 2 of f (and fgal) is an irreducible curve of degree

d = KXL+ 3L2 = KXL + 3n.

2. This irreducible curve D has δ simple double points and κ cusps, where

δ = d2/2 − 15d + 24n − 4K2
X + 12χ(OX)

κ = 9d − 15n + 3K2
X − 12χ(OX) .
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For a proof we refer to [Fa, Section 4] or [MoTe1, Chapter 0]. �
Since the existence of singularities on the branch curve of a generic projection

plays an important rôle later on we remark that

Lemma 2.9 Let f : X → � 2 be a generic projection given by a sufficiently ample
line bundle L.

1. There is at least one cusp on the branch curve of f .

2. There exists a positive integer m0 (depending on L) such that for all m ≥
m0 the branch curve of a generic projection with respect toL⊗m has at least
one simple double point.

PROOF. The degree of a generic projection f is equal to the self-intersection
number of L which is at least 5. By a theorem of Gaffney and Lazarsfeld (quoted
as [FL, Theorem 6.1]) there exists a closed point x on X with ramification index
at least 3. The image f(x) of x lies on the branch curve D of f and D necessarily
has a cusp in such a point.

The number of simple double points of a branch curve of a generic projection
with respect to the line bundle L⊗m is a polynomial of degree 4 as a function of
m tending to +∞ as m tends to +∞. Hence there exists a positive integer m0 as
stated above. �

2.3 Questions on connectivity
Definition 2.10 We let Sn be the symmetric group on n letters. Then we denote
its subgroup of permutations fixing the letter i by S

(i)
n−1.

Definition 2.11 For a permutation of Sn we define its support to be the largest
subset of {1, ..., n} on which it acts non-trivially. We say that two permutations are
disjoint or nodal if their supports are disjoint. In the case where their supports
intersect in exactly one element we say that they are cuspidal.

We let L be a sufficiently ample line bundle on the smooth projective surface
X . We let E be a three-dimensional linear subspace of H0(X,L) belonging to
the G′ given by Proposition 2.7. We let f = fE : X → � 2 be the corresponding
generic projection of degree n and denote by fgal : Xgal →

� 2 its Galois closure.
We denote by Rgal ⊂ Xgal the ramification divisor of fgal. We know from

Proposition 2.7 that the symmetric group Sn acts on Xgal. For a transposition τ
of Sn we consider the following components of Rgal:

Rτ := Fix(τ) := {x ∈ Xgal, τx = x}.

Then there is the following result
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Proposition 2.12 Let L be a sufficiently ample line bundle on X and let f =
fE : X → � 2 be a generic projection coming from a three-dimensional linear
subspace E ∈ G′ with G′ as in Proposition 2.7. We furthermore assume that the
branch curve of f has a simple double point. Then

1. The Rτ ’s defined above are smooth and irreducible curves.

2. The ramification locus Rgal of fgal is the union of the Rτ ’s where τ runs
through the transpositions of Sn.

3. If τ1 and τ2 are disjoint transpositions then Rτ1 and Rτ2 intersect trans-
versely. These intersection points lie over simple double points of D and
there is no other component of Rgal through such points.

4. If τ1 and τ2 are cuspidal transpositions then Rτ1 and Rτ2 intersect trans-
versely. These intersection points lie over cusps of D and the only other
component of Rgal through such points is Rτ1τ2τ1−1 = Rτ2τ1τ2−1 .

For a proof we refer to [Fa, Lemma 1] and [Fa, Section 4]. We note that a less
precise statement without proof was already made by Miyaoka [Mi]. �

Definition 2.13 Let L be a sufficiently ample line bundle on a smooth projective
surface X . We call a generic projection f = fE : X → � 2 associated to a
three-dimensional linear subspace E ∈ G′ with G′ as in Proposition 2.7 a good
generic projection if the branch curve of f has a simple double point.

By Lemma 2.2 the tensor product of five very ample line bundles is sufficiently
ample. Twisting a sufficiently ample line bundle with itself at least m0 times with
m0 as in Lemma 2.9 we arrive at a line bundle L′ such that there is an open dense
subset of � (3, H0(X,L′)) giving rise to good generic projections.

It is in this sense that a “sufficiently general“ three-dimensional linear sub-
space of the space of global sections of an ample line bundle gives rise to a good
generic projection for “almost all“ ample line bundles.

We let f : X → � 2 be a good generic projection of degree n with Galois
closure fgal : Xgal →

� 2. Let ` be a generic line in
� 2, i.e. a line intersecting D

in degD distinct points. We then define

� 2 :=
� 2 − `,

Xaff := f−1( � 2),

Xaff
gal := fgal

−1( � 2).

We let p : Y aff → Xaff
gal be a topological cover of Xaff

gal or p : Y → Xgal be a
topological cover of Xgal. Then for all transpositions τ of Sn the inverse image
p−1(Rτ ) is a disjoint union of smooth and irreducible curves.
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Question 2.14 Is it true that for distinct transpositions τ1 and τ2 every irreducible
component of p−1(Rτ1) intersects every irreducible component of p−1(Rτ2) ?

In this thesis we want to compute the fundamental groups πtop
1 (Xgal) and

πtop
1 (Xaff

gal). The main result (Theorem 6.2) is that there is always a surjective
homomorphism

πtop
1 (Xaff

gal) � K̃(πtop
1 (Xaff), n)

where K̃(−, n) is the group-theoretic construction defined in Section 5.3.
Now, if Question 2.14 has an affirmative answer for all topological covers of

Xaff
gal then the kernel of this surjective homomorphism is trivial.
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3 Semidirect products by symmetric groups
Ein voller Becher Weins zur rechten Zeit
Ist mehr wert, als alle Reiche dieser Erde!
Dunkel ist das Leben, ist der Tod.

3.1 Definition ofK(− ,n) and E(− ,n)

Let G be an arbitrary group and n ≥ 2 be a natural number. We denote by θ the
permutation representation of the symmetric group Sn on Gn given by

θ : Sn → Aut(Gn)
σ 7→

(
θ(σ) : (g1, ..., gn) 7→ (gσ−1(1), ..., gσ−1(n))

)

Then we form the split extension of groups with respect to θ

1 → Gn → Gn oθ Sn → Sn → 1

and denote by s : Sn → Gn oθ Sn the associated splitting.
We define the subgroup E(G, n) of Gn oθ Sn to be the group generated by

all conjugates of s(Sn) and define K(G, n) to be the intersection Gn ∩ E(G, n).
Hence we get a split extension

1 → K(G, n) → E(G, n) → Sn → 1.

We give another characterisation of these groups in Proposition 3.3.
More generally, let S be a subgroup of Sn. Then we define

E(G, n)S := 〈~gs(σ)~g−1 |~g ∈ Gn, σ ∈ S〉 ≤ E(G, n)

K(G, n)S := E(G, n)S ∩ K(G, n) E K(G, n) .

These subgroups remain the same when passing to a Gn-conjugate splitting. We
will therefore suppress s in future. Clearly,K(G, n)S is always a normal subgroup
of Gn and K(G, n).

In the notation introduced in Definition 2.10 we have the following equalities
and isomorphisms:

E(G, n)Sn = E(G, n)

E(G, n)
S

(i)
n−1

∼= E(G, n− 1) for n ≥ 3

and similarly for K(−, n).
Later on we have to deal with subgroups of K(G, n) that are generated by

K(G, n)-conjugates of a subgroup S of Sn rather than Gn-conjugates. Fortu-
nately, we have the following
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Lemma 3.1 Let S be a subgroup of Sn, n ≥ 3 that is generated by transpositions.
Then

E(G, n)S
def
= 〈~g σ ~g−1 |~g ∈ Gn, σ ∈ S〉
= 〈~g σ ~g−1 |~g ∈ K(G, n), σ ∈ S〉

K(G, n)S
def
= 〈[~g, σ] |~g ∈ Gn, σ ∈ S〉
= 〈[~g, σ] |~g ∈ K(G, n), σ ∈ S〉.

Moreover, it is enough that σ runs through a system of generating transpositions
of S in the expressions above.

PROOF. We will first assume that S = 〈τ〉 for the transposition τ = (1 2) of Sn.
For (g1, ..., gn) ∈ Gn we calculate

(g1, ..., gn)τ(g1, ..., gn)−1 = (g1g2
−1, g2g1

−1, 1, ..., 1)τ.

In this case the subgroupK(G, n)S of Gn is generated by (g, g−1, 1, ..., 1), g ∈ G.
Since we assumed n ≥ 3 we may consider the element (g, 1, g−1, 1, ...). By
applying the previous calculation to the transposition (1 3) this is also an element
of K(G, n). From

(g, 1, g−1, 1, ..., 1)τ(g, 1, g−1, 1, ..., 1)−1 = (g, g−1, 1, ..., 1)τ

we deduce that 〈~gσ~g−1 |~g ∈ K(G, n), σ ∈ S〉 is generated by the same elements
as E(G, n)S. So both subgroups are equal. A similar calculation yields the result
for K(G, n)S .

We now let S be a subgroup of Sn generated by transpositions. Then we can
write σ ∈ S as a product τ1 · ... · τd of transpositions all lying in S. For ~g ∈ Gn

we get

~gσ~g−1 = ~g

(
d∏

i=1

τi

)
~g−1 =

d∏

j=i

~gτi~g
−1.

We have seen above that all ~gτi~g−1 can be written as products of of conjugates of
τi under K(G, n). So ~gσ~g−1 can be written as a product of K(G, n)-conjugates of
elements of S.

To prove the remaining assertion we assume that σ ∈ S can be written as a
product of d transpositions of S. The case d = 1 was already done above. We can
find a transposition τ and an element ν that can be written as a product of strictly
less that d transpositions such that σ = τ · ν. Then also τντ−1 can be written as a
product of strictly less than d transpositions and writing

[~g, τν] = [~g, τ ] · τ [~g, ν]τ−1 = [~g, τ ] · [τ~gτ−1, τντ−1]

we can apply induction. �
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Remark 3.2 The assumption n ≥ 3 is crucial:

1. If n = 1 then E(G, 1) = K(G, 1) = 1.

2. If n = 2 then K(G, 2) is the subgroup of G2 generated by (g, g−1) and

〈~gσ~g−1 |~g ∈ G2, σ ∈ S2〉 = 〈(g, g−1), g ∈ G〉 = K(G, 2)

〈~gσ~g−1 |~g ∈ K(G, 2), σ ∈ S2〉 = 〈(g2, g−2), g ∈ G〉 ≤ K(G, 2).

So in this case it depends on the structure ofG whether these two subgroups
coincide.

3.2 Properties
There exists a quite different description of K(−, n) given by the following

Proposition 3.3 Let n ≥ 2 be a natural number and G be an arbitrary group.
Then

K(G, n) = ker ( Gn → Gab )
(g1, ..., gn) 7→ g1 · ... · gn

as subgroups of Gn.

PROOF. Lemma 3.1 tells us that K(G, n) is generated by elements of the form
(1, ..., 1, g, 1, ..., 1, g−1, 1, ..., 1). Since these elements lie in the kernel of the map
Gn → Gab it follows that we already have K(G, n) ≤ ker(Gn → Gab).

Conversely, suppose that (g1, ..., gn) lies in the kernel of Gn → Gab. Multi-
plying by (1, ..., gn, gn

−1) we obtain an element of the form (g1, ..., g
′
n−1, 1). We

multiply this element by (1, ..., 1, g′n−1, g
′
n−1
−1, 1). Proceeding inductively, we see

that every element of ker(Gn → Gab) can be changed by elements from K(G, n)
to an element of the form (g′1, 1, ..., 1). Then necessarily g′1 ∈ [G,G]. This means
that g′1 is a product of commutators. Since n ≥ 2 we can write a commutator as a
product of elements of K(G, n):

[(h1, 1, ..., 1), (h2, 1, ..., 1)]

= (h1, h1
−1, 1, ..., 1) (h2, h2

−1, 1, ..., 1) ((h2h1)−1, (h2h1), 1, ..., 1).

For computations later on we remark that for n ≥ 3 such a commutator is even a
commutator of elements of K(G, n):

[(h1, 1, ..., 1), (h2, 1, ..., 1)] = [(h1, h1
−1, 1, ...), (h2, 1, h2

−1, 1, ...)].

Hence every element of ker(Gn → Gab) is a product of elements ofK(G, n). This
proves the converse inclusion and so we are done. �
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The following proposition provides us with a couple of short exact sequences.
They turn out to be useful for calculations later on.

Proposition 3.4 Let n ≥ 2 be a natural number. We denote by pi the projection
from Gn onto its i.th factor.

1. Let τ be a transposition that moves the index i. Then pi induces a surjective
homomorphism

K(G, n)〈τ〉
pi� G.

If G is abelian then this is an isomorphism of groups.

2. For n ≥ 3 the projection pi induces a short exact sequence

1 → K(G, n)
S

(i)
n−1

→ K(G, n)
pi→ G → 1.

This allows us to recover G from K(G, n).

3. Combining the projections π := p2 × ...× pn we obtain an exact sequence

1 → [G,G] → K(G, n)
π→ Gn−1 → 1.

In general this exact sequence is not split as Example 3.11 shows.

PROOF. We will assume i = 2 and τ = (1 2) ∈ Sn. We have already seen in
the proof of Lemma 3.1 that K(G, n)〈τ〉 equals to the subgroup of Gn generated
by (g−1, g, 1, ..., 1). (For this statement it suffices to assume that n ≥ 2.) The
projection p2 of Gn onto its second factor induces a surjection of K(G, n)〈τ〉 onto
G. We can split this projection by the (set-theoretical) map

G → K(G, n)〈τ〉
g 7→ (g−1, g, 1, ..., 1)

proving the surjectivity of p2. If G is abelian then g 7→ g−1 is a homomorphism.
In this case p2 and its splitting are isomorphisms.

From Proposition 3.3 we conclude that ker pi ∩ K(G, n) is equal to the kernel
of the restriction of Gn → Gab to ker pi = [Gn,S

(i)
n−1]. But this is precisely

[K(G, n),S
(i)
n−1] proving the second exact sequence.

Given an element (g2, ..., gn) ∈ π(Gn) we set g1 := (g2 · ... · gn)−1. By
Proposition 3.3 the element (g1, g2, ..., gn) lies in K(G, n) and maps to (g2, ..., gn)
under π. This proves that π is surjective. An element of ker π is of the form
(g1, 1, ..., 1) and if this element also lies in K(G, n) Proposition 3.3 tells us that
g1 ∈ [G,G]. On the other hand, given an element g1 ∈ [G,G] then (g1, 1, ..., 1)
lies in K(G, n) by Proposition 3.3 and also in the kernel of π. This is enough to
prove the third short exact sequence. �
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Corollary 3.5 Let n ≥ 2.

1. If G is abelian, i.e. [G,G] = 1, then K(G, n) ∼= Gn−1.

2. If G is perfect, i.e. [G,G] = G, then K(G, n) = Gn.

PROOF. Let G be abelian. Then we define a map from Gn−1 to Gn via

Gn−1 → Gn

(g1, ..., gn−1) 7→ (g1, ..., gn−1, (g1 · ... · gn−1)−1).

Since G is abelian this defines a homomorphism of groups. Clearly, it is injective.
The image ofGn−1 lies insideK(G, n) by Proposition 3.3. Also all elements of the
form (1, ..., g, 1, .., 1, g−1, 1, ...) lie in the image. By Lemma 3.1 these elements
generate K(G, n) and so this homomorphism is surjective.

If G is perfect then Gab = 1 and so ker(Gn → Gab) = Gn. �
We denote by Pn the permutation representation of Sn on � n. This is the

same as the representation induced from the trivial representation of S
(1)
n−1. Inside

Pn we form the direct sum of � (1, ..., 1) with trivial Sn-action and the Sn-stable
hyperplane

P̃n = {(k1, ..., kn) ∈ � n | ∑n
i=1 ki = 0} .

After tensoring with � this defines a decomposition of Pn ⊗ ��� as direct sum of
the trivial representation and the irreducible representation P̃n ⊗ ��� .

From Proposition 3.3 we then get the following description of K(−, n) for
abelian groups in terms of the representation theory of the symmetric group Sn:

Corollary 3.6 There exists an isomorphism of � [Sn]-modules

K( � , n) ∼= P̃n.

Moreover, for every abelian group G there is a Sn-equivariant isomorphism

K(G, n) ∼= G⊗ � P̃n.

The following corollary shows that K(−, n) inherits many of the properties of
the group we plug in:

Corollary 3.7 Let n ≥ 2 and consider the following properties of groups:

abelian, finite, nilpotent, perfect, solvable.

Then G has one of the properties above if and only if K(G, n) has the respective
property.
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PROOF. IfG is abelian (resp. finite, nilpotent, solvable) then so isK(G, n) being
a subgroup of Gn. If G is perfect then K(G, n) ∼= Gn which is perfect.

By the first exact sequence of Proposition 3.4 there exists a surjective homo-
morphism from K(G, n) onto G. So if K(G, n) is abelian (resp. finite, nilpotent,
perfect, solvable) then so is G being a quotient of K(G, n). �

We finally give some basic functoriality properties of our construction:

Proposition 3.8 Let n ≥ 2 be a natural number and let G1, G2, G be arbitrary
groups.

1. If G1 → G2 is an injection then so is K(G1, n) → K(G2, n).

2. If G1 → G2 is a surjection then so is K(G1, n) → K(G2, n).

3. If G is a semidirect product then so is K(G, n). However, the functor
K(−, n) is not exact in the middle as Example 3.11 and Example 3.13 show.

4. K(G1 ×G2, n) = K(G1, n)× K(G2, n).

5. If G is an abelian group then

K(G, n)tors
∼= K(Gtors, n)

K(G, n)⊗ ��� ∼= K(G⊗ ��� , n)

where −tors denotes the torsion subgroup of an abelian group.

6. For n ≥ 3 the natural homomorphism fromK(G, n)ab onto K(Gab, n) is an
isomorphism. The assumption n ≥ 3 is needed as Example 3.12 shows.

PROOF. We assume that 1→ K → G→ Q→ 1 is exact. Then also the induced
sequence 1 → Kn → Gn → Qn → 1 is exact. This induces homomorphisms
(notation as in the beginning of this section)

Kn oθ Sn → Gn oθ Sn → Qn oθ Sn

and induces injections E(K, n)↪→E(G, n) and K(K, n)↪→K(G, n). This proves
the first assertion (we do not need the normality of K in G in this step). The
group E(Q, n) is generated by Sn and commutators [q, σ], q ∈ Q. Since G�Q
is surjective we see that E(G, n)�E(Q, n) is surjective since we can lift elements
of Sn and commutators. Similarly we see that K(G, n)�K(Q, n) is surjective.

If G is a semidirect product then there exists a split surjection G�Q. This
map induces a split surjection K(G, n)�K(Q, n). Therefore also K(G, n) is a
semidirect product.
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The assertions about the torsion and the free part of an abelian group follow
immediately from Corollary 3.5.

The surjection G�Gab and the universal property of abelianisation imply that
there is a natural surjective homomorphismK(G, n)ab�K(Gab, n):

1 → K(G, n) → Gn → Gab → 1
↓ ↓ ab ||

1 → K(Gab, n) → (Gab)n → Gab → 1 .

An element of the kernel K(G, n) → K(Gab, n) is also an element of the kernel
of Gn → (Gab)n which is [G,G]n. Since we assumed n ≥ 3 every commutator
(1, ..., 1, [h1, h2], 1..., 1) lies not only in K(G, n) but is even a commutator of el-
ements of K(G, n), cf. the proof of Proposition 3.3. This implies that the kernel
of K(G, n) → K(G, n)ab is the commutator subgroup of K(G, n). Hence the
canonical homomorphism from K(G, n)ab onto K(Gab, n) is an isomorphism for
n ≥ 3. �

3.3 Universality
We assume that we are given a groupX and a homomorphismϕ : Sn → Aut(X)
with n ≥ 3. Then we form the semidirect product

1 → X → X oϕ Sn → Sn → 1.

We consider Sn as a subgroup of the group in the middle via the associated split-
ting. For a subgroup S ≤ Sn we denote [X,S] by XS . Again, XS is a normal
subgroup of X and does not change if we pass to an X-conjugate splitting.

