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Introduction

Schon winkt der Wein im gold’nen Pokale,

Doch trinkt noch nicht, erst sing’ ich euch ein Lied!
Das Lied vom Kummer

Soll auflachend in die Seele euch klingen.

Fundamental groups are birational invariants of smooth algebraic varieties and for
a classification it is important to know them. Also it is interesting to see how much
of the classification is encoded in them.

These groups are known for smooth and complex quasi-projective curves.
For smooth and complex projective curves the fundamental group determines the
curve up to deformation of the complex structure. For surfaces the situation is
much more complicated. The classification of surfaces is still not complete and
mainly surfaces of general type are still not well understood. In particular, sur-
faces of general type with K? > 8y seemed to be mysterious and were hard to
construct. Bogomolov and others conjectured that these surfaces have infinite
fundamental groups.

Miyaoka considered generic projections from smooth projective surfaces to
the projective plane and studied the Galois closures of these projections. He was
able to construct many surfaces of general type with K2 > 8y via this method.

Moishezon and Teicher showed that there are generic projections from P! x
P! such that the corresponding Galois closures are simply connected and fulfill
K? > 8y. These were the first counter-examples to the conjecture mentioned
above. Their proof involved a certain amount of computations and was based on
degeneration techniques and braid monodromy factorisations.

In this thesis we attack the problem of determining the fundamental group of
the Galois closure of a generic projection via determining some “obvious® con-
tributions coming from X. So let f : X — P2 be a generic projection of degree
n and let X, be the corresponding Galois closure. It is known that X, embeds
into X" which induces a homomorphism of fundamental groups

Wl(Xgal) — 7T1<X>n. (1)

If we denote by K(G,n) the kernel of the homomorphism from G™ onto G*" then
the image of (1) is precisely K(m;(X),n). We prove this by purely algebraic
methods. In particular, we obtain this result also for étale fundamental groups
and generic projections defined over algebraically closed fields of characteristic
# 2, 3.

Over the complex numbers there is the algorithm of Zariski and van Kampen
to determine the fundamental group of the complement of a curve in the affine or
projective plane. Since the monodromy at infinity is a little bit tricky, it is easier
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to look at the affine situation first, i.e. to look at the fibre of f and f,, over a
generically chosen affine plane in P2. We refer to these fibres as X and X gfl,
respectively.

In the affine situation there is also a surjective homomorphism from 7y (X21))
onto (7 (X*T),n) as in (1). Using the algorithm of Zariski and van Kampen we
obtain a quotient

m (ngl) —- K(m (Xaff), n). )
Here, IAC(G, n) is a purely group theoretical construction that can be defined for
every finitely generated group GG and every natural number n > 3. It is related to
K(G, n) via a short exact and central sequence

0 — Ho(G,Z) — K(Gn) — KGn) — 1 3)

where Ho(G,Z) denotes the second group homology with integral coefficients.
Even though the computation of (G, n) for a given group G is usually not so
complicated it is quite hard to say something about IE(G ,n) and therefore about
about the quotient (2) of 71 (X2f) in general.

Also we deduce from (3) that the quotient of wl(ng) computed by (2) is
usually larger than the one given by (1).

It remains to determine the kernel of the homomorphism (2). We show that it
is a naturally defined subgroup that can be formulated independent of the specific
situation. We denote by Ry, C X, the ramification locus of f,,;. This divisor is
ample but it is not irreducible. Then the kernel of (2) is trivial if the inverse image

of Ry, in the universal cover of X gg has certain connectivity properties. Thus if

these hold true then 7 (X2]) is isomorphic to K (m (X2 n).

It is interesting to see that in all known examples (except the projection from
the Veronese surface of degree 4 - but this surface has to be excluded in many
situations of classical algebraic geometry) computed by Moishezon, Teicher and
others the kernel of (2) actually is trivial. Whether this is a coincidence or a
general phenomenon does not seem to be clear.

The author would like to note that he originally believed that the quotient of
(X gﬁ) he wanted to construct using the algorithm of Zariski and van Kampen
was K(m(X?T), n) and so a subgroup of 7, (X?*)", The appearance of (3) and
the second homology group was quite some surprise and seems still to be rather
mysterious.