Proposition 3.9 Let ϕ : Sn → Aut(X), n ≥ 3 be a homomorphism and let

1 → X → X oϕ Sn → Sn → 1

be the split extension determined by ϕ. If we define

Y := XSn/XS
(1)
n−1

then there exists a commutative diagram with exact rows

1 → XSn → XSn oϕ Sn → Sn → 1

↓ ↓ ‖
1 → K(Y, n) → K(Y, n)oθ Sn → Sn → 1

where all homomorphisms downwards are surjective. Moreover, we have an exact
sequence

1 → ⋂n
i=1 XS

(i)
n−1

→ XSn → K(Y, n) → 1.
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PROOF. We will consider the projections pi : XSn → XSn/XS
(i)
n−1

.
Every σ ∈ Sn induces via conjugation an isomorphism

XSn/XS
(i)
n−1

→ XSn/XS
(σ(i))
n−1

x 7→ σxσ−1

We claim that this isomorphism depends only on the coset Sn/S
(i)
n−1:

If σ ∈ S
(i)
n−1 then we compute

x mod X
S

(i)
n−1

7→ σxσ−1 mod X
S

(i)
n−1

= x[x−1, σ] mod X
S

(i)
n−1

= x mod X
S

(i)
n−1

So in this case, the induced automorphism is just the identity and we will identify
the different quotients XSn/XS

(i)
n−1

via these isomorphisms in the sequel.
Combining the different projections pi, we obtain a homomorphism

p : XSn →
∏n

i=1 XSn/XS
(i)
n−1

∼= Y n

with kernel ker p =
⋂n
i=1 XS

(i)
n−1

.
We will show that the Sn-action onXSn via ϕ is compatible via the projection

p with the Sn-action on Y via θ as described in Section 3.1: Let σ ∈ Sn and
x ∈ X . Then we calculate

pi(ϕ(σ)(x)) = ϕ(σ)(x) mod X
S

(i)
n−1

= σxσ−1 mod X
S

(i)
n−1

= x mod σ−1X
S

(i)
n−1
σ

= pσ−1(i)(x)

= θ(σ)pi(x),

i.e. the homomorphism p is Sn-equivariant.
By the same calculations as in the proof of Lemma 3.1 we see that XSn is

generated by elements [x, τ ] = x · ϕ(τ)(x−1) where x runs through X and τ
runs through the transpositions of Sn. Hence the image of p is generated by the
elements [p(x), τ ] = p(x) · θ(τ)(p(x)−1) and therefore lies inside K(Y, n).

We define τi := (1i) for i ≥ 2. Then the second isomorphism theorem of
groups yields

Xτi

Xτi ∩XS
(i)
n−1

=
XSn

X
S

(i)
n−1

∼= Y.
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For j 6= i, j ≥ 2 the group Xτj is a subgroup of X
S

(i)
n−1

so we see that we can in
fact construct a surjective homomorphism

p2 × ...× pn : XSn � Y n−1.

We have already seen in the proof of Lemma 3.1 that K(Y, n) is generated by the
elements [(1, ..., 1, y, 1, ...), τ ] with y ∈ Y .

So let τ = (2 3) and y ∈ Y be arbitrary. By what we have just proved and
using n ≥ 3 we can find x ∈ X with p2(x) = y and p3(x) = 1. Then

pi([x, τ ]) = pi(x · ϕ(τ)(x−1)) =





y for i = 2
y−1 for i = 3
1 else.

From this we see that all [(1, ..., 1, y, 1, ...), τ ], i.e. a system of generators of
K(Y, n) lies in the image of p. This proves the surjectivity of p : XSn → K(Y, n).

The rest about commutativity of the diagram is straight forward. �
In particular, we can apply this result to K(−, n) and its Sn-action. The fol-

lowing result shows that K(−, n) is in some sense a universal construction:

Corollary 3.10 If X = K(G, n) with n ≥ 3 and ϕ is the Sn-action that comes
with K(G, n) then

XSn = X and Y ∼= G.

Moreover, the homomorphism

X = XSn → K(Y, n)

given by Proposition 3.9 is an isomorphism in this case.

PROOF. The fact that XSn = X follows from Lemma 3.1. Using the second
short exact sequence of Proposition 3.4 we see that Y ∼= G.

If we use the fact that

K(G, n)
S

(i)
n−1

= K(G, n) ∩ (Gi−1 × {1}︸︷︷︸
i.th position

×Gn−i+1 ) ≤ Gn

then it is clear that the intersection of all K(G, n)
S

(i)
n−1

over i = 1, ..., n is trivial.
Hence the homomorphism from X = XSn onto K(Y, n) is an isomorphism. �
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3.4 (Counter-)Examples
We now compute some examples apart from those given by Corollary 3.5. They
also provide counter-examples to some naı̈ve ideas the author had about the short
exact sequences of Proposition 3.4 and further functoriality properties apart from
those given in Proposition 3.8.

We refer to Section 5.6 for further examples and a connection of E(−, n) with
the theory of Coxeter groups.

Example 3.11 Let n ≥ 2 be a natural number. Let D2k be the dihedral group of
order 2k. This group is a semidirect product of the cyclic group � k by � 2.

1. If k ≡ 1 mod 2 then K(D2k, n) ∼= � k o (D2k
n−1) .

2. If k ≡ 2 mod 4 then K(D2k, n) ∼= � k/2 o (D2k
n−1).

3. If k ≡ 0 mod 4 then K(D2k, n) ∼=
( � k/2 × � kn−1

)
o � 2

n−1.

We remark that

1. In the first two cases the exact sequence of Proposition 3.4 splits whereas
this sequence is not split for k ≡ 0 mod 4 and n ≥ 3.

2. The subgroupK( � k, n) of K(D2k, n) is not normal.

3. Even though K(D2k, n) is a semidirect product it is not not a semidirect
product of K( � k, n) by K( � 2, n).

PROOF. We will use the presentations

D2k = 〈s, d | s2 = dk = 1, sds = d−1〉, � k = 〈d | dk = 1〉, � 2 = 〈s | s2 = 1〉.

The commutator subgroup [D2k, D2k] equals 〈d2〉.
If k is odd we then get [D2k, D2k] = 〈d〉 ∼= � k. We can split the exact sequence

of Proposition 3.4 by sending for i = 2, ..., n the elements d, s ∈ D2k to

φi(d) := (1, ..., 1, d, 1, ..., 1) and φi(s) := (s, 1, ..., 1, s, 1, ..., 1)

(in both cases there is a non trivial entry in the i.th position). After checking that
φi(D2k) ≤ K(D2k, n) we see that this splits the projection D2k

n�D2k onto the
i.th factor. Also it is easy to see that φi and φj commute for i 6= j. This already
proves the assertions in case k is odd.

For k even we have [D2k, D2k] = 〈d2〉 ∼= � k/2. To obtain a splitting of the
exact sequence of Proposition 3.4 we have to set for i = 2, ..., n

φi(s) := (sdai , 1, ..., 1, s, 1, ..., 1) and φi(d) := (dbi, 1, ..., 1, d, 1, ..., 1)
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since the product over all components has to lie inside [D2k, D2k] = 〈d2〉. For φi
to map intoK(D2k, n) it is necessary that bi is odd and that ai is even for all i. For
n ≥ 3 and i 6= j to ensure that φj(s) and φi(d) commute we must have

sdaj · dbi = dbi · sdaj

i.e. aj + bi ≡ aj − bi mod k. This implies that 2bi ≡ 0 mod k and so bi ≡ 0
mod (k/2). Together with bi ≡ 1 mod 2 we see that we cannot find a solution
for bi if k/2 is even, i.e. if k is divisible by 4. So for n ≥ 3 and 4|k the sequence
cannot be split.

If k is even and not divisible by 4 we can set

φi(s) := (s, 1, ..., 1, s, 1, ..., 1) and φi(d) := (dk/2, 1, ..., 1, d, 1, ..., 1)

and thus obtain a splitting for K(D2k, n) in this case. This proves our assertions
for k ≡ 2 mod 4.

From Proposition 3.8 we conclude that K(D2k, n) is a semidirect product of
S := K(D2k, n) ∩ � kn (we intersect inside D2k

n) by K( � 2, n) ∼= � 2
n−1. It is

easy to see that S contains K( � k, n) and (..., 1, g, 1, ...) with g ∈ [D2k, D2k]. But
(..., 1, d, 1, ...) cannot lie in S because it is not even an element of K(D2k, n).
This implies that S is generated inside � kn by the elements (..., 1, d2, 1, ...) and
K( � k, n). This is enough to identify S as � k/2 × � kn−1. �

Example 3.12 Let Q8 be the quaternion group andD8 = D2·4 the dihedral group
of order 8. Then there are isomorphisms

K(Q8, 2) ∼= � 2 ×Q8 and K(D8, 2) ∼= � 2 ×D8.

In particular, we have K(Gab, 2) 6∼= K(G, 2)ab for G equal to D8 or Q8.

PROOF. We will use the presentation

Q8 = 〈a, b | a4 = 1, b2 = a2, bab−1 = a−1〉.

The commutator group [Q8, Q8] equals 〈a2〉. So we get Q8
ab ∼= � 2

2 and therefore
K(Q8

ab, 2) ∼= � 2
2.

We see that K(Q8, 2) is generated inside Q8
2 by the elements x := (a−1, a),

y := (b−1, b) (giving a set theoretical section of Q8 to K(Q8, 2)) and z := (a2, 1)
(being a generator for the kernel of the surjection K(Q8, 2)�Q8). It is easy to
see that 〈x, y〉 ∼= Q8 and that 〈z〉 commutes with 〈x, y〉. Now K(Q8, 2) has order
16 being an extension of [Q8, Q8] ∼= � 2 by Q8. Therefore there are no further
relations among the x, y, z and there exists an isomorphismK(Q8, 2) ∼= � 2×Q8.
In particular, K(Q8, 2)ab is isomorphic to � 2

3.
The proof for D8 is similar to the case of Q8 and is left to the reader. �
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Example 3.13 Let Q8 be the quaternion group. We denote by Z(Q8) the centre
of Q8. Then the short exact sequence

1 → Z(Q8) → Q8 → � 2 × � 2 → 1

induces for all n ≥ 3 a sequence

1 → K(Z(Q8), n) → K(Q8, n) → K( � 2 × � 2, n) → 1

that is not exact in the middle.
We remark that K(Z(Q8), n) is a normal subgroup of K(Q8, n).
In particular, also the subgroup of K(Q8, n) generated by the conjugates

of K(Z(Q8), n) does not give the kernel of the surjective homomorphism from
K(Q8, n) onto K( � 2 × � 2, n).

PROOF. Using the presentation of Q8 as in Example 3.12 we have Z(Q8) =
〈a2〉 = 〈b2〉. We can identify K(Z(Q8), n) with the subgroup of Z(Q8)n where
the product over all components equals 1.

Since Z(Q8) is the centre ofQ8 we see thatK(Z(Q8), n) is a normal subgroup
of Q8

n and hence also a normal subgroup of K(Q8, n).
The kernel of the surjective homomorphismK(Q8, n)�K( � 2× � 2, n) equals

K(Q8, n) ∩ Z(Q8)n. However, the element (a2, 1, ..., 1) lies in this kernel but not
in K(Z(Q8), n). �
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4 A first quotient of π1(Xgal) and π1(X
aff
gal)

Das Firmament blaut ewig, und die Erde
Wird lange fest steh’n und aufblühn im Lenz.
Du aber, Mensch, wie lang lebst denn du?
Nicht hundert Jahre darfst du dich ergötzen
An all dem morschen Tande dieser Erde!

4.1 Étale and topological fundamental groups
In this section we recall some well-known facts that can be found e.g. in [SGA1,
Exposé XII].

Let X be an irreducible normal scheme of finite type over the complex num-
bers and let Xan be its associated complex analytic space. Then we consider the
following three categories:

1. The objects are connected and finite étale covers Y → X where Y is an
algebraic scheme and the morphisms are morphisms of schemes over X
between these covers.

2. The objects are connected holomorphic covers Y → X an where Y is a
complex space and the morphisms are holomorphic morphisms of complex
spaces over Xan between these covers.

3. The objects are connected topological covers Y → X an where Y is a topo-
logical space and the morphisms are continuous maps of topological spaces
over Xan between these covers.

The relationship between these three categories is as follows:

- Given a finite étale cover p : Y → X by a scheme Y this induces a finite
holomorphic cover pan : Y an → Xan.

Moreover, every algebraic morphism between finite étale covers of X in-
duces a unique holomorphic morphism between their analytifications.

- Every holomorphic cover is also a topological cover and every holomorphic
map is continuous.

- Every topological cover ofXan can be given a unique structure of a complex
space such that the projection map onto Xan becomes holomorphic.

Moreover, every continuous map between holomorphic covers overX an can
be given a unique structure of a holomorphic morphism.
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- By Riemann’s existence theorem every finite holomorphic cover Y→ X an

is algebraic, i.e. there exists a finite étale cover p : Y → X by an algebraic
scheme Y such that the associated analytification is isomorphic to Y →
Xan.

This implies that there is an equivalence of categories between the category of
holomorphic covers of Xan and the category of topological covers of Xan. Both
categories can be described in terms of discrete sets with an action of the funda-
mental group πtop

1 (Xan, x0) on it where x0 is a point of Xan.
As explained in [SGA1] there exists a profinite group π ét

1 (X, x0) that classifies
connected and finite étale covers of X .

By the above the category of finite étale covers of the scheme X is equivalent
to the full subcategory of finite holomorphic covers of the category of holomorphic
covers of Xan. So there is a natural homomorphism πtop

1 (Xan, x0) → πét
1 (X, x0)

that identifies the finite quotients of both groups. Hence this map induces an
isomorphism

π̂top
1 (Xan, x0) ∼= πét

1 (X, x0)

where ̂ denotes the profinite completion of a group.
The homomorphism of a group to its profinite completion is in general not

surjective as the example � → ̂� shows. However, the image of a group inside
its profinite completion is always dense with respect to the profinite topology.
We recall that a group G is called residually finite if the natural homomorphism
from G to its profinite completion Ĝ is injective. There do exist finitely presented
groups that are not residually finite, e.g. Higman’s 4-group [Se, Chapter I.1.4].

Serre asked in loc. cit. whether there are complex algebraic varieties that have
non-residually finite fundamental groups. The facts are as follows:

1. If X is a smooth complex projective algebraic curve then πtop
1 (X, x0) being

a subgroup of SL2( � ) is residually finite (cf. [LS, Proposition III.7.11] and
Section 1.1).

2. If X is a smooth complex affine algebraic curve then πtop
1 (X, x0) is a free

group and hence residually finite.

3. Toledo [To] constructed smooth complex projective algebraic surfaces with
fundamental groups that are not residually finite.

So having proven Theorem 4.3 there is no way to deduce from it the corresponding
statement for topological fundamental groups since we are dealing with algebraic
surfaces and so the fundamental groups involved may not be residually finite.
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4.2 The quotient for the étale fundamental group
For the following quite elementary treatment of étale fundamental groups in terms
of Galois groups and the arguments on inertia groups used we refer the reader to
the book of H. Popp [Popp] for proofs and details.

We let f : X → � 2 be a good generic projection of degree n with Galois
closure fgal : Xgal →

� 2. We define the following function fields:

L := function field of Xgal

K := function field of X
k := function field of

� 2.

We will assume that they are all contained in a fixed algebraically closed field Ω.
We have already seen in Proposition 2.7 that the Galois group of L/k is isomor-
phic to the symmetric group Sn. We may assume that K is the fixed field of S

(1)
n−1

in the notation of Definition 2.10.
We denote byKnr the maximal unramified extension ofK i.e. the compositum

of all finite field extensions inside Ω of K such that the normalisation of X in
these fields is étale over X . We similarly denote by Lnr the maximal unramified
extension of L and by knr the maximal unramified extension of k. Of course, we
have knr = k. But for later generalisations it is better to use this fact as late as
possible.

More or less by definition of the étale fundamental groups there are isomor-
phisms of profinite groups

πét
1 (Xgal) ∼= Gal(Lnr/L) and πét

1 (X) ∼= Gal(Knr/K).

To be more precise, there is an isomorphism of π ét
1 (X, Spec Ω) with the opposite

group Gal(Knr/K) that depends on the choice of the embedding of K into Ω.
Of course there are similar dependencies for π ét

1 (Xgal) and πét
1 (
� 2). So we fix

Spec Ω as base point for all étale fundamental groups occurring in this section.
Since we fixed Ω and embeddings of the fields k, K, L, knr, Knr and Lnr into Ω
we will not mention base points and identify the étale fundamental groups with
their corresponding Galois groups with these choices understood. We refer to
Section 4.3 for more details on these choices.

Both extensions L/k and Lnr/L are Galois. It is easy to see that Lnr/k also
is a Galois extension: The Galois closure of Lnr/k would have to be unramified
over L i.e. must be contained in Lnr. Hence there is a short exact sequence

1 → Gal(Lnr/L) → Gal(Lnr/k) → Gal(L/k) → 1

with Gal(L/k) ∼= Sn.
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We let Y be a connected and finite étale cover of Xgal with function field M
that we will assume to be Galois over k and to be a subfield of Ω. We let R be the
coordinate ring of a generic open affine subset of

� 2, so that in particular k is the
field of fractions of R. We let S be the integral closure of R inside L and let T be
the integral closure ofR insideM . Since f : X → � 2 is a good generic projection
the branch locus D is an irreducible curve inside

� 2 and hence corresponds to a
prime ideal p of height 1 of R. From Proposition 2.12 we see that p splits in S
into a product

p =
∏

τ P2
τ

where τ runs through the transpositions of Sn and the Pτ ’s correspond to the
irreducible curves Rτ as defined in Section 2.3. Since T is étale over S the Pτ ’s
do not ramify in T . Each Pτ splits into a product of Qτ,i’s i = 1, ..., ` where `
divides the degree of the extension M/L. We thus get the following picture:

varieties:
� 2 ← Xgal ← Y

function fields: k ⊆ L ⊆ M

coordinate rings: R ⊆ S ⊆ T

prime ideals: p =
∏

τ P2
τ =

∏`
i=1

∏
τ Q2

τ,i

Since the ramification indices e(Pτ/p) = e(Qτ,i/p) are all equal to 2, we con-
clude that the inertia groups are subgroups of Gal(M/k) isomorphic to � 2. Under
the natural homomorphism Gal(M/k)�Sn the non-trivial element of the inertia
group of Qτ,i maps to τ .

Galois theory provides us with the following two short exact sequences:

1 → Gal(M/L) → Gal(M/k) → Gal(L/k) → 1

|| ↑ ↑
1 → Gal(M/L) → Gal(M/K) → Gal(L/K) → 1

The arrows upwards are injective. We identify Gal(L/k) with Sn and Gal(L/K)

with S
(1)
n−1.

We let N (1) be the subgroup of Gal(M/K) normally generated (with respect
to Gal(M/K)) by the inertia groups of all prime ideals Qτ,i lying above prime
ideals Pτ with τ ∈ S

(1)
n−1:

N (1) = � I(Qτ,i) | ∀i, ∀τ ∈ S
(1)
n−1 � E Gal(M/K).

If we viewN (1) as a subgroup of Gal(M/k) then it maps to S
(1)
n−1 under the homo-

morphism onto Gal(L/k). Hence the fixed field Fix(N (1)) is a Galois extension
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of K. The normalisation of X inside Fix(N (1)) is a finite étale cover since we
quotiened out all inertia groups. Hence it is contained in the field M ∩Knr where
we intersect these fields inside Ω. Conversely, there is a surjective homomorphism
from Gal(M/K) onto Gal(M ∩Knr/K). Since the inertia groups cannot survive
under this surjection we conclude that N (1) must be contained in the kernel of this
homomorphism. Putting this together we see that there is a short exact sequence

1 → N (1) → Gal(M/K) → Gal(M ∩Knr/K) → 1.

In a similar fashion we define N to be the subgroup of Gal(M/k) that is normally
generated by the inertia groups of all the Qτ,i. With the same arguments as above
we conclude that N generates the kernel of the surjective homomorphism from
Gal(M/k) onto Gal(M ∩ knr/k).

For the non-trivial elements r1 and r2 of two inertia groups of Qτ1,i1 and Qτ2,i2

we define (cf. Definition 2.11)

c(r1, r2) :=





1 if τ1 = τ2

r1r2r
−1
1 r2

−1 if τ1 and τ2 are disjoint

r1r2r1r2
−1r1

−1r2
−1 if τ1 and τ2 are cuspidal.

We define C to be subgroup normally generated inside Gal(M/k) by all the
c(r1, r2)’s where the ri’s run through all inertia groups of height one prime ideals
inside Gal(M/k).

Lemma 4.1 The subgroup C is contained in Gal(M/L), N and N (1).

PROOF. All c(r1, r2)’s lie in Gal(M/L) and N and so the first two inclusions
are clear.

We let τ1 and τ2 be two disjoint transpositions and choose two inertia elements
r1 and r2 of Gal(M/k) mapping to τ1 and τ2, respectively. One of the τi’s, say
τ1, lies in S

(1)
n−1. Hence r1 lies in N (1). Suppose r2 is the inertia element of some

prime ideal Qτ2 ,j. Then the element r2r1r2
−1 is an element of the inertia group

of the prime ideal r2Qτ2 ,j. This latter inertia group is contained in N (1) and so
r2r1r2

−1 lies in N (1). Hence c(r1, r2) lies in N (1).
We leave the case of two cuspidal transpositions to the reader. �
Hence the maps from Gal(M/k) onto Gal(M ∩ knr/k) and from Gal(M/K)

onto Gal(M ∩ Knr/K) factor over the quotient by C. And so we obtain the
following two short exact sequences

1 → Gal(M/L) → Gal(M/k) → Gal(L/k) → 1

↓ ↓ ||
1 → Gal(M/L)/C → Gal(M/k)/C → Gal(L/k) → 1 (∗)

where the arrows downwards are surjective.
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Proposition 4.2 We can split the short exact sequence (∗) using inertia groups.
With respect to this splitting there are the following isomorphisms

(Gal(M/L)/C) / (Gal(M/L)/C)Sn
∼= Gal(M ∩ knr/k)

(Gal(M/L)/C) / (Gal(M/L)/C)
S

(1)
n−1

∼= Gal(M ∩Knr/K)

where the notations are the ones introduced in Section 3.1
If Question 2.14 has an affirmative answer for the finite étale cover Y → Xgal

then the group C is trivial.

PROOF. For every transposition (1 k) we choose a prime ideal Q(1 k),i and denote
by rk the non-trivial element of its inertia group. We denote by r̄k the image of
rk inside Gal(M/k)/C. The elements r̄k fulfill r̄k2 = 1 and map to (1 k) under
the induced surjection onto Gal(L/k). Since we took the quotient by C also the
following relations hold true:

(r̄i r̄i+1)3 = 1 and (r̄i r̄j)
2 = 1 for |i− j| ≥ 2.

These are precisely the Coxeter relations for Sn (cf. Section 5.6) and hence the
r̄k define a group isomorphic to a quotient of Sn. Since there is a surjective
map from this group onto Sn it must be equal to Sn. This defines a splitting
s : Gal(L/k)→ Gal(M/k)/C.

From Lemma 4.1 we know that C is a subgroup of N . So we see that the map
from Gal(M/k) onto Gal(M ∩ knr/k) factors over Gal(M/k)/C. The kernel
of the map from Gal(M/k)/C onto Gal(M ∩ knr/k) clearly is the image N̄ of
N inside Gal(M/k)/C. The group N̄ is generated by the images of the inertia
groups.

From Lemma 3.1 we know that (Gal(M/L)/C)Sn is generated by the com-
mutators [g, s(τ)]’s where g runs through Gal(M/L) and τ runs through the trans-
positions of Sn. The element gs(τ)g−1 is the non-trivial element of the inertia
group of some prime ideal lying above Pτ . With this said it is easy to conclude
the equalities

N = (Gal(M/L)/C)Sn · s(Sn)
and N ∩ (Gal(M/L)/C)Sn = (Gal(M/L)/C)Sn

Applying the second isomorphism theorem of group theory we obtain

Gal(M/L)/C

(Gal(M/L)/C)Sn

=
Gal(M/L)/C

N ∩Gal(M/L)/C
=

N ·Gal(M/L)/C

N

=
Gal(M/k)/C

N
∼= Gal(M ∩ knr/k).
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Hence the induced homomorphism from Gal(L/K)/C to Gal(M ∩knr/k) is sur-
jective with kernel (Gal(L/K)/C)Sn .

The assertion about the quotient of Gal(M/L)/C by (Gal(M/L)/C)
S

(1)
n−1

is
proved similarly and left to the reader.

Now suppose that the curves corresponding to the Qτ,i’s fulfill the connectivity
properties of Question 2.14.

For two disjoint transpositions τ1 and τ2 we choose two prime ideals Qτ1,i and
Qτ2 ,j and let r1 and r2 be the non-trivial elements of their inertia groups. Since
the curves corresponding to the two prime ideals intersect there is a maximal ideal
containing both of them. The inertia group of this maximal ideal is isomorphic to
� 2 × � 2 and is generated by r1 and r2. Hence these two elements commute and
c(r1, r2) = 1.

If τ1 and τ2 have exactly one index in common then there is a maximal ideal
with inertia group S3 that is generated by r1 and r2. So there is a triple com-
mutator relation between r1 and r2 and so also c(r1, r2) = 1 holds true in this
case.

So if Question 2.14 has an affirmative answer for Y → Xgal then all the
c(r1, r2)’s are equal to 1 and so C is trivial. �

We now pass to the limit of all finite étale covers of Xgal and keep track of the
induced homomorphisms between the corresponding field extensions and their
Galois groups. We will denote the limit of the subgroups C by Cproj. Using
Proposition 4.2 we arrive at surjective homomorphisms

Gal(Lnr/L)/Cproj � Gal(Lnr ∩ knr/k)

Gal(Lnr/L)/Cproj � Gal(Lnr ∩Knr/K).

Taking the compositum of L with Knr we get a subfield of Ω that corresponds to
a limit of étale extensions Xgal. Hence this compositum must be contained in Lnr

and hence already Knr was contained in Lnr. So Knr ∩ Lnr is equal to Knr and
the second surjective homomorphism above takes the form

Gal(Lnr/L)/Cproj � Gal(Knr/K).

Its kernel is (Gal(Lnr/L)/Cproj)
S

(1)
n−1

.
Up to now have actually never needed that k is the function field of the pro-

jective plane over the complex numbers. This means that everything done in this
section works equally well in the affine situation. We denote by Lnr,aff the com-
positum of all fields corresponding to finite étale extensions of X aff

gal inside Ω. We
then define Caff to be the subgroup of Gal(Lnr,aff/k) normally generated by the
c(r1, r2)’s where the ri’s run through inertia groups in this extension.
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No matter whether we are in the affine or the projective situation, since k is
the function field of the affine or the projective plane over the complex numbers
there are no non-trivial étale covers and so knr = k as we already mentioned much
earlier. In particular, Gal(Lnr ∩ knr/k) is trivial and so

(Gal(Lnr/L)/Cproj)Sn = Gal(Lnr/L)/Cproj

(Gal(Lnr/L)/Cproj)
S

(1)
n−1

= ker(Gal(Lnr/L)/Cproj�Gal(Knr/K))

where we have shown the second equality already above. Of course, we also get
the corresponding statements for the affine situation. Applying Proposition 3.9 to
Gal(Lnr/L)/Cproj and Gal(Lnr,aff/L)/Caff we obtain

Theorem 4.3 Let f : X → � 2 be a good generic projection of degree n with
Galois closure Xgal. Then there are surjective homomorphisms

πét
1 (Xgal) � πét

1 (Xgal)/C
proj � K(πét

1 (X), n)

πét
1 (Xaff

gal) � πét
1 (Xaff

gal)/C
aff � K(πét

1 (Xaff), n).

If Question 2.14 has an affirmative answer for all finite étale covers of Xaff
gal then

both Caff and Cproj are trivial.
If Question 2.14 has an affirmative answer for all finite étale covers of Xgal

then at least Cproj is trivial.

Even if Caff is trivial we cannot expect these surjective homomorphisms to be
isomorphisms. We refer to Theorem 6.2 for details.

The quotient in positive characteristic

Only for the rest of this section we let X be a smooth projective surface over an
arbitrary algebraically closed field of characteristic 6= 2, 3.

For every finite and separable morphism we can form its Galois closure. We
say that a finite separable morphism f : X → � 2 is a good generic projection if it
fulfills the conditions of a generic projection and if the conclusions of Proposition
2.7 and Proposition 2.12 hold true.

Then nearly all arguments given in Section 4.2 also work in this situation. We
assumed that the characteristic of the ground field is 6= 2, 3 and since all inertia
groups occurring are � 2, � 2

2 and S3 there are no problems with wild ramification.
But nearly at the end we used the fact that the affine and the projective plane over
the complex numbers are algebraically simply connected.

This is still true for the projective plane over an arbitrary algebraically closed
field and for the affine plane over an algebraically closed field of characteristic
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zero. Hence the proof also works always in the projective case and always in the
affine case if we work in characteristic zero.

However, the affine plane is not algebraically simply connected in positive
characteristic. In this case our result is still true for the prime-to-p part of the
étale fundamental groups in question. The general picture in the affine case is as
follows: For an irreducible and affine scheme A together with a finite morphism
a : A→ � 2 we define the new part of the étale fundamental group of A to be the
kernel

πét,new1 (a, A) := ker(a∗ : πét
1 (A) → πét

1 ( � 2)).

This name is motivated by the fact that in our case f∗ : πét
1 (Xaff) → πét

1 ( � 2) and
fgal,∗ : πét

1 (Xaff
gal) → πét

1 ( � 2) are surjective homomorphisms and since π ét
1 ( � 2)

is highly non-trivial in positive characteristic we are only interested in the “new
part“ coming from the morphisms f and fgal.

We leave it to the reader to use Theorem 3.9 together with the results of Section
4.2 to obtain a surjective homomorphism

πét,new1 (fgal, X
aff
gal) � K(πét,new1 (f, Xaff), n).

This is a sort of relative version of Theorem 4.3 that does not involve knowing the
group πét

1 ( � 2).

4.3 Classifying covers with group actions
In the following we recall some basic facts on fundamental groups from the point
of view of Galois categories and fibre functors. The standard reference is [SGA1].
We especially refer the reader to [SGA1, Exposé V]. The category of G-covers is
introduced in [SGA1, Remarque IX.5.8]. For the topological details we refer e.g.
to [Di, Kapitel I.9].

Let X be a normal irreducible complex analytic space and G a finite group
of automorphisms of X and so acting from the left on this space. We define the
following two categories

C Covers of X

The objects are holomorphic covers Y→ X.

The morphisms are holomorphic maps between these covers over X.

CG G-Covers of X

The objects are holomorphic covers p : Y→ X together with a leftG-action
on Y that is compatible with the G-action on X via p.

The morphisms are G-equivariant holomorphic maps between these covers
over X.
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We already said in Section 4.1 that C is equivalent to the category of topological
covers of X. We identify C with C{1} where {1} denotes the trivial group.

We recall that an object Y of a category in which coproducts exist is called
connected if it is not isomorphic to a coproduct Y1

∐
Y2 where Y1 and Y2 are

objects of this category not isomorphic to the initial object.
For an arbitrary discrete group π1 we define the following category:

C(π1) π1-sets
The objects are discrete sets with a left or right action of the group π1.

The morphisms are π1-equivariant maps between these sets.

We warn the reader that when discussing the fundamental group π1 in algebraic
geometry one often considers sets with left π1-actions whereas in topology one
usually considers sets with right π1-actions. Therefore the author decided to be
rather pedantic about this point, especially after he was trapped when he was not
paying attention to it.

We choose a universal cover p̃ : X̃ → X of X in the sense of topology. We
denote by Aut(X̃) the group of deck transformations of X̃ over X. Then we define
πtop

1 (X, X̃) to be the opposite group to Aut(X̃). Given a (connected) cover p :
Y → X the group Aut(X̃) acts from the right on the set of cover morphisms
Hom(X̃,Y). Hence there is a left πtop

1 (X, X̃)-action on this set. This defines a
fibre functor from the category C to the category of sets with a left πtop

1 (X, X̃)-
action and makes C into a Galois category.

Here we have to relax Grothendieck’s terminology a little bit: We also allow
quotients by discrete groups rather than only finite ones. Also we assume that the
fibre functor maps to the category of discrete sets with a group action of a discrete
group rather than only to the category of finite sets together with a continuous
action of a profinite group.

Conversely, given a fibre functor F there is always a group πtop
1 (X, F ) called

the automorphism group of the functor F . A map between two covers Y1 and Y2

over X is uniquely determined by the πtop
1 (X, F )-equivariant map from F (Y1)

to F (Y2). The main content of Galois theory and the theory of the fundamental
group in this setup is that a fibre functor induces an equivalence of categories
between C and C(π1).

The connection with the fundamental group defined via loops is as follows:
We let Fx0(Y) := p−1(x0) be the fibre of p : Y → X above a point x0 of
X. Lifting loops based at x0 to paths in Y defines a right action of the “loop“-
fundamental group πtop

1 (X, x0) on the set Fx0(Y). Now we fix a point x̃0 on the
fibre Fx0(X̃) of a universal cover. Then we compare the left Aut(X̃)-action with
the right πtop

1 (X, x0)-action in this point: For every automorphism ϕ there is a
unique element γ in the fundamental group such that ϕ · x̃0 = x̃0 · γ. This defines
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an isomorphism between these two groups that depends on the choice of x̃0. In
fact, given another point x̃′0 of Fx0(X̃) there is a unique element α ∈ πtop

1 (X, x0)
such that x̃′0 = x̃0 · α. We then compute

ϕ · x̃′0 = ϕ · (x̃0 · α) = (ϕ · x̃0) · α = (x̃0 · γ) · α = x̃′0 · (α−1γα).

That is, with respect to x̃′0 we obtain an isomorphism of πtop
1 (X, x0) with Aut(X̃)

that differs from the isomorphism with respect to x̃0 by conjugation with α.
If we fix a point x̃0 of X̃ in the fibre p̃−1(x0) we can identify Hom(X̃,Y) with

the set Fx0(Y) by associating to a morphism ϕ : X̃ → Y the point ϕ(x̃0). Under
this identification the right action of πtop

1 (X, x0) on Fx0(Y) becomes a left action
on Hom(X̃,Y) and it is this point where the group actions change their side when
passing from topology to algebraic geometry and vice versa.

For a cover p : Y→ X we recover the group of its automorphisms as follows:
The group Aut(X̃) acts on Hom(X̃,Y). We choose a point on this latter set,
i.e. we choose a map from X̃ to Y, and denote by H the subgroup of Aut(X̃)
stabilising this point. This identifies Y with the quotient H\X̃. An element of
Aut(X̃) induces an automorphism of Y if and only if it normalises H . Since the
elements acting trivially on Y are precisely those of H we get an isomorphism
between the group of cover automorphisms of Y over X and NH/H where NH
denotes the normaliser of H in Aut(X̃).

The same can be done for covers with a G-action. So we assume a finite group
G of automorphisms acts from the left on X. The following constructions were
already sketched in [SGA1, Remarque IX.5.8] and we will fill out some of the
details:

For a connected C-cover p : Y→ X we define the following CG-cover:

Y×G → X

(y, h) 7→ h · p(y)

and a left G-action on Y×G via

G × (Y×G) → Y×G
g , (y, h) 7→ (y, gh)

This clearly is a connected object of CG. The object so associated to Y is the same
as the fibre product of Y with (X×G) with G-action as described above over X.

Every connected G-cover of X × G is dominated by a G-cover of the form
Y×X (X×G) where Y→ X is a connected topological cover. Indeed, forgetting
the G-action, a connected G-cover of X× G becomes a cover of X consisting of
exactly |G| components. If we choose Y to dominate each of these components
it is not complicated to obtain a G-morphism from Y × G onto the G-cover of
X×G we started with.
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Given an arbitrary connected G-cover Z → X we can form its fibre product
with X×G. Then we can find a connected component Z′ (with respect to CG) of
this fibre product that dominates Z. Since Z′ is a G-cover of X×G it is dominated
by X̃×G. From this we conclude that X̃×G is a universal cover of CG.

We define p̃G : X̃ × G → X with the G-action as above and denote its group
of G-automorphisms by Aut(X̃ × G). For every point x0 of X, this latter group
acts from the left on the fibre p̃G−1(x0).

Definition 4.4 For a point x0 of X and a group G that acts by automorphisms on
X we denote the opposite group of Aut(X×G) by πtop

1 (X,G,x0) and call it the
G-fundamental group of X.

As in the case of the classical fundamental group to give a G-cover is the same as
to give a discrete set with a right action of πtop

1 (X, G, x0) on it.
Given a subgroup H of G the fundamental groups classifying covers with

actions of H and G are related as follows: We fix a system R of representatives
of G/H . We will assume that the class of H is represented by the unit element of
G. For a connected CH -cover p : Y→ X we define the following CG-cover:

Y× R → X
(y, r) 7→ r · p(y)

and a left G-action on Y× R via

G × (Y× R) → Y× R
g , (y, r) 7→ (hgy, rgh)

where g = rghg is the unique decomposition of an element of G into a product
of an element of H and an element of R. This clearly is a connected object of
CG. The object so associated to Y is the same as the fibre product of Y with
q : X× R → X with the G-action described above. This is an exact functor from
CH to CG and hence defines an injective homomorphism of fundamental groups

πtop
1 (X, H, x0) ↪→ πtop

1 (X, G, x0).

With respect to the action of πtop
1 (X, G, x0) on the fibre q−1(x0) the image of this

homomorphism is the stabiliser of the point (x0, 1) of X× R.
Given an element γ of πtop

1 (X, G, x0) it acts on the fibre q−1(x0) of the G-
cover q : X×R→ X by sending (h−1x0, h) to (h−1r(γ)−1x0, r(γ)h). Moreover,
if H is a normal subgroup of G then the map that sends γ to r(γ) defines a homo-
morphism from πtop

1 (X, G, x0) to G/H . This homomorphism is surjective since
we can lift the map x 7→ g ·x to the universal cover as explained in [Di, Satz I.8.9].
Hence there exists a short exact sequence

1 → πtop
1 (X, H, x0) → πtop

1 (X, G, x0) → G/H → 1.
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In particular, for H = 1 we obtain the short exact sequence

1 → πtop
1 (X, x0) → πtop

1 (X, G, x0) → G → 1. (∗)

To obtain an isomorphism of πtop
1 (X, G, x0) with Aut(X̃×G) we have to choose

a point on the fibre p̃G−1(x0).
If we choose another base point, say x1 on X then the G-fundamental groups

with respect to two xi’s are isomorphic. However, such an isomorphism depends
on the choice of points x̃i in the respective fibres p̃G−1(xi), i = 0, 1. We will
assume that the two x̃i’s lie on the same topological component of the universal
G-cover X̃×G. This means that we choose a path connecting x0 to x1. Then the
isomorphism

πtop
1 (X, G, x0) ∼= πtop

1 (X, G, x1)

is well-defined up to conjugation by an element of πtop
1 (X, x0) and the two ho-

momorphisms onto G coming from the short exact sequence (∗) are compatible
under this isomorphism.

For a G-cover p : Y→ X and a closed subset of A of Y we call the subgroup
of G fixing A pointwise the inertia group of A (in G):

IA := {g ∈ G | ga = a, ∀a ∈ A}.

The possibly larger subgroup of G fixing A but not necessarily pointwise is called
the decomposition group of A (in G):

DA := {g ∈ G | g(A) = A}.

The inertia group is always a normal subgroup of the decomposition group.
We choose a point x1 on X and let p̃G : X̃ × G → X be the universal G-

cover. Then the inertia group Ix1 acts on the fibre p̃G−1(x1). We choose a point
x̃1 on this fibre. Then we compare the left action of Ix1 with the right action of
πtop

1 (X, G, x1) in this point x̃1. This associates to each element of Ix1 an element
of πtop

1 (X, G, x1). Given another point x̃′1 above x1 there is a G-automorphism ϕ
that sends x̃1 to x̃′1. We assume that g · x̃1 = x̃1 · γg for an element g of Ix1 . Since
ϕ is G-equivariant we compute

g · x̃′1 = g · (ϕ(x̃1)) = ϕ(g · x̃1) = ϕ(x̃1 · γg) = ϕ(x̃1) · γg = x̃′1 · γg.

Hence γg does not depend on the choice of a point in the fibre above x1 and it
acts like multiplication by g on all points on this fibre. This means that there is a
natural injective homomorphism

Ix1 ↪→ πtop
1 (X, G, x1).
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If we fix an isomorphism between the G-fundamental groups of X with respect to
x0 and x1 there is the following composition

Ix1 ↪→ πtop
1 (X, G, x1) ∼= πtop

1 (X, G, x0) � G.

Even though the isomorphism in the middle is only well-defined up to conjugation
by an element of πtop

1 (X, x0) the whole composition always coincides with the
inclusion map of Ix1 into G.

In terms of automorphisms of the universal G-cover p̃G : X̃ × G → X we
fix a point x̃1 on the fibre p̃G−1(x1). Given an element g of Ix1 there is a unique
automorphism ϕg of X̃ × G that sends x̃1 to g · x̃1. However, this automorphism
really depends on the choice of x̃1.

We now let R be a path connected subset of X that contains the point x1. If
we forget the G-action for a moment then p̃G−1(R) is a disconnected topological
cover of R if G is non-trivial. We let R̃ be a component of p̃G−1(R) on X̃× {1}.
The group IR acts on R̃ simply by interchanging the |IR| different but homeomor-
phic components. We choose a point of R̃ above x1 to obtain an isomorphism
of πtop

1 (X, G, x0) with Aut(X̃× G). In this special situation we see that an auto-
morphism corresponding to an element of IR depends only on R̃ and not on the
particular point lying above x1. Hence it makes sense to talk about an automor-
phism of the universal G-cover that is the inertia automorphism of a component
of p̃G−1(R).

We finally want to stress that in general there is no natural way of relating
elements ofG to cover automorphisms of X̃×G or elements of theG-fundamental
group of X since the G-action usually does not respect the fibres. It is only inertia
that makes this possible.

Given a G-cover p : Y → X there is always an injection of inertia groups
Iy ⊆ Ip(y) for all points y ∈ Y. Given a cover Z → G\X we can form the fibre
product with X and obtain a G-cover p′ : Z ×G\X X → X. All points z on this
fibre product fulfill Iz = Ip′(z). Conversely, if p : Y → X is a G-cover that
fulfills Iy = Ip(y) for all points y of Y then the quotient by G defines a cover
G\p : G\Y→ G\X. Hence there is a one-to-one correspondence

{
covers of G\X

}
↔

{
G-covers p : Y→ X such that
Iy = Ip(y) for all y ∈ Y

}

Since this remains true if we assume connectivity on both sides of this correspon-
dence the induced homomorphism of fundamental groups

πtop
1 (X, G, x0) � πtop

1 (G\X, x̄0)

is surjective. Here, x̄0 denotes the image of x0 under the quotient map X→ G\X.
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For an element g of the inertia group Ix1 we denote by ıg the image of g in
πtop

1 (X, G, x1) as constructed above. We let p : Y → X be a G-cover with
Iy = Ip(y) for all points of Y. If we fix a point x̃ on X̃ then there is a unique
cover automorphism ϕg of X̃ × G such that ϕg · x̃ = x̃ · ıg. By our assumptions
on the inertia groups of Y this automorphism ϕg will act trivially on Y. So the
subgroup N normally generated by all inertia elements lies in the kernel of the
homomorphism from πtop

1 (X, G, x0) onto πtop
1 (G\X, x̄0). Conversely, the quotient

of the universalG-cover byN is a G-cover q : Z→ X with Iz = Iq(z) for all points
z of Z. Hence πtop

1 (X, G, x0)/N is a quotient of πtop
1 (G\X, x̄0). But this means

that N is precisely the kernel we are looking for. So we obtain a short exact
sequence

1 → N → πtop
1 (X, G, x0) → πtop

1 (G\X, x̄0) → 1.