One application where it is actually easy to compute the quotient given by (2)
is the case when we start with a simply connected surface X. In this case we can

also say something about 71 (X, ): Namely, suppose that the generic projection
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is defined by a line bundle £ on X. The degree n of f is precisely the self-
intersection number of £. If we denote by d the divisibility index of £ in the
Picard group of X then our quotients take the form

m (X)) -z

7T1(Xga1) —» Zdn72.

Detailed description of the sections

1 We have a glimpse on fundamental groups of complex algebraic curves and
surfaces. After that we give a rather sketchy motivation why complements
of divisors on P! and P? (may) give some insight into the classification
problem of algebraic curves and surfaces. Also, generic projections and
their Galois closures enter the picture.

2 We introduce the notion of a good generic projection that is a little bit more
restrictive than the usual notion of a generic projection.

After that we recall some general facts on Galois closures of (good) generic
projections. Important for this thesis are the results on the geometry of the
ramification loci due to Miyaoka and Faltings.

For a good generic projection f : X — P? we let fy : X — P2
be its Galois closure. We let ¢ be a generic line in P2 and let A2 be the
complement P2 — /. Then we define the following objects:

projective situation: f @ X — IP?
fear ¢ Xgal — P2
affine situation: o X=X ) — A2
fear @ XM= Xga — foa ') — A2

3 For a given group G and a natural number n > 3 we define (G, n) to
be the kernel of the homomorphism from G™ onto G?". The action of the
symmetric group &,, on n letters on G™ given by permuting the factors
respects /C(G, n). We then form the semidirect product of K(G,n) by &,
via this action:

1 - K(G,n) — &Gn) — 6, — L

We give some of the basic properties of K (G, n), prove a universality result,
and compute some examples.



4 We describe a certain quotient of the fundamental group of the Galois clo-
sure of a good generic projection.

This is done most naturally within the framework of Galois theory. We
have therefore given the proof in this setup yielding the result for the étale
fundamental group.

Given a generic projection from X of degree n with Galois closure X,
there is a short exact sequence

1 — 71-1()(gal) - 71-1()(gala Gn) - 671 — 1 (4)

coming from geometry. Here, 71 (Xga1, S,,) is a generalised fundamental
group that classifies covers of X, together with a G,,-action.

Using inertia groups we see that this short exact sequence partly splits. Then
we take a naturally defined quotient of this exact sequence to force a split-
ting. Using the universality result for JC(—, n) from Section 3 we then obtain
surjective homomorphisms

77-1()(ga1) - ]C(ﬂ-l(X)vn)
m (X)) - K(m (X)), n).

gal

This yields a proof of what we have said about the image of (1) above.

To make this proof also work in the topological setup we have to describe
how this generalised fundamental group can be defined topologically. To
achieve this we use ideas of Grothendieck’s [SGA1] and the notion of the
orbifold fundamental group.

Having introduced this machinery it is not complicated to carry the results
above for the étale fundamental groups over to topological fundamental
groups.

5 This is again a purely group theoretical and somewhat technical section
which is important for the main results of Section 6.

First we introduce the groups S,,(d), d > 1 that generalise the symmetric
groups G,,. These groups should be thought of as symmetric groups with d
layers, cf. Section 5.1. It turns out that S,,(d) for n > 5 is isomorphic to
E(Fa-1, n) where F4_1 is the free group of rank d — 1 and where £(—, n)
is as defined in Section 3.

For a finitely generated group G and a natural number n > 3 we choose
a presentation §4/N of GG. Using this presentation we construct a quotient
of £(F4,n) that we denote by £(G,n). Then we show that this quotient
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depends only on G and n and not on the presentation chosen. There is
a split homomorphism from £(G,n) onto &,, yielding a split short exact
sequence

1 — K(G.n) — EGn) — 6, — 1.
This construction is related to the one in Section 3 by a central extension
0 — Hy(G,Z) — K(G,n) — K(Gn) — 1

where H(G,Z) denotes the second group homology with coefficients in
the integers. Then we give some basic properties of (G, n) and compute
it in some cases.

In two appendices we discuss some elementary properties of the second
group homology and the connection of £(—, n) with some finite and some
affine Weyl groups.