As a special case we obtain the following: If G acts without fixed points on X then
X→ G\X is a regular cover with group G, there are no non-trivial inertia groups
and we just get the well-known short exact sequence

1 → πtop
1 (X, x0) → πtop

1 (G\X, x̄0) → G → 1.

4.4 Loops and the orbifold fundamental group
The material of this section should be well-known. However, the author could not
find a reference for it.

As in the previous section we let X be normal irreducible complex analytic
space and G be a finite group of automorphisms of X. We keep all notations
introduced so far.

We will always assume that the quotient space G\X is smooth, i.e. a complex
manifold. By purity of the branch locus the branch locus D of q : X→ G\X is a
divisor, cf. [GR1, Satz 4]. We denote by Di, i = 1, ..., r the irreducible compo-
nents of this divisor, cf. [GR2, Chapter 9.2.2]. We denote by ei the ramification
index of Di.

The inertia groups of the components of q−1(Di) for fixed i are conjugate
subgroups ofG. These components are divisors and so their inertia groups must be
cyclic. More precisely, every inertia group of a component of q−1(Di) is abstractly
isomorphic to the cyclic group � ei .

Given a G-cover p : Y → X we form the quotient G\p : G\Y → G\X.
Outside

⋃
i Di this is a topological cover. This defines a homomorphism from

the fundamental group of G\X − D to the G-fundamental group of X. If Y is
connected as a G-cover then its quotient is also connected. We assumed X to
be normal so also Y must be normal and so the same is true for the quotient
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G\Y. After removing the ramification locus of G\Y → G\X which has real
codimension two this space remains connected since we assumed that our spaces
are normal, cf. [GR2, Chapter 7.4.2]. This connectivity result implies that the
homomorphism

πtop
1 (G\X−D, q(x0)) � πtop

1 (X, G, x0) (∗)

is surjective. It remains to compute its kernel.
However, first we want to define a surjective homomorphism

ψ : πtop
1 (G\X−D, q(x0)) � G.

For this we lift a loop γ in the group on the left to a path in X starting at x0. This
lift ends at a point g · x0 where the element g ∈ G is unique. This defines the
homomorphism we are looking for. Of course if we take the pull-back via the
morphism X → G\X we are in the situation of Section 4.3 where we defined a
homomorphism πtop

1 (X, G, x0)�G in a similar way via lifting elements of the
group on the left to the point x0 × 1 of X×G. Chasing through the diagrams we
see that the homomorphisms onto G are compatible with the homomorphism (∗).

For the divisor Di we define the following loop Γi in Z := G\X − D: We
choose a pointwi on Di that is a smooth point of D. We let γi be a path connecting
q(x0) to wi inside Z. We shorten γi a little bit before reaching wi. Then we put
a little circle around wi starting at the end of γi. This defines a loop Γi based at
q(x0). Such a loop is usually called a simple loop.

If we lift this loop to a path based at x0 ∈ X it “winds around“ a component Ri

of q−1(Di): We choose a small neighbourhood U(wi) of the point wi ∈ Di that
we have chosen above. We let V (wi) be the connected component of q−1(U(wi))
such that the lift of Γi to x0 meets V (wi). The map q : X → G\X looks in local
coordinates like

V (wi) → U(wi)
(z1, z2, ...) 7→ (z1

ei, z2, ...)

where ei is the ramification index of Di. The reason for this is that locally around
wi the map q is a branched Galois cover with group � ei and branch locus Di.

In these coordinates Ri is given by the equation z1 = 0. The automorphism of
X induced by the lift of Γi to x0 clearly is the map x 7→ ψ(Γi) · x. It is clear from
this local description that Ri must be fixed by ψ(Γi).

We let p̃ : X̃ → X be a universal cover of X. We choose a point x̃0 lying
above x0 ∈ X. Lifting Γi to x̃0 we get a path that “winds“ around a component
R̃′i of p̃−1(Ri). It corresponds to an automorphism of X̃ that fixes R̃′i. Via base
change to X × G → X we get exactly an element that corresponds to the inertia
automorphism of R̃′i corresponding to ψ(Γi) as described in Section 4.3.
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This automorphism has order ei and so the image of Γi
ei under (∗) must be

trivial. In particular, the subgroup normally generated by the Γi
ei’s lies in the

kernel of (∗). We stop for a moment to define a new object:
With respect to the Γi and ei we define the orbifold fundamental group with

respect to G\X, Di, ei to be the quotient

πorb
1 (G\X, {Di, ei}, q(x0)) := πtop

1 (G\X−D, q(x0)) /� Γi
ei � .

If we choose different set of loops Γ′i around the Di’s as described above then
they are conjugate to the original Γi’s and so this set generates the same normal
subgroup. Hence this quotient is well-defined.

This orbifold fundamental group is the opposite automorphism group of some
topological cover c̃′ : Ỹ → G\X − D. By what we have said above the homo-
morphism (∗) factors through the orbifold fundamental group and so Ỹ dominates
X̃ − (q ◦ p̃)−1(D). For a smooth point wi on Di we let U(wi) be an admissible
neighbourhood, i.e. a neighbourhood such that c̃′−1(U(wi)) is a disjoint union of
spaces that are homeomorphic to U(wi). We assume that Di is smooth in U(wi)
so that U(wi)−Di is homeomorphic to ( � −{0})× � dim X−1. This means that the
fundamental group of U(wi)−Di is isomorphic to � . It is generated by a loop Γi
as described above. Looking at this locally we can extend Ỹ→ X̃− (q ◦ p̃)−1(D)

to some map ¯̃
Y → X̃ − (q ◦ p̃)−1(S) where S is the finite set of singularities of

D. Since both spaces are locally homeomorphic this is a topological cover map.
The space X̃ is normal and simply connected. Since (q ◦ p̃)−1(S) is a discrete set
of real codimension 4 also X̃ − (q ◦ p̃)−1(S) is simply connected. Since ¯̃

Y is a
connected topological cover of X̃ − (q ◦ p̃)−1(S) they must be homeomorphic.
Then there is only one way to complete this to a cover of X̃: namely to take the
trivial cover of X̃. So we conclude that Ỹ is homeomorphic to X̃− (q ◦ p̃)−1(D)
and this means that the homomorphism (∗) induces an isomorphism

πorb
1 (G\X, {Di, ei}, q(x0)) ∼= πtop

1 (X, G, x0).

We already noted above that both groups possess surjective homomorphisms onto
G that are compatible under this isomorphism.

4.5 The quotient in the topological setup
We letX be smooth projective surface over the complex numbers and f : X → � 2

be a good generic projection of degree n. From Proposition 2.7 we know that Sn

acts on Xgal. With respect to this action and the action of the subgroup S
(1)
n−1 we
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obtain the following two short exact sequences

1 → πtop
1 (Xgal) → πtop

1 (Xgal, Sn) → Sn → 1

|| ↑ ↑
1 → πtop

1 (Xgal) → πtop
1 (Xgal, S

(1)
n−1) → S

(1)
n−1 → 1

The arrows upwards are injective. We now fix a universal cover X̃gal of Xgal and
also do not mention base points unless it is important for our considerations.

The quotient Sn\Xgal is isomorphic to
� 2 and the inertia groups generate the

kernel of the homomorphism from πtop
1 (Xgal,Sn) onto πtop

1 (Sn\Xgal). Since this
latter group is trivial it follows that the inertia groups generate πtop

1 (Xgal,Sn).
The quotient S

(1)
n−1\Xgal is isomorphic to X . So the kernel of the surjective

homomorphism onto the fundamental groups of X is the the subgroup normally
generated by the inertia groups contained in πtop

1 (Xgal,S
(1)
n−1).

By Proposition 2.12 the ramification divisor Rgal of fgal : Xgal →
� 2 is the

union of the curves Rτ where τ runs through the transpositions of Sn. We denote
by p̃ : X̃gal → Xgal the universal cover of Xgal. Then we let R̃τ be a connected
component of p̃−1(Rτ ). We have seen in the previous section that there is a unique
inertia automorphism of the universal Sn-cover X̃gal × Sn that sends R̃τ × {1}
to R̃τ × {τ}. Since the inertia group of Rτ is � 2 this automorphism is the only
non-trivial inertia automorphism of R̃τ .

We let τ1 and τ2 be two transpositions of Sn and choose two components
R̃τ1 and R̃τ2 of p̃−1(Rτ1) and p̃−1(Rτ2), respectively. For the non-trivial inertia
elements r1 and r2 of their inertia groups we set (cf. Definition 2.11)

c(r1, r2) :=





1 if τ1 = τ2

r1r2r
−1
1 r2

−1 if τ1 and τ2 are disjoint

r1r2r1r2
−1r1

−1r2
−1 if τ1 and τ2 are cuspidal.

Then we define Cproj to be the subgroup normally generated by all the c(r1, r2)’s
inside πtop

1 (Xgal,Sn) where the τi’s run through all transpositions of Sn and the
ri’s run through all inertia groups of all components of the p̃−1(Rτi)’s.

Lemma 4.5 The subgroup Cproj is contained in πtop
1 (Xgal) and in the following

kernels:
ker( πtop

1 (Xgal,Sn) � πtop
1 (
� 2) )

ker( πtop
1 (Xgal,S

(1)
n−1) � πtop

1 (X) )

The proof is completely analogous to the proof of Lemma 4.1 and therefore left
to the reader. �
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Hence the homomorphisms from πtop
1 (Xgal,Sn) onto πtop

1 (
� 2) and the map

from πtop
1 (Xgal,S

(1)
n−1) onto πtop

1 (X) factor over the quotient by Cproj. Moreover,
we get the following two short exact sequences

1 → πtop
1 (Xgal) → πtop

1 (Xgal,Sn) → Sn → 1

↓ ↓ ||
1 → πtop

1 (Xgal)/C
proj → πtop

1 (Xgal,Sn)/Cproj → Sn → 1 (∗)

where the arrows downwards are surjective.

Proposition 4.6 We can split the short exact sequence (∗) using inertia groups.
With respect to this splitting there are the following isomorphisms

(πtop
1 (Xgal)/C

proj) / (πtop
1 (Xgal)/C

proj)Sn
∼= πtop

1 (
� 2) = {1}

(πtop
1 (Xgal)/C

proj) / (πtop
1 (Xgal)/C

proj)
S

(1)
n−1

∼= πtop
1 (X)

where the notations are the ones introduced in Section 3.1
If Question 2.14 has an affirmative answer for the universal cover X̃gal ofXgal

then the group Cproj is trivial.

PROOF. The proof is analogous to the one of Proposition 4.2:
For every transposition (1 k) we choose a component of p̃−1(R(1 k)) and denote

by rk the non-trivial element of its inertia group. We denote by r̄k the image of rk
inside πtop

1 (Xgal,Sn)/Cproj. As in the proof of Proposition 4.2 we conclude that
these r̄k’s fulfill the Coxeter relations of the symmetric group and so they provide
us with a splitting s : Sn → πtop

1 (Xgal,Sn)/Cproj.

As in the proof of Proposition 4.2 there are the following equalities for the
kernel N of the homomorphism from πtop

1 (Xgal,Sn) onto πtop
1 (
� 2):

N = (πtop
1 (Xgal)/C

proj)Sn · s(Sn)
and N ∩ (πtop

1 (Xgal)/C
proj)Sn = (πtop

1 (Xgal)/C
proj)Sn

Applying the second isomorphism theorem of group theory we obtain the first
statement. Again, we leave the second identity to the reader.

Now suppose that the components of p̃−1(Rgal) fulfill the connectivity proper-
ties of Question 2.14 with respect to the universal cover p̃ : X̃gal → Xgal.

For two disjoint transpositions τ1 and τ2 we choose components R̃1 and R̃2 of
p̃−1(R1) and p̃−1(R2), respectively. We let r1 and r2 be the non-trivial elements of
their inertia groups. We know that these components intersect in a point z. There
is an inclusion of � 2 × � 2 into πtop

1 (Xgal,Sn, p̃(z)). This group is generated by
r1 and r2. Hence these two elements commute and c(r1, r2) is equal to 1.
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If τ1 and τ2 have exactly one index in common then there is a point with inertia
group S3 that is generated by r1 and r2. So there is a triple commutator relation
between r1 and r2 and so also c(r1, r2) = 1 holds true in this case.

So if Question 2.14 has an affirmative answer for the universal cover X̃gal of
Xgal then all the c(r1, r2)’s are equal to 1 and so Cproj is trivial. �

Again, everything said so far can also be done in the affine setup. We then
define Caff to be the normal subgroup of πtop

1 (Xaff
gal,Sn) defined by the c(r1, r2)’s

where the ri’s run through the inertia groups corresponding to some universal
Sn-cover of Xaff

gal. We then get

Theorem 4.7 Let f : X → � 2 be a good generic projection of degree n with
Galois closure Xgal. Then there are surjective homomorphisms

πtop
1 (Xgal) � πtop

1 (Xgal)/C
proj � K(πtop

1 (X), n)

πtop
1 (Xaff

gal) � πtop
1 (Xaff

gal)/C
aff � K(πtop

1 (Xaff), n).

If Question 2.14 has an affirmative answer for the universal cover of X aff
gal then

both Caff and Cproj are trivial.
If Question 2.14 has an affirmative answer for the universal cover ofXgal then

at least Cproj is trivial.

Again, even if Caff is trivial we cannot expect these surjective homomorphisms to
be isomorphisms. We refer to Theorem 6.2 for details.

Corollary 4.8 For a good generic projection f : X → � 2 of degree n there are
surjective and non-canonical homomorphisms

H1(Xgal, � ) � (H1(X, � ))n−1

H1(Xaff
gal, � ) �

(
H1(Xaff , � )

)n−1
.

PROOF. From Morse theory ([Mil]) it is known that smooth affine and smooth
projective varieties are CW-complexes. So we can apply Hurewicz’s theorem that
H1(−, � ) is isomorphic to the abelianised fundamental group.

Thus our statement follows from the fact that K(−, n) for n ≥ 3 commutes
with abelianisation by Proposition 3.8 and the computation ofK(−, n) for abelian
groups given by Corollary 3.5. �
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5 A generalised symmetric group
Seht doch hinab! Im Mondschein auf den Gräbern
Hockt eine wild-gespenstische Gestalt!
Ein Aff ist’s! Hört ihr, wie sein Heulen
Hinausgellt in den süßen Duft des Lebens?

5.1 Definition of Sn(d)

We let τk be the transposition (k k+ 1) of Sn. From the theory of Coxeter groups
(cf. also Section 5.6) it is known that Sn admits a presentation as

Sn =
〈
τk, k = 1, ..., n− 1 | τk2, (τkτk+1)3, (τkτj)

2 ∀|k − j| ≥ 2
〉
.

Let d ≥ 1 and n ≥ 3 be natural numbers. We want to construct a generalised
symmetric group where we have d copies of the transposition (1 2). For this we
let s1, ..., sd be free generators of the free group Fd of rank d. Then we define the
group

S̃n(d) :=
(
Fd ∗ S

(1)
n−1

)
/R

where R is the subgroup normally generated by the following elements

si
2 for i = 1, ..., d

(si · τ2)3 for i = 1, ..., d

(si · τk)2 for k ≥ 3 and i = 1, ..., d.

The reader will identify this group as the d-fold amalgamated sum of Sn with
itself where we amalgamate the subgroup S

(1)
n−1 in every summand.

Every summand has a map (the identity) onto Sn that is compatible with the
subgroup that is amalgamated. These homomorphism patch together to a homo-
morphism ψ onto Sn. Sending Sn via the identity to the first summand we obtain
a splitting ϕ of ψ.

But we still want more relations to hold true: We define

Sn(d) := S̃n(d)/R′

where R′ is the subgroup normally generated by the following elements:

(ϕ(σ)siϕ(σ)−1 · sj)2 if σ(1 2)σ−1 and (1 2) are nodal transpositions

(ϕ(σ)siϕ(σ)−1 · sj)3 if σ(1 2)σ−1 and (1 2) are cuspidal transpositions

The homomorphisms ψ and ϕ induce homomorphisms on the quotient Sn(d) that
we will call by abuse of notation again by ψ and ϕ.
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5.2 The connection with E(− ,n)

Before dealing with the general situation we do the cases d ≤ 2 first:
For d = 1 we clearly have Sn(1) ∼= Sn for all n ≥ 2.

Proposition 5.1 For n ≥ 2 there is an isomorphism

Sn(2) ∼= E( � , n)
s1 7→ (1 2)
s2 7→ (1,−1, 0, ..., 0) · (1 2)

compatible with the respective split surjections onto Sn.

PROOF. We consider the following elements of Sn(2)

a := (2n)(s2(1 2))(2n)−1 · (1n)
τk := (k k + 1) k = 1, ..., n− 1.

The affine reflection group Ãn−1 has the following presentation, c.f. Section 5.6

W (Ãn−1) := 〈α, τk| τk
2, (τkτk+1)2, (τkτj)

2 for |k − j| ≥ 2,
α2, (ατ1)3, (ατn−1)3, (ατk)

2 for k 6= 1, n− 1〉.
We define a map ϕ̃ : W (Ãn−1) → Sn(2) by sending α to a and τk to τk for all
k. The relations inside W (Ãn−1) also hold true for the corresponding elements
in the image i.e. ϕ̃ extends to a homomorphism. In a similar fashion we define
a homomorphism in the opposite direction being the inverse of ϕ̃. Hence ϕ̃ is an
isomorphism.

Finally, we identify W (Ãn−1) with E( � , n) using the description given in
Corollary 3.6 or Example 5.26. �
Remark 5.2 There is a general “Coxeter flavour“ in connection with E(−, n).
We refer to Section 5.6 for some examples and details.

We let Fd−1 be the free group of rank d − 1 freely generated by elements
f2, ..., fd. We denote by θ the action of Sn on Fd−1

n given by permuting the
factors. We recall that we constructed E(−, n) using such a θ in Section 3.1.

We want to define a map

φ : Sn(d) → Fd−1
n oθ Sn

s1 7→ (1 2)
sa 7→ (fa, fa

−1, 1, ..., 1) · (1 2) ∀a = 2, ..., d
ϕ(σ) 7→ σ ∀σ ∈ Sn

where ϕ is the splitting that comes together with Sn(d). Since we have fixed the
splitting ϕ of ψ we consider Sn as a subgroup of Sn(d) and do not mention ϕ
any further. The content of the following theorem is that this map φ is not only a
homomorphism but also injective with image E(Fd−1, n):
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Theorem 5.3 For n ≥ 5 there exists an isomorphism

φ : Sn(d) ∼= E(Fd−1, n) ≤ Fd−1
n oθ Sn

s1 7→ (1 2)
sa 7→ (fa, fa

−1, 1, ..., 1) (1 2) ∀a ≥ 2

compatible with the respective split surjections onto Sn.

PROOF. First we have to check that φ extends to a homomorphism. For this
we only have to check that all relations of Sn(d) hold inside the image. These
calculations are straight forward and are done in Lemma 5.5.

Also, we see from Lemma 5.5 that the image of φ is precisely E(Fd−1, n).
Fo a = 2, ..., d and i, j = 1, ..., n we define:

fa
ij := (1, ..., 1, fa︸︷︷︸

i.th position

, 1, ..., 1, fa
−1

︸︷︷︸
j.th position

, 1, ..., 1) ∈ Fd
n.

These elements generate K(Fd−1, n) as can be seen from applying Lemma 3.1
using transpositions as generating set for Sn.

We want to define a homomorphism from K(Fd−1, n) to Sn(d) by sending

φ̂ : K(Fd−1, n) → Sn(d)
fa
ii 7→ 1

fa
ij 7→ (1 i)(2 j) · (sa(1 2)) · (2 j)−1(1 j)−1 i 6= j

From Proposition 5.6 we know all the relations that hold between the faij inside
K(Fd−1, n). The relations (∗2) and (∗3) hold true in Sn(d) by the relations coming
from cuspidal transpositions. The relations (∗4) hold true because of the relations
coming from nodal transpositions. We leave the details to the reader.

By definition φ is the identity when restricted to Sn. To show that φ̂ extends
to a homomorphism from K(Fd−1, n)oθ Sn to Sn(d) we only have to show that
φ̂ is Sn-equivariant with respect to the Sn-action given by conjugation in both
groups. We leave it to the reader to show that for σ ∈ Sn

σ · faij · σ−1

= fa
σ−1(i) σ−1(j)

σ · (1 i)(2 j) · (sa(1 2)) · (2 j)−1(1 j)−1 · σ−1

= (1 σ−1(i))(2 σ−1(j)) · (sa(1 2)) · (2 σ−1j)−1(1 σ−1(j))−1

holds true proving Sn-equivariance.
Hence, there is a homomorphism from E(Fd−1, n) to Sn(d) prolonging φ̂ and

compatible with the split surjections onto Sn. Since φ is surjective and φ̂◦φ(sa) =
sa for all a it follows that φ is an isomorphism. �
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Remark 5.4 The really hard part of this proof is Proposition 5.6. It says that
the relations of K(Fd, n) are only some “obvious“ ones, i.e. a certain set of
commutator relations.

The author’s original proof used a Reidemeister-Schreier rewriting process to
obtain a presentation of the subgroup E(Fd−1, n) of Fd−1

noθ Sn. However, since
the subgroup has infinite index in the ambient group he obtained an infinite set of
relations. The computations were a ten page flow of quite messy calculations.

Meanwhile, [RTV] appeared and the author decided to copy their proof.

Lemma 5.5 LetG be an arbitrary group and ~gi, i = 1, 2 two elements ofK(G, n).
We define

si := ~gi (1 2)~gi
−1, i = 1, 2

Then the following relations hold inside E(G, n)

si
2 i = 1, 2

(si · τ)2 if τ and (1 2) are nodal transpositions
(si · τ)3 if τ and (1 2) are cuspidal transpositions

(σsiσ
−1 · sj)2 if σ(1 2)σ−1 and (1 2) are nodal transpositions

(σsiσ
−1 · sj)3 if σ(1 2)σ−1 and (1 2) are cuspidal transpositions.

If n ≥ 3 and if the elements g1, ..., gs generate G then E(G, n) is generated by
[(gi, 1, ..., 1), (1 2)] and an arbitrary generating set of Sn.

PROOF. The first relation is straight forward from Lemma 3.1. Furthermore it
allows us to view the remaining relations as commutator relations or triple com-
mutator relations, respectively.

We do the computations inside Gn o Sn as usual. We set τ = (3 4) and
~g = (g1, g2, ..., gn) ∈ Gn, and check that ~g(1 2)~g−1 and τ commute:

((~g(1 2)~g−1) · τ)
2

= [~g(1 2)~g−1, τ ]
= ~g(1 2)~g−1 · τ

(
(g1g

−1
2 , g2g

−1
1 , 1, ..., 1)−1(1 2)−1

)
τ−1

= ~g(1 2)~g−1 · τ
(
(g1g

−1
2 , g2g

−1
1 , 1, ..., 1)−1

)
τ−1(1 2)−1

= ~g(1 2)~g−1 · (g1g
−1
2 , g2g

−1
1 , 1, ..., 1)−1(1 2)−1

= ~g(1 2)~g−1 · (~g(1 2)~g−1)
−1

= 1

We leave the remaining relations to the reader.
We have already seen in Lemma 3.1 that E(G, n) is generated by Sn and all

elements of the form (g, g−1, 1, ..., 1). Let g1, ..., gs be a generating set for G. We
define ~gi := (gi, 1, ..., 1) and compute for n ≥ 3

[~gi, (1 3)] · [~gj, (1 2)] · [~gi, (1 3)] = (gigj, (gigj)
−1, 1, ..., 1)

So we get all elements (g, g−1, 1, ...., 1) from the set [~gi, (1 2)] and Sn. �
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Proposition 5.6 (Rowen, Teicher, Vishne) We let Fd be the free group of rank d
and assume that it is freely generated by elements f1, ..., fd. We set:

fa
ij := (1, ..., 1, fa︸︷︷︸

i.th position

, 1, ..., 1, fa
−1

︸︷︷︸
j.th position

, 1, ..., 1) ∈ Fd
n

If n ≥ 2 then K(Fd, n) is generated by faij with a = 1, ..., d and i, j = 1, ..., n.
And if n ≥ 5 then all relations insideK(Fd, n) follow from the following relations:

fa
ii = 1 (∗1)

fa
ij · fajk = fa

ik (∗2)
fa
ik · faij = fa

ik (∗3)[
fa
ij, fb

kl
]

= 1 if i, j, k, l are all different. (∗4)

In other words we have a finite presentation of K(Fd, n) for n ≥ 5.

PROOF. The proof is taken from [RTV, Theorem 5.7]. However, we adapted the
notations to our situation.

First of all, the faij’s generateK(Fd, n). This follows from Lemma 3.1 applied
to the generating set fi of Fd and taking as generating set for Sn the set of all
transpositions.

We leave it to the reader to show that the relations given in the statement of
Proposition 5.6 hold true in Fd

n and hence in K(Fd, n).
We define Kd,n to be the group generated by elements faij with a = 1, ..., d

and i, j = 1, ..., n subject to the relations given by Proposition 5.6. We have
shown above that there is a surjective homomorphism from Kd,n onto K(Fd, n).

Next, we define K∗d,n to be the group generated by elements

fa
ij and ta with a = 1, .., d, i, j = 1, ..., n

subject to the relations of Kd,n and the relations

[ta, fb
ij] =

[
fa
nk, fb

ij
]
k 6= i, j (†1)

[ta, tb] = [fa
ni, fb

nj] i 6= j and i, j 6= n (†2)

Then we define the following map

µ : K∗d,n → Fd
n

ta 7→ fa
n

fa
ij 7→ (fa

j)−1fa
i

where fai denotes the element (1, ..., 1, fa, 1, ..., 1) of Fd
n having its non-trivial

entry in the i.th position. By Lemma 5.7 this map µ defines an isomorphism of
groups.
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So we obtain the following commutative diagram

Kd,n → K∗n,d
↓ ↓∼=

K(Fd, n) ↪→ Fd
n

We already know that the map from Kd,n to K(Fd, n) is surjective. To show that
it is also injective it is enough to prove that the homomorphism from Kd,n to K∗d,n
is injective.

To achieve this we define a series of groups lying in between Kd,n and K∗d,n:
We define K≤kd,n to be the group generated by Kd,n and the elements ta with a ≤ k
subject to the relations (†1) and (†2). Of course, only those relations that involve
ta’s and tb’s with a, b ≤ k are imposed. Hence we obtain the following groups
and homomorphisms

Kn,d = K≤0
n,d → K≤1

n,d → ... → K≤dn,d = K∗n,d.

By Lemma 5.8 each of these homomorphisms is injective and so the composite
homomorphism from Kn,d to K∗n,d is injective. �

Lemma 5.7 The map
µ : K∗n,d → Fd

n

defined in the proof of Proposition 5.6 is an isomorphism of groups.

PROOF. It is clear that µ defines a surjective homomorphism.
We define a map µ̂ via

µ̂ : Fd
n → K∗n,d

fa
n 7→ ta

fa
i 7→ ta · fain

If we can show that µ̂ defines a homomorphism of groups it will be the inverse of
µ and it follows that µ is an isomorphism.

The group Fd
n is generated by the elements fai with a = 1, ..., d and i =

1, ..., n subject to the commutator relations [fa
i, fb

j] = 1 for all i 6= j .
First we establish two further sets of relations that hold true inside K∗d,n:

fa
in · tb · (fain)−1 = ta

−1 · tb · ta i 6= n (†3)
fa
in · fbjn · (fain)−1 = ta

−1 · fbjn · ta i 6= j, and i, j 6= n (†4)

The relation (†3) can be seen by applying (†2) to the right hand side of (†1) with
j = n. The relation (†4) is only a reformulation of (†1).
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First, assume that i = n. Then

µ̂([fa
n, fb

j])

= ta · tbfbjn · ta−1 · (tbfbjn)−1

= ta · tb fbjn · ta−1 · (fbjn)−1

︸ ︷︷ ︸
apply (†3)

tb
−1

= tatb · tb−1ta
−1tb · tb−1

= 1

Now assume that i 6= n. Then

µ̂([fa
i, fb

j])

= tafa
in · tbfbjn · (tafain)−1 · (tbfbjn)−1

= ta fa
intb · ((fain)−1

︸ ︷︷ ︸
apply (†3)

fa
in) · fbjn(fa

in)−1 ta
−1(fb

jn)−1 · (ta︸ ︷︷ ︸
apply (†4)

ta
−1) · tb−1

= ta · ta−1tbta · fainfbjn(fa
in)−1 · fain(fb

jn)−1(fa
in)−1 · ta−1tb

−1

= 1

Hence µ̂ defines a homomorphism and so we are done. �

Lemma 5.8 Keeping the notations introduced in the proof of Proposition 5.6
there is an isomorphism

K≤kn,d
∼= K≤k−1

n,d o �

where the infinite cyclic group � is generated by tk. In particular, the map from
K≤k−1
n,d to K≤kn,d considered in the proof of Proposition 5.6 is injective.

PROOF. We want to define a map from K≤k−1
n,d to itself via

ϑ : K≤k−1
n,d → K≤k−1

n,d

fa
ij 7→ fk

nm · faij · (fknm)−1 m 6= i, j, n
ta 7→ fk

nm · ta · (fknm)−1 m 6= n

First we have to show that ϑ does not depend on the choice ofm in the definition of
ϑ: For the definition of ϑ(fa

ij) this means we have to check that form,m′ 6= i, j, n

fk
nm · faij · (fknm)−1 = fk

nm′ · faij · (fknm′)−1

holds true. If i, j 6= n then both expressions are equal to faij by relation (∗4). If
i = n then we conjugate this expression with fknm

′ and after applying (∗2) we
are done since fkmm

′ and faij commute using (∗4).
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For the definition of ϑ(ta) we have to check that for m,m′ 6= n

fk
nm · ta · (fknm)−1 = fk

nm′ · ta · (fknm′)−1

holds true. We conjugate by fk
nm′ and then we are done since ta and fk

mm′

commute by (†1).
Hence the definition of ϑ does not depend on the choice of the m’s occuring.
Next we want to show that ϑ defines an endomorphism of K≤k−1

n,d . For this we
have to show that the relations are preserved by ϑ. If we pick a relation from (∗1)
to (∗4), (†1) and (†2) then we can find an index m distinct from the i, j, k, n’s in
this particular relation since we assumed n ≥ 5. The action of ϑ is then given by
conjugating every element occuring in this relation by fknm. Since the relations
form a normal subgroup this means that ϑ preserves the relations of K≤k−1

n,d and
so ϑ defines an endomorphism of this group.

Clearly, ϑ defines an automorphism ofK≤k−1
n,d for we can just define its inverse

by replacing fknm by (fnmk )−1 in the definition of ϑ.
To obtain K≤kn,d from K≤k−1

n,d ∗ 〈tk〉 we only need the relations (†1) and (†2) .
For (†1) it is enough to consider all relations with a = k and arbitrary b:

tkfb
ijtk
−1 = fk

nmfb
ij(fk

nm)−1 = ϑ(fb
ij).

We have to impose one relation for every m 6= i, j but we have already shown
above that all these elements define the same element ϑ(fb

ij) of K≤k−1
n,d .

And for a = k and b < k the relation (†2) is equivalent to

tktbtk
−1 = fk

nm fb
nj(fk

nm)−1(fb
nj)−1

︸ ︷︷ ︸
apply (†4)

·tb

= fk
mntb(fk

mn)−1 = ϑ(tb)

As we have shown above this element does not depend on the choice of m 6= n.
Hence we have shown that

K≤kn,d
∼= K≤k−1

n,d ∗ 〈tk〉/� tkxtk
−1 = ϑ(x) ∀x ∈ K≤k−1

n,d �

and this is precisely the semidirect product of K≤k−1
n,d by 〈tk〉. �

5.3 Affine subgroups and the construction of K̃(− ,n)

We denote by Fd be the free group of rank d ≥ 1. We embed K(Fd, n) as usual
into Fd

n, cf. Section 3.1.

Definition 5.9 A subgroup of K(Fd, n) with n ≥ 3 is called an affine subgroup
if it is normally generated by elements of the form (r, r−1, 1, ..., 1), r ∈ Fd and
their Sn-conjugates.
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We note that for affine subgroups normal generation with respect to K(Fd, n) has
the same effect as normal generation with respect to Fd

n: This follows since we
assumed n ≥ 3 and so we compute for (f, 1, f−1, 1, ...) ∈ K(Fd, n) and r ∈ Fd:

(f, 1, 1, ..., 1) (r, r−1, 1, ..., 1) (f, 1, 1, ..., 1)−1

= (f, 1, f−1, ..., 1) (r, r−1, 1, ..., 1) (f, 1, f−1, ..., 1)−1.

We letG be a group and n ≥ 3 be a natural number. We then choose a presentation
Fd/N ∼= G of G. Then we define R :=� K(N, n)�. This is an affine subgroup
of K(Fd, n) since it is normally generated by the elements (s, s−1, 1, ..., 1) with
s ∈ N and their Sn-conjugates. We define

K̃(G, n) := K(Fd, n)/R.

Since R is Sn-invariant the Sn-action on K(Fd, n) descends to an action on the
quotient K̃(G, n) and we define

Ẽ(G, n) := K̃(G, n)oSn.

with respect to this action. This is well-defined because of

Theorem 5.10 Let n ≥ 3 be a natural number. For every finitely generated group
G the construction of K̃(G, n) and its Sn-action do not depend on the choice of a
presentation for G. Moreover, the construction of K̃(−, n) is functorial in its first
argument.

If we denote by H2(G) the second group homology of G with coefficients in
the integers then there is a central extension

0 → H2(G) → K̃(G, n) → K(G, n) → 1

and the image of H2(G) lies inside the commutator subgroup of K̃(G, n).

PROOF. We embed K(Fd, n) into Fd
n. We denote by π the projection from Fd

n

onto its last n − 1 factors. From Proposition 3.4 we know that ker π restricted to
K(Fd, n) equals the commutator subgroup [Fd,Fd].

We let f ∈ Fd and s ∈ N . Then

[(f, 1, f−1, 1, ...), (s, s−1, 1, ...)] = ([f, s], 1, 1, 1, ...)

and this element lies in R. Thus [Fd, N ] is contained in R ∩ ker π.
Conversely, R is generated by elements of the form (fsf−1, s−1, 1, ...) and

their Sn-conjugates where f runs through Fd and s runs through N . From this it
follows that every element of R can be written as a product of the form
∏

i

(fisifi
−1, 1, ..., si

−1, 1, ...) =
∏

i

(
([fi, si], 1, ...) · (si, 1, ..., si−1, 1, ...)

)
.
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with fi ∈ Fd and si ∈ N . Using that [Fd, N ] is a normal subgroup of Fd we see
that every element of R can be written as a product

(∏

i

([f ′i , s
′
i], 1, ...)

)
·
(∏

j

(s′j, 1, ..., s
′
j
−1, 1, ...)

)
.

Such an element lies in ker π if and only if the second product over the j’s lies
in ker π. From Proposition 3.4 applied to K(N, n) we see that such an element is
of the form (s′, 1, ..., 1) with s′ ∈ [N,N ]. In particular, an element of ker π ∩ R
is a product of elements (r, 1, ..., 1) with r ∈ [Fd, N ]. Thus we have shown that
R ∩ ker π is equal to [Fd, N ].

So there is the following diagram of groups with exact rows and where the
maps downwards are injective:

1 → [Fd, N ] →
=R︷ ︸︸ ︷

� K(N, n)� → Nn−1 → 1
↓ ↓ ↓

1 → N ∩ [Fd,Fd] → Nn ∩ K(Fd, n) → Nn−1 → 1
↓ ↓ ↓

1 → [Fd,Fd] → K(Fd, n)
π→ Fd

n−1 → 1

Taking successive quotients we exhibit the group K(Fd, n)/R as an extension
of (N ∩ [Fd,Fd])/[Fd, N ] by K(Fd, n)/(Nn ∩ K(Fd, n)). The latter group is
isomorphic to K(G, n) whereas the first group is isomorphic to H2(G) by Hopf’s
theorem (quoted as Theorem 5.23). Hence we get an extension

1 → H2(G) → K(Fd, n)/R → K(G, n) → 1.

We can also take the quotient of the upper exact row by the lower exact row and
obtain the following short exact sequence (cf. Corollary 5.14)

1 → [Fd, Fd]/[Fd, N ] → K(Fd, n)/R → Gn−1 → 1.

The inclusion of H2(G) into K(Fd, n)/R is given by

H2(G) = (N ∩ [Fd,Fd])/[Fd, N ] ↪→ [Fd, Fd]/[Fd, N ] ↪→K(Fd, n)/R.

Every element of the group in the middle can be written as product of commutators

[(f1, f1
−1, 1, ...), (f2, 1, f2

−1, ...)]

where the fi’s are appropriate lifts to Fd. Hence this group lies in the commutator
subgroup of K(Fd, n)/R. Since H2(G) is a subgroup of this group in the middle
also H2(G) lies in the commutator subgroup of K(Fd, n)/R.
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Every element of H2(G) maps to an element in K(Fd, n)/R that can be lifted
to an element of K(Fd, n) of the form ~x = (x, 1, ..., 1) with x ∈ N ∩ [Fd,Fd].
Given any element ~y = (y1, ...., yn) of K(Fd, n) we compute

~y~x~y−1 = (y1xy1
−1, 1, ..., 1)

= ([y1, x]︸ ︷︷ ︸
∈[Fd,N ]

, 1, ..., 1) · (x, 1, ...., 1)

≡ ~x mod [Fd, N ].

Hence H2(G) maps into the centre of K(Fd, n)/R.
Suppose we are given two free groups Fd and Fd′ , two normal subgroups N

andN ′ in them and a homomorphismα between their quotients. Since free groups
are projective objects there exists a homomorphism ϕ : Fd → Fd′ making the
following diagram commute

Fd
∃ϕ99K Fd′

↓ ↓
Fd/N

α→ Fd′/N
′.

Then ϕ induces a map from N to N ′ and hence a map from K(N, n) to K(N ′, n).
We will call R the normal closure of K(N, n) in Fd

n and similarly R′ the normal
closure of K(N ′, n) in Fd′

n. Then ϕ induces a map from R to R′ and we get an
induced homomorphism

ϕ : K(Fd, n)/R → K(Fd′ , n)/R′.

We want to show that the map induced by ϕ does not depend on the choice of
the lift of α. So suppose we have a second map ϕ′ : Fd → Fd′ lifting α. Since
elements of the form (f, f−1, 1, ..., 1) generate K(Fd, n) it is enough to compare
the induced morphisms on these elements. For f ∈ Fd there exists an element
sf ∈ N ′ (depending on f ) such that ϕ(f) = ϕ′(f)sf . Hence

ϕ′((f, f−1, 1, ..., 1)) = (ϕ′(f), ϕ′(f)−1, 1, ..., 1)
= (ϕ(f)sf , sf

−1ϕ(f)−1, 1, ..., 1)
= ϕ(f) · (sf , ϕ(f)sf

−1ϕ(f), 1, ..., 1)︸ ︷︷ ︸
∈R′

.

So the induced maps coincide. In particular, if Fd = Fd′ , N = N ′ and α is the
identity we can choose ϕ to be the identity. By the uniqueness just shown we see
that the identity induces the identity.

If α is an isomorphism from Fd/N to Fd′/N
′ then the induced homomorphism

from K(Fd, n)/R to K(Fd′ , n)/R′ must be an isomorphism. This shows that this
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quotient does not depend on the choice of the presentation and we may refer to
both quotients as K̃(G, n).

Since R is Sn-invariant the action of Sn on K(Fd, n) descends to the quo-
tient K(Fd, n)/R. A similar reasoning as above shows that also this action only
depends on G and n. �

Again we denote by p1 the projection from Fd
n onto its first factor. By abuse of

notation we will also denote its restriction to K(Fd, n) with p1. As a consequence
of the previous theorem we can determine quotients by affine subgroups:

Corollary 5.11 Suppose we are a given a natural number n ≥ 3 and an affine
subgroup R of K(Fd, n). We define

N := p1(R) and G := Fd/N.

Then there is an isomorphism

K(Fd, n)/R ∼= K̃(G, n).

In particular, the quotient is completely determined by G and n.

PROOF. Since p1 is surjective the subgroup N of Fd is indeed normal. Also R is
stable under Sn and so N does not depend on the projection we have chosen.

We have a short exact sequence

1 → Nn ∩ K(Fd, n) → K(Fd, n) → K(G, n) → 1.

Clearly K(N, n) is a subgroup of R and since R is a normal subgroup also its nor-
mal closure with respect to K(Fd, n) is contained in R. Conversely, R is normally
generated by elements of the form (r, r−1, 1, ...) and their Sn-conjugates. Since
these r’s lie in N we conclude that R must be contained in� K(N, n)� and so
R and� K(N, n) � coincide. Hence K(Fd, n)/R is isomorphic to K̃(G, n) by
definition of the latter group. �

Corollary 5.12 If α : G → H is a homomorphism between finitely generated
groups then there are induced maps

0 → H2(G) → K̃(G, n) → K(G, n) → 1

↓ ↓ ↓
0 → H2(H) → K̃(H, n) → K(H, n) → 1 .

The induced map K(G, n) → K(H, n) coincides with the one induced from
K(−, n). The map from H2(G) to H2(H) can be made compatible with the map
induced from group homology.
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PROOF. We let Fd/N ∼= G and Fd′/N
′ ∼= H be presentations of G and H ,

respectively. Again we lift α : G→ H to a map ϕ : Fd → Fd′ . The map between
the two H2’s is the one induced from ϕ and

H2(G) ∼= (N ∩ [Fd,Fd])/[Fd, N ]

↓ ↓
H2(H) ∼= (N ′ ∩ [Fd′ ,Fd′])/[Fd′ , N

′]

By [Br, Exercise II.6.3.b] this can be made compatible with the homomorphism
α∗ : H2(G)→ H2(H) on homology. �

The connection with the universality results for K(−, n) given in Proposition
3.9 and Corollary 3.10 is as follows:

Corollary 5.13 Let n ≥ 3 be a natural number and G be a finitely generated
group. With respect to the action of Sn on K̃(G, n) given by Theorem 5.10 we
define

X := K̃(G, n) and Y := XSn/XS
(1)
n−1
.