We first recall the algorithm of Zariski and van Kampen to compute the
fundamental group of the complement of a curve in the affine or projective
complex plane.

In Section 4 we introduced a certain quotient to split the short exact se-
quence (4). We show how to use the groups S,,(d) introduced in Section
5 as a sort of frame when computing this quotient of (X gﬁ). Using the
isomorphism of S, (d) with £(§F4-1,n) of Section 5 we see that all relations
coming from a given generic projection lead exactly to a presentation of

K (7 (X?1), n). Hence we obtain a surjective homomorphism

P - R(r (X, n).

gal

The kernel of this map is the one needed to split (4). It is closely related
to connectivity results of the inverse image of the ramification locus R, of

. . aﬂ‘
fear in the universal cover of X gal-

Then we study what happens in the projective case. After that we apply our
results to generic projections from simply connected surfaces and end this
section by some general remarks on symmetric products.

In this short section we apply our results to good generic projections from
P2, P! x P!, the Hirzebruch surfaces and surfaces in IP*. For generic projec-
tions from geometrically ruled surfaces we can compute at least our quotient
for the abelianised fundamental group of the Galois closure.

We end this section with the discussion of a sufficiently general projection
from the Veronese surface of degree 4 in IP°. Here it is known that the kernel
of (2) is non-trivial.
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The quotations at the beginning of some of the sections form “Das Trinklied vom
Jammer der Erde* from the Chinese poet Li Bai. The German translation is from
Hans Bethge with some minor changes by Gustav Mabhler that he used for his
“Das Lied von der Erde*.
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three years. Last, but not least, I would like to thank Eike Lau and Inken Vollaard
for comments and pointing out some inaccuracies to me.
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1 A short reminder on fundamental groups

Wenn der Kummer naht,
Liegen wiist die Gdirten der Seele,
Welkt hin und stirbt die Freude, der Gesang.
Dunkel ist das Leben, ist der Tod.
1.1 Algebraic curves

Let C' be a smooth complex projective curve of genus g(C'). For g > 1 we define
the following group by generators and relations

g
Hg = <a1’bl,...,ag,bg| H[az,bz] — 1>
=1

Then it is known that

g(C) C'is isomorphic to % (C)
0 P! 1
1 anelliptic curve 7* (= 1I,)

> 2 acurve of general type Iy

Also the universal covers of algebraic curves are known: P! is homeomorphic to
the 2-sphere and its own universal cover. Elliptic curves are the quotient of R? by
Z?. Curves of general type are uniformised by the upper half-plane and so their
fundamental groups occur as subgroups of S Lo (R).

1.2 Algebraic surfaces

Now let .S be a smooth complex projective surface. Since the fundamental group
is a birational invariant of smooth varieties we can restrict ourselves to a suitable
minimal model of S. We denote by x(S) the Kodaira dimension of S. We recall
the Enriques-Kodaira classification (see e.g. [Bea] or [BHPV]):

k(S) S is birational to %P (S)

—oo  aP'-bundle over a smooth curve C' 7;°°(C)

0 a K3 surface 1
an Enriques surface Zy
an abelian surface 74
a bielliptic surface see below
1 an elliptic surface see below
2 a surface of general type unknown in general



We recall that a surface S' is called elliptic if there exists a flat morphism from
S onto a smooth curve C' such that the general fibre is a smooth elliptic curve.
The singular fibres of such a morphism can be singular curves (nodal or cuspidal
rational curves) and they can be multiple.

Now let S — C be a relatively minimal elliptic surface that has at least
one fibre with singular reduction. Suppose there are exactly £ multiple fibres
above points P, ..., P, of C' with multiplicities m, ..., my. By results of Kodaira,
Moishezon and Dolgachev there is an isomorphism

P (8) = w(C, {Pmi})

where "™ denotes the orbifold fundamental group (cf. Section 4.4 for a definition
of this group). We refer the reader to [Fr, Chapter 7] for details and references.

So if the Kodaira dimension « of a surface is less than 2 we have some ideas
of how its fundamental group looks like. For surfaces of general type the situation
is more complicated:

1. Smooth surfaces of degree > 5 in IP? are simply connected.

2. There are quotients of the latter surfaces by finite groups giving surfaces
with finite and non-trivial fundamental groups.