Then Y is isomorphic to G and X is equal to XSn . The universal homomorphism
given by Proposition 3.9 takes the following form:

1 → ⋂n
i=1 XS

(i)
n−1

→ XSn → K(Y, n) → 1

↓ ↓ ↓
0 → H2(G) → K̃(G, n) → K(G, n) → 1

where the maps downwards are isomorphisms.

PROOF. Let Fd/N be a presentation of G. Since [K(Fd, n),Sn] equalsK(Fd, n)
the same is true for the quotient by the affine subgroup R. Hence we have
[X,Sn] = X . Also, identifying [K(Fd, n),S

(1)
n−1] with K(Fd, n − 1) we con-

clude that [X,S
(1)
n−1] is the same as K̃(G, n− 1). Using the exact sequence of the

statement of Theorem 5.10 we conclude

Y
def
= XSn/XS

(1)
n−1

= K(G, n)/K(G, n− 1) ∼= G.

Applying Proposition 3.9 we get our statement. �

Corollary 5.14 Let n ≥ 3 and G be a finitely generated group. We choose a
presentation Fd/N ∼= G of G. Then there exists a short exact sequence

1 → [Fd,Fd]/[Fd, N ] → K̃(G, n) → Gn−1 → 1.

If G is perfect then the group on the left is just its universal central extension.
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PROOF. We have seen the above short exact sequence already in the proof of
Theorem 5.10. For details on universal central extensions of perfect groups we
refer to Section 5.5. �

Corollary 5.15 Let n ≥ 3 and consider the following properties of groups:

finite, nilpotent, perfect, solvable.

Then G has one of the properties above if and only if K̃(G, n) has the respective
property.

PROOF. If G is finite then so are H2(G) and K(G, n). Hence if G is finite then
so is K̃(G, n) being an extension of two finite groups.

Since H2(G) is an abelian group it is also solvable and even nilpotent. Hence
if G is solvable (resp. nilpotent) then so is K̃(G, n) being a (central) extension of
two solvable (resp. nilpotent) groups.

If G is perfect then so is its universal central extension G̃. So in this case also
K̃(G, n) is perfect being an extension of two perfect groups by Corollary 5.14.

If K̃(G, n) is finite (resp. nilpotent, perfect, solvable) then so is G being a
quotient of K̃(G, n). �

Remark 5.16 Since H2(G) occurs as a subgroup of the commutator subgroup of
K̃(G, n) it follows that K̃(G, n) cannot be abelian if H2(G) is non-trivial. For
example, if G = � 2 × � 2 then H2(G) = � 2 and so K̃(G, n) is non-abelian.

Despite the complexity of K̃(−, n) we can always compute its abelianisation:

Corollary 5.17 Let n ≥ 3 and let G be a finitely generated group. Then there are
isomorphisms

K̃(G, n)ab ∼= K̃(Gab, n)ab ∼= K(G, n)ab ∼= K(Gab, n) ∼= (Gab)n−1.

We note that only the last isomorphism is not natural.

PROOF. We consider the short exact sequence of Theorem 5.10. Since H2(G)

lies inside the commutator subgroup of K̃(G, n) the induced homomorphism of
abelianisation

K̃(G, n)ab → K(G, n)ab

is an isomorphism. The abelianisation of K(G, n) is computed in Proposition 3.8
and induces an isomorphism of this group with K(Gab, n) which is isomorphic to
(Gab)n−1 by Corollary 3.5.

By what we have just proved K̃(Gab, n)ab is isomorphic to K(Gab, n) proving
the remaining isomorphism. �
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5.4 Examples

We now compute K̃(−, n) in some cases. Since the computation of H2 of a group
is a difficult business we will only give a couple of examples that will be important
in the sequel.

Example 5.18 Let n ≥ 3. If G is a (possibly infinite) cyclic group then there are
isomorphisms

K̃(G, n) ∼= K(G, n) ∼= Gn−1.

PROOF. Hopf’s theorem (Theorem 5.23) shows us that H2(−, � ) vanishes for
cyclic groups. After applying Corollary 3.5 we are done. �

Example 5.19 Let n ≥ 3. Then there is an isomorphism

H2( � d) ∼= � d(d−1)/2

and we get a central extension

0 → � d(d−1)/2 → K̃( � d, n) → � d(n−1) → 1

However, Remark 5.16 tells us that K̃( � d, n) cannot be abelian for d ≥ 2.

PROOF. We consider the d-dimensional torus Td := S1 × ... × S1 in the sense
of algebraic topology. Applying Theorem 5.22 to Td we conclude that H2( � d) is
isomorphic toH2(Td, � ) which is isomorphic to � d(d−1)/2. We computeK( � d, n)
via Corollary 3.5 and apply Theorem 5.10. �

Example 5.20 Let n ≥ 3. We let Πg be the fundamental group of a smooth
projective algebraic curve of genus g ≥ 1, cf. Section 1.1. Then there exists an
isomorphism

H2(Πg) ∼= �
and we get a central extension

0 → � → K̃(Πg, n) → K(Πg, n) → 1.

PROOF. We forget the complex structure and consider a smooth projective curve
only as a closed orientable surface Sg of genus g ≥ 1. This is a K(Πg, 1)-
space and we can apply Theorem 5.22 to conclude that H2(Πg) is isomorphic
to H2(Sg, � ) which is isomorphic to � . The rest follows from Theorem 5.10. �

Skipping through the references given at the beginning of Section 5.5 we find
the following
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Examples 5.21 The following H2’s vanish

H2( � n) = H2(Q8) = H2( � ) = H2(D∞) = 1,

where Q8 denotes the quaternion group and D∞ denotes the infinite dihedral
group. For the dihedral groups of order 2n we have

H2(D2n) =

{
1 if n is odd
� 2 if n is even.

For n ≥ 4 it is known that

H2( � 2 × � 2) = H2(Sn) = � 2.

Appendix to Section 5

5.5 Group homology and the computation of H2

In this section we first recall the construction of group homology. Then we give
some of its properties and give some statements that allow us to actually compute
H2 of a given group. As references we refer to [Br, Chapter II], [We, Chapter 6],
[Rot, Chapter 7] and [Rot, Chapter 11].

Let G be an arbitrary group. For a left G-module M we define its module of
co-invariants to be the quotient of M by the module IG generated by all elements
g ·m−m for all g ∈ G and m ∈M :

MG := M/IG.

Taking co-invariants defines a right exact functor for left G-modules and we can
consider its left derived functor. We define the i.th homologyHi(G) of G to be the
i.th left derived functor of −G applied to the G-module � with trivial G-action:

Hi(G) := Hi(G, � ).

Using the standard resolution of � over the group ring � [G] it is not hard to prove
that for all groups

H0(G) ∼= �
H1(G) ∼= Gab

holds true. Clearly, all homology groups are abelian groups. Using again the
standard resolution mentioned before one can show that if G is a finite group then
also its homology groups are finite.

The origins of group homology lie in algebraic topology: We recall that a
connected CW-complex Y is called a K(G, 1)-complex if πtop

1 (Y ) ∼= G and if its
universal cover is contractible.
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Theorem 5.22 For a K(G, 1)-complex Y there exist for all i ≥ 0 isomorphisms

Hi(G) ∼= Hi(Y, � )

where Hi(Y, � ) denotes the singular homology of the topological space Y .

A short exact sequence

0 → A → X → G → 1

is called a central extension of G if A lies in the centre of X . A central extension
0→ A→ X → G→ 1 is called a universal central extension if for every central
extension 1 → B → Y → G → 1 there exists a unique homomorphism from X
to Y making the following diagram commute

0 → A → X → G → 1

↓ ↓ ||
0 → B → Y → G → 1

If such a universal central extension exists it is unique up to isomorphism.
Central extensions 0 → A → X → G → 1 with a fixed abelian group A

are classified by Hom(H2(G), A). In particular, central extensions with � ∗ are
classified by Hom(H2(G), � ∗) ∼= H2(G, � ∗) =: M(G). This latter group is
called the Schur multiplier of G. If G is finite then Pontryagin duality provides us
with a non-canonical isomorphism between H2(G) and M(G).

A group G has a universal central extension G̃ if and only if it is perfect. In
this case the universal extension takes the form

0 → H2(G) → G̃ → G → 1.

Now let N be a normal subgroup of a free group F such that G ∼= F/N . Then
there is a central extension

0 → (N ∩ [F, F ])/[N,F ] → [F, F ]/[N,F ] → [G,G] → 1.

In case G is a perfect group this is exactly its universal central extension. But even
in the case where G is not necessarily perfect we have the following

Theorem 5.23 (Hopf) Let G be an arbitrary group. If N is a normal subgroup
of a free group F such that G ∼= F/N then

H2(G) ∼= (N ∩ [F, F ])/[F,N ].
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5.6 Examples from the theory of Coxeter groups
There is a certain “Coxeter flavour“ in connection with the groups E(G, n) as for
example Lemma 5.5 indicates. For the following we refer to [Hum, Chapter 5].

A symmetric n × n matrix M = (mij)i,j with entries mij ∈ � ≥1 ∪ {∞} is
called a Coxeter matrix if

1. mii = 1 for all i and

2. mij ≥ 2 for all i 6= j.

Let S = {s1, ..., sn} be a set with n elements and M = (mij)i,j a n × n Coxeter
matrix. A group given by generators and relations

W (S, M) := 〈si ∈ S | (sisj)mij = 1〉

is called a Coxeter group. The associated Coxeter graph is defined to be the
(undirected) graph with

vertices : the elements of S
edges : there is an edge joining si to sj if and only if mij ≥ 3.

If mij ≥ 4 then we will write this number above the edge joining si to sj .
The finite Coxeter groups are classified, cf. [Hum, Chapter I.2].

We now consider the following three series of finite Coxeter groups given by
the following graphs:

An n ≥ 1d d d d d dp pp p p pppp
Dn n ≥ 4d d d d d dd��

�
HHH

p pp p p pppp
I2(m) d dm

It is known that

W (An−1) := 〈τk | τk2, (τkτk+1)3, (τkτj)
2 for |k − j| ≥ 2〉

is isomorphic to Sn by sending τk to the transposition (k k + 1).
The upper chain forms a subgraph of type An−1 inside Dn. This defines a

subgroup isomorphic to Sn inside W (Dn). We define a split surjection

ψ : W (Dn) � Sn

being the identity when restricted to the subgroup Sn and sending the remaining
reflection to the image of the reflection “lying above“ it in the graph Dn. From the
description in [Hum, Chapter 2.10] we get
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Example 5.24 The homomorphism ψ makes kerψ into K( � 2, n) and induces an
isomorphism

W (Dn) ∼= E( � 2, n).

Next we define a split surjection

ψ : W (I2(m)) � S2
∼= � 2

by sending both reflections to the non trivial element of � 2. This Coxeter group
is the dihedral group of order 2m.

Example 5.25 If m is odd then ψ makes kerψ into K( � m, n) and induces an
isomorphism

W (I2(m)) ∼= E( � m, n).

If m is even then
W (I2(m))S2

∼= W (I2(
m
2

)).

The effect of the previous example is best explained by the fact that there are roots
of different lengths that may or may not be conjugate to short roots. This is why
we are only interested in simply laced graphs.

Next we consider the following graphs giving rise to infinite Coxeter groups
(they are examples of affine Weyl groups):

Ã1
d d∞

Ãn n ≥ 2d d d d d dp pp p p pppp dXXXXXXXX

��������

D̃n n ≥ 4

d
d d d d d ddHH
H
���

��
�

HHH
p pp p p pppp

The upper chain forms a subgraph of type An inside Ãn. We number it from the
left to the right by τ1,...,τn. This defines a subgroup isomorphic to Sn+1 inside
W (Ãn) where we identify τk with the transposition (k k + 1). Again, we may
define a split surjection

ψ : W (Ãn) � Sn+1

by sending the “extra“ reflection to (1n). We refer to [Hum, Chapter 4.2] for

Example 5.26 The homomorphism ψ makes kerψ into K( � , n) and induces an
isomorphism

W (Ãn) ∼= E( � , n+ 1).
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Under the isomorphism given in the example the “extra“ reflection maps to the
element (1, 0, ..., 0,−1)(1n) of E( � , n)

The upper chain forms a subgraph of type An−1 inside D̃n. This defines a
subgroup isomorphic to Sn inside W (D̃n). We define a split surjection

ψ : W (D̃n) � Sn

being the identity when restricted to the subgroup Sn and sending a remaining
reflection to the image of the respective reflection “lying above“ it in the graph
D̃n. We leave it to the reader to show that we get the

Example 5.27 The homomorphism ψ makes kerψ intoK(D∞, n) and induces an
isomorphism

W (D̃n) ∼= E(D∞, n)

where D∞ denotes the infinite dihedral group.
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6 Conclusion
Jetzt nehmt den Wein! Jetzt ist es Zeit, Genossen!
Leert eure gold’nen Becher zu Grund!
Dunkel ist das Leben, ist der Tod!

6.1 The algorithm of Zariski and van Kampen
Let C be a reduced but not necessarily smooth or irreducible projective curve of
degree d in the complex projective plane. We choose a generic line ˜̀⊂ � 2, i.e.
a line that intersects C in d distinct points. We set � 2 :=

� 2 − ˜̀ and denote the
intersection C ∩ � 2 again by C. We are interested in computing the fundamental
groups

πtop
1 (
� 2 − C) and πtop

1 ( � 2 − C).

An algorithm that yields presentations of these groups is given in van Kampen’s
article [vK]. The result was known to Zariski before and also Enriques, Lefschetz
and Picard should be mentioned in this context.

We now follow [Ch] and [Mo] to describe this algorithm: We choose a generic
line ` in � 2, i.e. a line intersecting C in d distinct points. The inclusion maps
induce group homomorphisms

πtop
1 ( � 2 − C) → πtop

1 (
� 2 − C)

πtop
1 (`− ` ∩ C) → πtop

1 ( � 2 − C).

Both homomorphisms are surjective. A modern proof for this is for example given
by [N, Proposition 2.1] and its corollaries.

The underlying topological space of `− ` ∩ C can be identified with � 2 with
d points cut out. Hence its fundamental group is the free group of rank d. To get a
system of d generators we may proceed as follows: We let u0 be the base point for
the fundamental group of `− ` ∩ C. We let w1,...,wd be the points of ` ∩ C. Next
we choose paths γi from u0 to wi for all i = 1, ..., d and assume that distinct γi’s
meet only in u0. Next we shorten the γi’s such that they stop before reaching their
wi’s. Putting a little circle around wi at the end of the so shortened γi’s we obtain
loops Γi that lie in `− ` ∩ C. Loops like this are usually called simple loops and
we already met them in Section 4.4. These Γi’s freely generate the fundamental
group of `− ` ∩ C:

πtop
1 (`− ` ∩ C, u0) = 〈Γi, i = 1, ..., d〉 ∼= Fd.

We consider the closure ¯̀ of ` inside
� 2 and denote by∞ := ¯̀− ` the point at

infinity. We may put an orientation on the Γi’s and order them in such a way that
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the composition
δ := Γ1 · ... · Γd

is homotopic to a loop around∞. Sticking to Moishezon’s terminology we will
call such a system {Γi}i=1,...,d a good ordered system of generators. By abuse of
notation we will denote the image of Γi in πtop

1 ( � 2 − C) and πtop
1 (
� 2 − C) again

by Γi.

Having established a generating set we have to determine all the relations that
hold between them: For this, we choose yet another line `′ inside � 2 intersecting
C in d distinct points. We denote the projection from∞ to `′ by π. We will call
a point in the fibre of π exceptional if it lies on a singularity of C or if the fibre is
tangent to C at this point. If we choose the lines ` and `′ generically then there is
only a finite setM of points on `′ such that there are exceptional points in the fibre
π−1(m) if and only if m ∈M . Moreover, since we have assumed that ` and `′ are
generic there is at most one exceptional point in each fibre of π. Furthermore, we
may assume that all tangent points are simple, i.e. have multiplicity two. We will
also assume that ` and `′ intersect in u0 so that we can take this point as the base
point for all fundamental groups involved.

The map π restricted to E := � 2 − C −⋃m∈M π−1(m) is a C∞ fibre bundle
with base `′ − M and fibre ` − ` ∩ C. Since the homotopy type of `′ − M
is a wedge of 1-spheres its second homotopy group vanishes. The long exact
sequence of homotopy groups of a fibration then becomes a short exact sequence
of fundamental groups

1 → πtop
1 (`− ` ∩ C) → πtop

1 ( � 2 − C −
⋃

m∈M
π−1(m)) → πtop

1 (`′ −M) → 1.

As above we may construct loops based at u0 that form a good ordered system
of generators for πtop

1 (`′ −M). These loops also lie in E and give elements in
πtop

1 (E) that lift the system of generators of πtop
1 (`′ −M). Since this system of

generators generates πtop
1 (`′ −M) freely this lift extends to a homomorphism s

and we can split the short exact sequence above.
Using the natural inclusion maps of spaces we see that the surjection from

πtop
1 (`− `∩C) to πtop

1 ( � 2−C) factors over πtop
1 (E). Hence we have a surjective

homomorphism

πtop
1 ( � 2 − C −⋃m∈M π−1(m)) � πtop

1 ( � 2 − C).

It is clear that s(πtop
1 (`′ −M)) lies in the kernel of this map. The main point is

that the kernel is exactly the group normally generated by s(πtop
1 (`′ −M)) inside

πtop
1 (E). For a proof of this in our setup we refer to [Ch, Partie 3.2].
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This can be also formulated as follows: Using the splitting s we can define the
monodromy homomorphism

ϑ : πtop
1 (`′ −M) → Aut(πtop

1 (`− ` ∩ C))
γ 7→ (Γ 7→ s(γ) · Γ · s(γ)−1).

Thus πtop
1 ( � 2 − C) is generated by the Γi’s i = 1, ..., d subject to the relations

Γi = ϑ(γ)(Γi) for all i’s. Of course, it is enough if γ runs through a generating
set of πtop

1 (`′ −M) e.g. a good ordered system of generators. This provides us
with a finite presentation of the fundamental group we are looking for. Taking the
quotient of the subgroup normally generated by δ inside πtop

1 ( � 2 − C) we obtain
πtop

1 (
� 2 − C).

We now compute locally the monodromies that are interesting for us: For this
we let z and w be coordinates on � 2 and define the lines `′ := {z = z0} and
` := {w = w0} with w0 ≥ 2 and z0 ≤ −2. We assume that the projection π is
given by (z, w) 7→ w.

In case of a simple tangent point we may assume that C is given by the equa-
tion z2 = w. The fibre of π consists of two points except for w = 0, z = z0 hence
this is the only point of M . We let γ be a simple loop around this point in `′−M .
The set ` ∩ C consists of exactly two points and we let Γ1 and Γ2 be simple loops
around these points in `− ` ∩ C. If we number the Γi’s appropriately then

ϑ(γ) : Γ1 7→ Γ2

Γ2 7→ Γ2Γ1Γ2
−1

This induces the relation Γ1 = Γ2.
In case of a simple double point we may assume thatC is given by the equation

z2 = w2. In this case we obtain the following monodromy

ϑ(γ) : Γ1 7→ Γ2Γ1Γ2
−1

Γ2 7→ Γ2Γ1Γ2Γ1
−1Γ2

−1

and it induces the relation [Γ1, Γ2] = Γ1Γ2Γ1
−1Γ2

−1 = 1.
In case of a cusp we may assume that C is given by the equation z2 = w3. In

this case we obtain the following monodromy

ϑ(γ) : Γ1 7→ Γ2Γ1Γ2Γ1
−1Γ2

−1

Γ2 7→ Γ2Γ1Γ2Γ1Γ2
−1Γ1

−1Γ2
−1

and it induces the relation 〈Γ1, Γ2〉 := Γ1Γ2Γ1Γ2
−1Γ1

−1Γ2
−1 = 1.

We refer to [Ch, Partie 6.2] for more details.

A way to visualise the monodromy is as follows: We define a half-twist of
` − ` ∩ C to be a homeomorphism of ` − ` ∩ C with itself that is the identity

65



outside a small disc containing the two points ` ∩ C and that has the effect of
turning this disc by an angle of π. In particular, a half-twist fixes the base point
(z0, w0). Under such a half-twist Γ1 is moved to a loop homotopic to Γ2 and Γ2 is
moved to a loop homotopic to Γ2Γ1Γ2

−1.
Hence the monodromy coming from a simple tangent point acts like a half-

twist on Γ1 and Γ2. Similarly, the monodromy of a simple double point of C acts
like two half-twists (a so-called full-twist), and the monodromy coming from a
cusp corresponds to three half-twists.

This is the starting point of the braid monodromy introduced by Moishezon:
Half-twists generate the braid group of the pair (`, ` − ` ∩ C) and so there is an
induced map from πtop

1 (`′ −M) to this braid group describing the monodromy.
Moishezon used this also for the global situation where things are getting more
complicated. We refer the fearless reader to [Mo] for an introduction.

We now treat the global case of an irreducible curve C of degree d that has at
most simple double points and cusps as singularities. We denote the d points of
` ∩ C by P1, ..., Pd and choose in ` − ` ∩ C simple loops Γ1, ...,Γd around these
points in `− `∩C with a common base point. As already mentioned above, these
loops generate πtop

1 ( � 2 − C). The relations induced from a simple tangent point
come again from a half-twist of some Pi around some Pj. This leads to a relation
of the form Γi = γΓjγ

−1 for some γ. Similarly, simple double points lead to
full-twists and cusps lead to three half-twists of some Pi around some Pj .

Finally we obtain a presentation of πtop
1 ( � 2−D) given by generators Γ1, ...,Γd

and relations of the form

γΓiγ
−1 · Γj

−1 = 1 tangent points
[γΓiγ

−1, Γj] = 1 simple double points
〈γΓiγ

−1, Γj〉 = 1 cusps.

In a given situation these γ’s can be made explicit. However, for our purposes
later on this is already enough. Pictures, details and quite complicated examples
can be found in [Mo, Proposition 1.2] and [MoTe3, Section V].

An application of this algorithm is the case of a smooth curve C of degree d.
Then πtop

1 ( � 2 − C) is generated by elements Γi, i = 1, ..., d. Then all relations
come from simple tangent points as explained above and then one can show that
Γi = Γj for all i, j holds true. In particular, we get δ = Γ1

d and conclude:

Proposition 6.1 Let C be an irreducible and smooth projective curve of degree d
in the projective plane. Then there are isomorphisms

πtop
1 ( � 2 − C) ∼= � and πtop

1 (
� 2 − C) ∼= � d.
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Severi claimed that a curve with only simple double points as singularities can be
deformed “nicely“ into a union of lines in general position. Using this assertion
of Severi, Zariski [Za] gave a proof of the proposition above also in the case that
C is an irreducible curve that has at worst simple double points as singularities. A
rigorous proof of Severi’s assertion was finally given by Harris [Ha]. However, in
the meantime Deligne and Fulton had come up with a proof of Zariski’s conjecture
that went along different lines, cf. [De].

In general, the computation of πtop
1 ( � 2−C) is a very difficult business. To get

some ideas about the subtleties occurring we refer to [Dc, Section 4.4] for some
classical examples.

6.2 On the fundamental group of Xaff
gal

We let f : X → � 2 be a good generic projection of degree n with Galois closure
fgal : Xgal →

� 2. We denote by � 2 the complement of a generic line ` in the
projective plane

� 2. We obtain Xaff and Xaff
gal by removing the inverse image of `

from X and Xgal, respectively.
In Section 4.5 we constructed a short exact sequence

1 → πtop
1 (Xaff

gal, x0) → πtop
1 (Xaff

gal, Sn, x0) → Sn → 1. (∗)

We let D be the branch curve of f and denote by d := degD its degree. Then we
choose another generic line `′ in � 2. We assume that u0 := fgal(x0) lies on `′ but
not on D. The intersection of `′ with � 2 − D cuts exactly d points out of `′ and
the inclusion ı of `′ − `′ ∩D into � 2 −D induces a surjective homomorphism

Fd ∼= πtop
1 (`′ − `′ ∩D, u0)

ı∗� πtop
1 ( � 2 −D, u0)

where Fd denotes the free group of rank d. To be more precise, we can choose a
good ordered system Γi, i = 1, ..., d of generators that freely generates the group
πtop

1 (`′ − `′ ∩D, u0) as explained in the previous section.
The image of Γi in πtop

1 ( � 2 −D, u0) is exactly a simple loop as described in
Section 4.4. Since f is a good generic projection the curve D is irreducible and so
the images of the Γi’s are conjugate elements in πtop

1 ( � 2 −D, u0). As explained
at the end of Section 4.4 there exists an isomorphism

πtop
1 ( � 2 −D, u0)/� ı∗(Γi)2 � ∼= πtop

1 (Xaff
gal, Sn, x0). (∗∗)

In Section 4.5 we defined a normal subgroup Caff of πtop
1 (Xaff

gal, Sn, x0) that
was normally generated by certain commutators and triple commutators between
inertia elements attached to the ramification locus Rgal of fgal : Xaff

gal → � 2. After
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taking the quotient of (∗) by Caff we explained in Theorem 4.7 how to split the
resulting short exact sequence.

We now combine the algorithm of Zariski and van Kampen with Theorem 4.7
and Corollary 5.11 and obtain our main result:

Theorem 6.2 Let f : X → � 2 be a good generic projection of degree n. Then
there exists an isomorphism

πtop
1 (Xaff

gal)/C
aff ∼= K̃(πtop

1 (Xaff), n).

If Question 2.14 has an affirmative answer for the universal cover of X aff
gal then

Caff is trivial.

PROOF. We keep the notations introduced so far. By abuse of notation we call
ı∗(Γi) again Γi and we consider the following composition

πtop
1 (`′ − `′ ∩D)

ı∗� πtop
1 ( � 2 −D) � πtop

1 ( � 2 −D)/� Γi
2, Caff � .

If n denotes the degree of the good generic projection f then there is a surjective
homomorphism

ψ : πtop
1 ( � 2 −D)/� Γi

2, Caff � � Sn.

Under the isomorphism (∗∗) the Γi’s are identified with (conjugates) of inertia
elements. In particular, ψ sends the Γi’s to transpositions. So we can choose for
each Γi a permutation σi of Sn such that σiψ(Γi)σi

−1 = (1 2).
We explained in the proof of Theorem 4.7 how to find a splitting s of ψ using

inertia groups. Inside πtop
1 ( � 2 − D)/ � Γi

2, Caff � we define the following
elements:

si+1 := s(σi) Γi s(σi)
−1 for i = 1, ..., d.

Clearly, s(Sn) and these si’s generate the whole group.
Moreover, for every transposition τk = (k k+1) of Sn there exists an element

γk in πtop
1 (`′ − `′ ∩D) such that in πtop

1 ( � 2 −D)/� Γi
2, Caff �

s(τk) = ı∗(γk) Γ1 ı∗(γk)−1 for k = 1, ..., n− 1

holds true.
Since the si’s are conjugate to the Γi’s the relation si2 = 1 holds true. As

we have taken the quotient by Caff also the commutator and triple commutator
relations of Section 5.1 hold true. So there exists a surjective homomorphism

Sn(d+ 1) � πtop
1 ( � 2 −D, u0)/� Γi

2, Caff �
si 7→ si i = 2, ..., d+ 1
ϕ(σ) 7→ s(σ) σ ∈ Sn
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where ϕ denotes the splitting of ψ : Sn(d) → Sn we fixed in Section 5.1. In
particular, we will need the fact that ϕ((1 2)) = s1.

The group πtop
1 (`′ − `′ ∩ D) is freely generated by the Γi’s. We let F be

the group freely generated by elements τk’s, k = 1, ..., n − 1. Then we obtain
surjective homomorphisms

πtop
1 (`′ − `′ ∩D) ∗ F α� Sn(d+ 1)

ω� πtop
1 ( � 2 −D)

� Γi2, Caff �
Γi 7→ ϕ(σi)

−1si+1ϕ(σi) 7→ Γi
τk 7→ ϕ(τk) 7→ γkΓ1γk

−1

We denote byR the kernel of πtop
1 (`′−`′∩D) onto πtop

1 ( � 2−D). Then the kernel
of ω ◦α is the subgroup subgroup normally generated by R, Caff and the relations
τk = γkΓ1γk

−1 and Γi
2. Now since α is surjective the image of the kernel of ω ◦α

in Sn(d+ 1) is the kernel of ω. We note that Caff and Γi
2 already lie in kerα.

We proved in Theorem 5.3 that for n ≥ 5 there is an isomorphism

Sn(d+ 1) ∼= K(Fd, n)oSn ≤ Fd
n oSn

s1 7→ (1 2)
si 7→ (fi, fi

−1, 1, ..., 1)(1 2) i = 2, ..., d+ 1
ϕ(σ) 7→ σ ∀σ ∈ Sn

where Fd denotes the free group of rank d, freely generated by some elements
fi, i = 2, ..., d + 1. The goal now is to show the kernel of ω becomes an affine
subgroup in the sense of Definition 5.9 under this isomorphism.

By definition of a good generic projection the branch curve D of f is irre-
ducible and has at worst simple double points and cusps as singularities. The
group πtop

1 ( � 2 −D, u0) is generated by the Γi’s and we have already seen in the
previous section that the algorithm of Zariski and van Kampen provides us with a
presentation in which all relations follow from relations of the following form:

γΓiγ
−1 · Γj

−1 = 1 tangent points
[γΓiγ

−1, Γj] = 1 simple double points
〈γΓiγ

−1, Γj〉 = 1 cusps.

Under α the element Γi maps to ϕ(σi)
−1si+1ϕ(σi). Thus, under α the relations

coming from simple tangent points are sent to elements of the form

γsiγ
−1sj

−1.

Such an element has to lie in the kernel of the homomorphism ψ onto Sn. Hence
the permutation ψ(γ) fixes (1 2). By conjugating this relation with sj we may
assume thatψ(γ) is a permutation that is disjoint from (1 2). And after conjugating
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with s(ψ(γ)) we may assume that γ ∈ kerψ. Thus, we may write γ = (γ1, γ2, ...)
under the isomorphism of Sn(d + 1) with E(Fd, n). Under this isomorphism the
relation maps to

γsiγ
−1sj

−1 7→ (γ1fiγ2
−1fj

−1, γ2fi
−1γ1

−1fj, 1, 1, ...).

Conjugating this element with (1, fj, fj
−1, 1, ...) (again one of the many events

where we need n ≥ 3) we obtain an element of the form (r, r−1, 1, ...).
By a similar argument we see that the relations

τk
−1 · γkΓ1γk

−1

are mapped to relations of the form s1γ
′
ks2γ

′
k
−1. As already shown above this

leads to relations that are conjugate to relations of the form (r, r−1, 1, ..., 1).
Now we consider the relations

[γsiγ
−1, sj]

coming from simple double points of D. Since such a relation maps to 1 under ψ
we conclude that ψ(γsiγ

−1) and γ(sj) = (1 2) are disjoint transpositions or that
ψ(γ) = 1. In the first case this relation already holds true by Lemma 5.5. In the
second case we write again γ = (γ1, γ2, ...) via the isomorphism of Sn(d+1) with
E(Fd, n). Under this isomorphism this relation maps to

[γsiγ
−1, sj

−1] 7→ (γ1fiγ2
−1 · fj−1 · γ1fiγ2

−1 · fj−1,
γ2fi

−1γ1
−1 · fj · γ2fi

−1γ1
−1 · fj, 1, 1..).

Conjugating this element with (1, fj, fj
−1, 1, ...) we obtain an element of the form

(r, r−1, 1, ...).
We leave it to the reader to show that also relations coming from cusps either

automatically hold true or lead to relations that are conjugate to elements of the
form (r, r−1, 1, ...).

Hence, πtop
1 ( � 2 −D)/ � Γi

2, Caff � is the quotient of Sn(d + 1) by a sub-
group that is normally generated by elements of the form (r, r−1, 1, ..., 1). Thus
the relations form an affine subgroup in the sense of Definition 5.9.

Corollary 5.11 tells us that the structure of this quotient is already determined
by the quotient Fd/p1(R). By Theorem 4.7 and Corollary 5.13 this quotient is
isomorphic to πtop

1 (Xaff). Hence we conclude that there are isomorphisms

πtop
1 ( � 2 −D)/� Γi

2, Caff � ∼= πtop
1 (Xaff

gal, Sn)/Caff

∼= Ẽ(πtop
1 (Xaff), n).

The statement about the triviality of Caff if that Question 2.14 has an affirmative
answer for the universal cover of Xaff

gal was already proven in Theorem 4.7. �
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Corollary 6.3 Under the assumptions of Theorem 6.2 we let C̄aff be the image of
Caff in the abelianised fundamental group of Xaff

gal. Then there is an isomorphism

H1(Xaff
gal, � )/C̄aff ∼= H1(Xaff , � )n−1.

In particular, if πtop
1 (Xaff) is already abelian then we get

πtop
1 (Xaff

gal)/C
aff ∼= πtop

1 (Xaff)n−1.

We want to stress that these isomorphisms are not canonical.

PROOF. Corollary 5.17 tells us that the abelianisations of K̃(−, n) and K(−, n)
are isomorphic. The rest of the proof is similar to the one of Corollary 4.8 and
therefore left to the reader. �

6.3 Adding the line at infinity
We have chosen a generic line ` in

� 2, defined � 2 :=
� 2 − ` and chosen a point

u0 ∈ � 2 − D. Then we have chosen a generic line `′ in � 2 containing the point
u0. We denote by ¯̀′ the line `′ with point at infinity added.

The inclusion maps of topological spaces induce surjective homomorphisms
of fundamental groups:

πtop
1 (`′ − `′ ∩D) � πtop

1 ( � 2 −D)

↓ ↓ ı∗
πtop

1 (¯̀′ − ¯̀′ ∩D) � πtop
1 (
� 2 −D)

The group πtop
1 (`′ − `′ ∩ D) is a free group of rank d freely generated by a good

ordered system of generators Γi, i = 1, ..., d. By definition the element

δ := Γ1 · ... · Γd
is homotopic to a loop around the point at infinity of `′. The subgroup normally
generated by δ defines the kernel of both homomorphism downwards in the dia-
gram above.

Proposition 6.4 The element δ is a central element of πtop
1 ( � 2 − D) that lies in

the kernel of ψ.
Moreover, lifting δ to loops in Xaff

gal and Xaff we obtain two short exact and
central sequences

0 → 〈δ〉 → πtop
1 (Xaff

gal) → πtop
1 (Xgal) → 1

and
0 → 〈δ̄〉 → πtop

1 (Xaff) → πtop
1 (X) → 1 .
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PROOF. For both groups πtop
1 ( � 2 − D) and πtop

1 (
� 2 − D) there are surjective

homomorphisms ψ onto Sn that are compatible with ı∗. Since δ is trivial in
πtop

1 (
� 2 −D) we conclude that ψ(δ) = 1.

By a theorem of Oka (cf. [FL, Corollary 8.4]) the short exact sequence

0 → A → πtop
1 ( � 2 −D)

ı∗→ πtop
1 (
� 2 −D) → 1

is central. We know that A is normally generated by δ and hence δ must be a
central element of πtop

1 ( � 2−D). Of course δ remains central in every quotient of
πtop

1 ( � 2 −D).
We recall the short exact sequences

1 → πtop
1 (Xaff

gal) → πtop
1 ( � 2 −D)/� Γi

2 � ψ→ Sn → 1

↓ ↓ ı∗ ||
1 → πtop

1 (Xgal) → πtop
1 (
� 2 −D)/� Γi

2 � ψ→ Sn → 1

We already noted that the kernel of the surjective homomorphism ı∗ is generated
by δ. Since ψ(δ) = 1 the loop δ lies in πtop

1 (Xaff
gal). This yields the first exact

sequence.
There exist surjective homomorphisms

πtop
1 (Xaff

gal,S
(i)
n−1) � πtop

1 (Xaff)

↓ ↓
πtop

1 (Xgal,S
(i)
n−1) � πtop

1 (X)

The kernel of the upper horizontal homomorphism N is generated by inertia
groups. The kernel of the lower horizontal homomorphism is generated by the
image of N from above. The kernel of the left arrow downwards is generated by
δ. Chasing around this diagram we find that the kernel of the surjective map from
πtop

1 (Xaff) onto πtop
1 (X) is generated by δ̄. �

In Theorem 6.2 we constructed an isomorphism

πtop
1 (Xaff

gal)/C
aff ∼= K̃(πtop

1 (Xaff), n).

Since δ is central it is stable under the Sn-action on the right. The same holds true
when passing to the quotientK(πtop

1 (Xaff), n). So if we considerK(πtop
1 (Xaff), n)

as a subgroup of πtop
1 (Xaff)n then δ maps to an element of the diagonal. And

Proposition 6.4 tells us exactly what this element is:
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Proposition 6.5 Under the isomorphism of Theorem 6.2 and the surjective map
of Theorem 4.7 the loop δ maps as follows

πtop
1 (Xaff

gal)/C
aff ∼= K̃(πtop

1 (Xaff
gal), n) � K(πtop

1 (Xaff), n)

δ 7→ δ 7→ (δ̄, ..., δ̄)

where δ̄ is the central element of Proposition 6.4. �

Again, we can say a little bit more for the abelianisation

Corollary 6.6 We keep the notations and assumptions of Theorem 6.2. Then we
denote by C̄proj the image of Cproj in the abelianised fundamental group of Xgal.
Then there exists an isomorphism

H1(Xgal, � )/C̄proj ∼= H1(X, � ) ⊕ H1(Xaff , � )n−2.

In particular, if πtop
1 (Xaff) is abelian then

πtop
1 (Xgal)/C

proj ∼= πtop
1 (X) × πtop

1 (Xaff)n−2.

We note that these isomorphisms are not canonical.

PROOF. To increase readability, we abbreviate H1(−, � ) just by H1(−).
Since abelianisation is not an exact functor we have to proceed by hand:

1 → 〈δ〉 → πtop
1 (Xaff

gal) → πtop
1 (Xgal) → 1

↓ ↓ ↓
〈δ′〉 ↪→ H1(Xaff

gal) � H1(Xgal)

where δ′ denotes the image of δ in H1(Xaff
gal). Let x be an element of H1(Xaff

gal)

that maps to 0 in H1(Xgal). We can lift this to an element x̃ of πtop
1 (Xaff

gal) that
has to map to a product of commutators in πtop

1 (Xgal) by commutativity of the
diagram. But this means that x̃ is a product of δs for some integer s times some
commutators. Changing x̃ by commutators we still get a lift of x. So we may
assume that x̃ actually equals δs. Therefore, x is equal to δ̄s. This shows that we
have an exact sequence

1 → 〈δ̄〉 → H1(Xaff
gal) → H1(Xgal) → 1.

We denote by δ̄ the image of δ in πtop
1 (Xaff) we know from Proposition 6.4 that the

subgroup generated by δ̄ inside πtop
1 (Xaff) is equal to the kernel of the projection

πtop
1 (Xaff)�πtop

1 (X). So we obtain another exact sequence

1 → 〈δ̄′〉 → H1(Xaff) → H1(X) → 1
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where δ̄′ denotes the image of δ′ in H1(Xaff).
Using Theorem 6.2 we know that there is an embedding

H1(Xaff
gal)/C̄

aff ↪→ H1(Xaff)n

that sends δ′ to (δ̄′, ..., δ̄′) by Proposition 6.5. The image of this homomorphism
equals the subgroup given by (written multiplicatively)

{(x1, ..., xn) |
n∏

i=1

xi = 1}

and is abstractly isomorphic to H1(Xaff)n−1 by Corollary 3.5. This isomorphism
is given by projecting onto the last n − 1 factors of H1(Xaff)n. The element δ′

maps to (δ̄′, ..., δ̄′) (n− 1 factors) under this projection.
So we conclude that H1(Xgal) is isomorphic to the quotient of H1(Xaff)n−1

by the subgroup generated by (δ̄′, ..., δ̄′) in it. Since the quotient H1(Xaff) by
the subgroup generated by δ̄′ is isomorphic to H1(X) the result follows from the
following lemma. �

Lemma 6.7 Let G be an abelian group and N be a subgroup. Let n ≥ 2 be a
natural number. We let ∆ : G → Gn be the diagonal embedding of G into Gn

given by g 7→ (g, ..., g). Then there exists a non-canonical isomorphism

Gn/∆(N) ∼= Gn−1 × G/N.

PROOF. We define the map (written multiplicatively)

ψ1 : Gn → Gn−1

(g1, ..., gn) 7→ (g2g
−1
1 , ..., gng

−1
1 ).

Since G is abelian this defines a homomorphism of groups. The kernel of ψ1 is
equal to the diagonal embedding ∆(G) of G inside Gn.

We denote by ψ2 : G→ G/N be the natural quotient map. Then the kernel of
the homomorphism

ψ : Gn → Gn−1 × G/N
~g = (g1, ..., gn) 7→ (ψ1(~g) , ψ2(g1))

is equal to ∆(G) ∩ (N × Gn−1) = ∆(N). We leave it to the reader to show
surjectivity.

We finally note that we have somehow “favoured“ the first component when
we constructed this isomorphism and this is what destroyed the symmetry. �
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Remark 6.8 Proposition 6.5 shows us that πtop
1 (Xgal)/C

proj is the quotient of
K̃(πtop

1 (Xaff), n) by the cyclic group ∆(〈δ〉).
From this we see that the natural surjection

πtop
1 (Xgal)/C

proj ∼= K̃(πtop
1 (Xaff), n)/∆(〈δ〉)

� K̃(πtop
1 (Xaff)/〈δ′〉, n) ∼= K̃(πtop

1 (X), n)

given by Theorem 4.7 need not be an isomorphism for projective surfaces. In fact,
Proposition 7.1 gives us an example where this is not the case.

6.4 Generic projections from simply connected surfaces
We start with a result that should be well-known but the author could not find a
reference for it.

Proposition 6.9 Let X be smooth projective surface that is simply connected. Let
D be an smooth and ample divisor on X .

Let d be the maximum

d(L) := max{m | ∃M,M⊗m ∼= L}

Then d(L) exists (i.e. there is a finite maximum) and there is an isomorphism

πtop
1 (X −D) ∼= � d(L).

In particular, this group is always a finite cyclic group.

PROOF. By a theorem of Nori [N, Corollary 2.5] we know that πtop
1 (X −D) is

abelian.
But since D is smooth and irreducible (ample implies connected and being

connected and smooth implies irreducible) every cover branched along D is a
cyclic Galois cover. Such a cover of order c is given by a line bundle F and an
isomorphism F⊗c ∼= OX(D).

On the other hand, πtop
1 (X−D) is a finitely generated group and with maximal

finite quotient � d where d = d(L) as defined above.
To see that d is actually a well-defined and finite number we consider the long

exact cohomology sequence associated to the exponential sequence:

... → H1(X, � ) → H1(X, OX) → H1(X, O∗X)︸ ︷︷ ︸
∼= Pic(X)

c1→ H2(X, � ) → ...

Since X is simply connected its first Betti number vanishes and so we conclude
from Hodge theory that H1(X, OX) = 0. Hence the map c1 : Pic(X) →
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H2(X, � ) is an injection. The latter group is a finitely generated abelian group
and so Pic(X) must be.

Actually, Pic(X) is a free abelian group: By the universal coefficient for-
mula in algebraic topology all torsion in H2(X, � ) comes from the torsion of
H1(X, � ) which is the abelianised fundamental group of X . Since we assumed
that X is simply connected there is no torsion in H2(X, � ) and so also Pic(X) is
without torsion being a subgroup of H2(X, � ).

From this it follows that d is a well-defined finite number. �

Definition 6.10 We call the number d associated to an ample divisor D on a
simply connected surface the divisibility index of D.

As an easy consequence we get the following

Theorem 6.11 Assume that f : X → � 2 is a good generic projection of degree n
given by a sufficiently ample line bundle L. Assume furthermore that X is simply
connected.

We denote by d := d(L) the divisibility index of L. Keeping the notations of
Theorem 6.2 there are isomorphisms

πtop
1 (Xaff

gal)/C
aff ∼= � dn−1

πtop
1 (Xgal)/C

proj ∼= � dn−2.

In particular, these quotients are both finite and abelian.

PROOF. For a generic projection f : X → � 2 the inverse image of a generic line
` on X is a smooth and ample curve by Bertini’s theorem. To be more precise, we
have OX(f−1(`)) ∼= L.

Applying Corollary 6.3 and Corollary 6.6 to Proposition 6.9 we get the result.
�

Remark 6.12 This result is similar to the one obtained in [ADKY]. However,
there they consider a different quotient than we do and use the technique of braid
monodromy factorisations in the setup of symplectic topology.

6.5 A purely topological description of the Galois closure
Given a good generic projection f : X → � 2 of degree n with Galois closure
Xgal there is an action of Sn on Xgal. We denote by D the branch locus of f and
note that its ramification index with respect to fgal : Xgal →

� 2 equals 2. We have
seen in Section 4.4 that there exists an isomorphism

πorb
1 (
� 2, {D, 2}, fgal(x0)) ∼= πtop

1 (Xgal, Sn, x0).
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We remark that the group on the left is the starting point for the computation of
πtop

1 (Xgal) in [MoTe1].
We define u0 := fgal(x0). Every loop inside

� 2 − D based at u0 can be
lifted to the n points of f−1(u0). The resulting paths inside X − f−1(D) yield a
permutation of the set f−1(u0). This defines a homomorphism

ψ : πtop
1 (
� 2 −D, u0) → Sn.

This is of course the same homomorphism as the one constructed in Section 4.4
and so it is surjective.

In [Mi] and [MoTe1] the Galois closure of a generic projection was defined in a
slightly different way. From [SGA1, Exposé V.4.g] it follows that their definition
defines the same object. For the sake of completeness we decided to include a
proof in the topological setup:

Proposition 6.13 Let f : X → � 2 be a good generic projection of degree n.

1. As a topological space Xgal − fgal
−1(D) is homeomorphic to the subspace

{(a1, ..., an) | ai 6= aj, f(ai) = f(aj) ∀i 6= j} ⊂ (X − f−1(D))n.

2. As a topological space Xgal is homeomorphic to the closure of Xgal −
fgal

−1(D) inside Xn.

Moreover, there are unique analytic structures on these spaces that are in fact
algebraic making the homeomorphisms above algebraic isomorphisms.

PROOF. The map fromXgal−fgal
−1(D) to

� 2−D is a regular topological cover
with group Sn. Hence there is a short exact sequence

1 → πtop
1 (Xgal − fgal

−1(D)) → πtop
1 (
� 2 −D)

ϕ→ Sn → 1.

Moreover, X − f−1(D) is a cover lying in between. Also, Xgal − fgal
−1(D) is

the Galois closure of the topological cover X − f−1(D) → � 2 − D since the
function fields are the same as for the projective surfaces. This now coincides
with the topological notion of a regular cover associated to a given cover. Hence
up to conjugation ψ and ϕ are equal.

We letZ ⊂ (X−f−1(D))n be the space defined in the second assertion. There
is a fixed point free action of Sn on Z with quotient

� 2 −D. This is exactly the
principal fibre bundle with fibre Sn associated to the homomorphism ψ. Since ψ
is surjective Z is connected. So there must be a homeomorphism between Z and
Xgal − fgal

−1(D) since we can identify their fundamental groups with the same
subgroup of πtop

1 (
� 2−D) and the inclusions are induced from the respective cover

maps.

77



We look at the projection fn : Xn → (
� 2)n and consider the diagonal embed-

ding ∆ of D in (
� 2)n. To obtain the closure of Z inside Xn we have to glue in

points above ∆.
In the proof of [Fa, Proposition 1], Faltings computed how X × 	 2 X → � 2

locally looks like above points of D. The same local computations applied to the
n-fold fibre product X × 	 2 ... × 	 2 X show that we can complete Z to a smooth
analytic surface Z̄. The complement Z̄ − Z is a divisor on Z̄ that locally looks
the same like Rgal in Xgal. So there is only one way to define a map of topological
spaces from Z̄ toXgal compatible with the projections to

� 2−D and the respective
embeddings of Xgal − fgal

−1(D). Also the local analytic structure can be made
compatible giving a map of analytic spaces Z̄ → Xgal. Since Z̄ is a compact
subspace of the projective space Xn this map is projective and hence algebraic by
[GAGA]. �

Composing the homomorphism from πtop
1 ( � 2−D, u0) onto πtop

1 (
� 2−D, u0)

with the homomorphism ψ from the latter group onto Sn we obtain a homomor-
phism that we will also call ψ:

ψ : πtop
1 ( � 2 −D, u0) → Sn.

Clearly, it is also surjective. Furthermore we can identify X aff
gal − fgal

−1(D) with
the space

{(a1, ..., an) | ai 6= aj, f(ai) = f(aj) ∀i 6= j} ⊂ (Xaff − f−1(D))n.

A remark on symmetric products

For a natural number n ≥ 2 and a topological space Z there is an action of the
symmetric group Sn on Zn given by permuting the factors. By definition the n.th
symmetric product of Z is the quotient

Symn(Z) := Sn\Zn.

If we choose a point (z, ..., z) on the diagonal inside Zn its inertia group is the
whole symmetric group. Using the inertia group at this point we obtain a splitting
of the short exact sequence

1 → πtop
1 (Zn) → πtop

1 (Zn,Sn) → Sn → 1

Under an appropriate isomorphism of πtop
1 (Zn) with πtop

1 (Z)n the action of Sn

on πtop
1 (Zn) is given by permutation of the factors of πtop

1 (Z)n.
So we are in the situation considered in Section 3.1. Hence the kernel of the

homomorphism from πtop
1 (Zn,Sn) onto πtop

1 (Symn(Z)) can be identified with
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E(πtop
1 (Z), n). By Corollary 3.3 we there exists a surjective homomorphism and

an isomorphism

πtop
1 (Z)n � πtop

1 (Z)ab ∼= πtop
1 (Symn(Z)).

This was (in a slightly different form) already remarked in [SGA1, Remarque
IX.5.8].

So let f : X → � 2 be a good generic projection of degree n. We have seen
in Proposition 6.13 that the Galois closure Xgal occurs as a subspace of Xn. Also
the action of Sn on Xn coincides with the one on Xgal. Taking the quotient by
Sn we obtain maps

Xn � Symn(X)

↑ ı ↑
Xgal �

� 2

where the maps upwards are inclusion maps of topological spaces. It is known
that the n.th symmetric product of a smooth algebraic surface has singularities as
soon as n ≥ 2.

From the commutativity of this diagram we conclude that

ı∗
(
πtop

1 (πtop
1 (Xgal))

)
⊆ ker

(
πtop

1 (Xn)→ πtop
1 (Symn(X))

)

∼= K(πtop
1 (X), n).

In this setup Theorem 4.7 says that the homomorphism ı∗ is surjective. Clearly,
everything also works in the affine situation.

It is tempting to think of (Xaff)n → Symn(Xaff) as something that is close
to an algebraic fibre bundle with typical fibre Xaff

gal. Then it would be natural to
expect an exact sequence of homotopy groups

... → πtop
2 ( � 2)︸ ︷︷ ︸

={1}

?→ πtop
1 (Xaff

gal) → πtop
1 (Xaff)n → πtop

1 (Symn(X))︸ ︷︷ ︸
∼=πtop

1 (X)ab

→ 1.

However, Theorem 6.2 tells us that in the affine case πtop
1 (Xaff

gal) is in general not
a subgroup of πtop

1 (Xaff)n even though the rest of this sequence is exact.
The author does not know whether this point of view may nevertheless shed

new light on the whole problem of determining the fundamental groups of Xgal

and Xaff
gal.

79



80



7 Examples

7.1 
 2

Let X :=
� 2 be the complex projective plane.

For k ≥ 5 the line bundle Lk := O 	 2(k) is sufficiently ample by Lemma
2.2. Combining Proposition 2.5 with Proposition 2.8 we see that a generic three-
dimensional linear subspace of H0(

� 2,Lk) gives rise to a good generic projection
that we denote by fk.

Proposition 7.1 Let Xgal be the Galois closure of a good generic projection fk.
Then there are isomorphisms

πtop
1 (Xaff

gal)/C
aff ∼= � kk2−1

πtop
1 (Xgal)/C

proj ∼= � kk2−2.

PROOF. The morphism fk has degree n = deg fk = k2. The divisibility index
of Lk in Pic(X) is k and we only have to plug in this data into Theorem 6.11. �

Remark 7.2 The results of Moishezon and Teicher [MoTe2] show that Caff and
Cproj are trivial.

7.2 
 1× 
 1

Let X :=
� 1 × � 1.

For a ≥ 5 and b ≥ 5 the line bundle L(a,b) := O 	 1× 	 1(a, b) is sufficiently
ample, cf. Lemma 2.2. Combining Proposition 2.5 with Proposition 2.8 we see
that a generic three-dimensional linear subspace of H0(

� 1× � 1,L(a,b)) gives rise
to a good generic projection that we denote by f(a,b).

Proposition 7.3 LetXgal be the Galois closure of a good generic projection f(a,b).
Then there are isomorphisms

πtop
1 (Xaff

gal)/C
aff ∼= � gcd(a,b)

2ab−1

πtop
1 (Xgal)/C

proj ∼= � gcd(a,b)
2ab−2.

PROOF. The morphism f(a,b) has degree n = deg f(a,b) = 2ab. The divisibility
index of L(a,b) in Pic(X) is gcd(a, b) and we only have to plug in this data into
Theorem 6.11. �

Remark 7.4 The results of Moishezon and Teicher [MoTe1] and [MoTe4] show
that Caff and Cproj are trivial.
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7.3 Surfaces in 
 3

Let Xm be a smooth surface of degree m ≥ 2 in
� 3.

For k ≥ 5 the line bundle Lk := O 	 3(k)|Xm is sufficiently ample, cf. Lemma
2.2. Combining Proposition 2.5 with Proposition 2.8 we see that a generic three-
dimensional linear subspace of H0(Xm,Lk) gives rise to a good generic projec-
tion that we denote by fk : Xm →

� 2.

Proposition 7.5 Let Xgal be the Galois closure of a good generic projection fk.
Then there are isomorphisms

πtop
1 (Xaff

gal)/C
aff ∼= � kmk2−1

πtop
1 (Xgal)/C

proj ∼= � kmk2−2.

PROOF. The morphism fk has degree n = deg fk = mk2.
Lefschetz’s theorem on hyperplane sections tells us that the surface Xm is

simply connected. We let C be a smooth section of O 	 3(1)|Xm . The surface
Xm − C is simply connected by [N, Example 6.8]. So the divisibility index of L1

equals 1 for and hence this index is equal to k for Lk.
Applying Theorem 6.11 we get the result. �

7.4 Hirzebruch surfaces
Let X := � e :=

� 	 1(O 	 1⊕O 	 1(−e)) with e ≥ 2 be the e.th Hirzebruch surface.
We denote by F the class of a fibre of X → � 1 and by H the class of the

tautological bundle O � e(1) in Pic( � e). We refer to [Hart, Section V.2] for details
on the intersection theory and the canonical line bundle of Hirzebruch surfaces.

For a > 0 and b > ae the line bundle L(a,b) := O � e(aH + bF ) on � e is ample
by [Hart, Theorem V.2.17]. We assume that L(a,b) is sufficiently ample which can
be achieved by taking a tensor product of at least five very ample line bundles cf.
Lemma 2.2. If Proposition 2.8 assures the existence of simple double points then
we denote by f(a,b) : � e →

� 2 the good generic projection associated to a generic
three-dimensional linear subspace of H0( � e,L(a,b)).

Proposition 7.6 Assume that f(a,b) : � e →
� 2 is a good generic projection. We

let Xgal be the Galois closure of f(a,b). Then there are isomorphisms

πtop
1 (Xaff

gal)/C
aff ∼= � gcd(a,b)

2ab+ea2−1

πtop
1 (Xgal)/C

proj ∼= � gcd(a,b)
2ab+ea2−2.

PROOF. The morphism f(a,b) has degree n = deg f(a,b) = 2ab + ea2. The divis-
ibility index of L(a,b) in Pic(X) is gcd(a, b) and we only have to plug in this data
into Theorem 6.11. �
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Remark 7.7 Using the results of Moishezon, Teicher and Robb [MoTeRo] we see
that Caff and Cproj are trivial.

7.5 Geometrically ruled surfaces
We let C be a smooth projective curve of genus g and we let E be a rank 2 vector
bundle on C. We assume that H0(C, E) 6= 0 but that for all line bundles L with
negative degree the bundle E ⊗ L has no non-trivial global sections.

Then we define π : X :=
�

(E) → C to be the projectivisation of E and
e := − deg E . This is a geometrically ruled surface over C with invariant e.
Conversely, by [Hart, Proposition V.2.8] every geometrically ruled surface over
a curve is the projectivisation of a rank 2 vector bundle that fulfills the above
assumptions on the global sections.

The Picard group of X is isomorphic to � ⊕ Pic(C). It is generated by the
pull-back of Pic(C) and by the class C0 of a section of π withOX(C0) isomorphic
to the tautological line bundle OX(1) on X . We choose a natural number k > 0
and a line bundleLC on C of degree degLC > ke. Then we define the line bundle
LX on X to be

LX := OX(C0)⊗k ⊗ π∗(LC).

This line bundle is ample by [Hart, Proposition V.2.20] and [Hart, Proposition
V.2.21]. We assume that LX is sufficiently ample which can be achieved by tak-
ing the tensor product of at least five very ample line bundles, cf. Lemma 2.2.
If Proposition 2.8 assures the existence of simple double points then we denote
by fLX : X → � 2 the good generic projection associated to a generic three-
dimensional linear subspace of H0(X,LX). The degree of fLX equals the self-
intersection of LX

n := deg fLX = 2k degLC − ek2.

Also we denote by

d(LX) := max{m ∈ � | ∃M ∈ Pic(X),M⊗m ∼= LX}
the divisibility index of LX in Pic(X). This number divides the greatest common
divisor gcd{k, degLC}.
Proposition 7.8 Let X be a geometrically ruled surface over a curve of genus g
and let LX be the line bundle considered above.

We assume that LX is sufficiently ample and that fLX : X → � 2 is a good
generic projection. We let Xgal be the Galois closure of fLX . Then there are
isomorphisms

πtop
1 (Xaff

gal)
ab/C̄aff ∼= � d(LX)

n−1 ⊕ � 2g(n−1)

πtop
1 (Xgal)

ab/C̄proj ∼= � d(LX)
n−2 ⊕ � 2g(n−1).
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PROOF. If we denote by Πg the fundamental group of C (cf. Section 1.1) then
πtop

1 (X) is isomorphic to Πg since X is a smooth surface that is birational to the
product

� 1 × C.
Proposition 6.4 tells us that there is a central short exact sequence

0 → Z → πtop
1 (Xaff) → πtop

1 (X)︸ ︷︷ ︸
∼=Πg

→ 1

where Z is a cyclic group. If we abelianise we obtain a short exact sequence

0 → φ(Z) → πtop
1 (Xaff)ab → πtop

1 (X)ab

︸ ︷︷ ︸
∼= � 2g

→ 0

where φ denotes the homomorphism from πtop
1 (Xaff) onto its abelianisation. Since

the quotient group on the right is a free abelian group we can split this short exact
sequence and obtain a non-canonical isomorphism

πtop
1 (Xaff)ab ∼= φ(Z)⊕ � 2g.

Then the direct summand φ(Z) occurs as a quotient of πtop
1 (X)ab. This quotient

describes cyclic covers branched along H := fLX
−1(`) where ` is a generic line

in
� 2. This H is a smooth and irreducible divisor and so to give a cyclic cover

branched along H is the same as to give a line bundle M and an isomorphism
M⊗m ∼= OX(H). Since OX(H) is isomorphic to LX we see that the maximal
cyclic cover possible is of degree d(LX). Hence

φ(Z) ∼= � d(LX )

and so we found the structure of πtop
1 (Xaff)ab.

Using Corollary 6.3 we obtain an isomorphism

πtop
1 (Xaff

gal)
ab/C̄aff ∼= � d(LX)

n−1 ⊕ � 2g(n−1)

and using Corollary 6.6 we obtain the structure of the abelianised quotient in the
projective setup. �

7.6 An instructive counter-example
We consider again the projective plane

� 2 but this time together with the line
bundle L2 := O 	 2(2). The image of

� 2 in
� 5 with respect to L2 is usually called

the second Veronese surface.
We denote by f2 :

� 2 → � 2 a sufficiently general projection from this
Veronese surface onto a linearly embedded

� 2 inside
� 5.
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Moishezon and Teicher [MoTe2, Proposition 2] computed the fundamental
group of the Galois closure Xgal of f2:

πtop
1 (Xgal) ∼= � 2.

The interesting point is that the branch curve of f2 has 9 cusps but no simple
double points. But this means that if τ1 and τ2 are two disjoint transpositions then
the curves Rτ1 and Rτ2 do not intersect. So Question 2.14 has a negative answer
already for the trivial cover Xgal → Xgal. And indeed the quotient computed by
our method is � 2

2.
This is in fact the only example known to the author where Caff is non-trivial

and the quotient computed by Theorem 6.2 is not isomorphic to the fundamental
group of the Galois closure.

This example suggests that the existence of simple double points on the branch
curves really is essential.

However, the second Veronese surface arises in many situations as a counter-
example and there are several classical theorems in classical algebraic geometry
that have to exclude this surface to be true. For example, this surface and its
projection onto

� 2 would also be a counter-example to Chisini’s conjecture (Con-
jecture 1.3) if we had not imposed the condition that the degree of the generic
projection has to be strictly larger than 4. We refer to [Cat] for details and further
information.
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Notations

Varieties and morphisms

f : X → � 2 a generic projection from a smooth
complex projective surface

fgal : Xgal →
� 2 the Galois closure of f : X → � 2

` a generic line in
� 2

� 2 :=
� 2 − ` the affine plane w.r.t. `

Xaff := X − f−1(`) the affine part of X w.r.t. `
Xaff

gal := Xgal − fgal
−1(`) the affine part of Xgal w.r.t. `

Constructions in group theory

[X, Y ] subgroup generated by commutators [x, y], x ∈ X , y ∈ Y
Gab abelianisation of a group G, i.e. the quotient G/[G,G]
K(G, n) the construction defined in Section 3.1
E(G, n) the construction defined in Section 3.1
XG the notation introduced in Section 3.3
Sn(d) the group defined in Section 5.1
K̃(G, n) the construction defined in Section 5.3
Ẽ(G, n) the construction defined in Section 5.3
H2(G) the second group homology with integral coefficients

Special groups

� n the cyclic group of order n
� the infinite cyclic group
D2n the dihedral group of order 2n
Πg the fundamental group of a smooth projective

curve of genus g ≥ 1
Sn the symmetric group on n letters
S

(i)
n−1 the subgroup of Sn fixing the letter i

Fundamental groups

πét
1 (Y ) the étale or algebraic fundamental group
πtop

1 (Y ) the topological fundamental group
πtop

1 (Y,G) the G-fundamental group defined in Section 4.3
πorb

1 (Y,Di, ni) the orbifold fundamental group defined in Section 4.4
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