3. If € and () are two curves of genus g; > 2 and g, > 2, respectively then
(' x Cy has fundamental group I, x II,, which is non-abelian and infinite.

At the moment no pattern in the fundamental groups of surfaces of general type is
known. Also, it is unclear what these groups can tell us about the classification of
surfaces of general type.

We end this section by an example and refer the interested reader to [Hu] for
further details and references:

By the Bogomolov-Miyaoka- Yau inequality a minimal surface of general type
fulfills K2 < 9y where x denotes the holomorphic Euler characteristic. It is
not so complicated to find surfaces with K? < 8y using complete intersections,
fibrations or ramified covers. Moreover, Persson [Per] has given examples of
minimal surfaces of general type with y = a and K2 = b for almost all admissible
pairs (a, b) with a < 8b.

There where some hints and hopes that surfaces with K? > 8y are uni-
formised by non-compact domains. Maybe these surfaces were the analogues
of the curves of genus > 2 that are uniformised by the upper half-plane? This
lead to the so-called “watershed conjecture*:

Conjecture 1.1 (Bogomolov et al.) A surface of general type with K? > 8x has
an infinite fundamental group.



Miyaoka [Mi] gave a construction of surfaces of general type with K2 > 8y using
Galois closures of generic projections (cf. Section 2.2 for a precise definition).
He also showed that every surface has a finite ramified cover that is a surface of
general type with K2 > 8y.

Applying this construction to generic projections from P! x P!, Moishezon
and Teicher [MoTel] have shown that there is an infinite number of surfaces of
general type with K2 > 8y and trivial fundamental group that are not deformation
equivalent. In particular, Conjecture 1.1 is false:

Theorem 1.2 (Moishezon-Teicher) There do exist simply connected surfaces of
general type with K* > 8.

1.3 Complements of branch divisors

Another application of fundamental groups are complements of branch divisors.
Some of the following ideas go back to Riemann in the 19th century. We have
taken the presentation from [GH, Chapter 2.3]:

Let C' be a smooth projective curve of genus g > 2. Taking the complete linear
system to a divisor of degree n > 2g we get an embedding of C' into P"79 as a
curve of degree n. Choosing an arbitrary projection onto P! (linearly embedded
in IP"~9) we obtain a ramified cover

f:C — P!

of degree n with a branch divisor B C P! of degree 2n + 2g — 2. On the other
hand, to give a morphism of degree n from C' to P! we have to choose a divisor
D of degree n on C and a section of O¢ (D). So, at least heuristically, a curve of
genus g > 2 should depend on

(2n+2g—2) — (n+h°(C,0c(D)))
= 2n+29—2) — (n+(n—g+1))
= 39g—3

parameters - which is in fact the right number.
For 7, € P! — B we define a homomorphism

o WEOP(]Pl—B, rg) — 6,

where G,, is the symmetric group on 7 letters: We fix a numbering of the n points
in the fibre f~(z). If we lift a loop based at x, inside P' — Bto C — f~!(B)
we get a permutation of the points in the fibre and hence an element of G,,.

We now assume that f is “generic in the sense that the divisor B consists of
2n+2g — 2 distinct points and that there is no point with ramification index bigger
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than 2. Knowing B and the homomorphism ¢ we can reconstruct C' out of these
data since ¢ tells us how to cut and glue different copies of P! — B to get C.

The ideas outlined above may generalise in some way to surfaces:
We let D C IP? be the branch divisor of a generic projection f : S — P2 of
degree n > 5. In a similar fashion as above we define a homomorphism

TP (P2 - D, zy) — &,

and recover S out of these data by [Ku, Proposition 1]. Moreover, there is even
the following

Conjecture 1.3 (Chisini) Assume that D C P? is the branch divisor of a generic
projection of degree > 5. Then there is a unique generic projection having D as
branch divisor.

For the proof of this conjecture in some important cases and the work of Kulikov
and Moishezon on it we refer to [Ku].

There are still discrete invariants missing to distinguish between different com-
ponents of the moduli space of minimal surfaces of general type with fixed y and
K?2. The results above suggest that it may be possible to get such invariants out of
7°?(P? — D) where D is the branch curve of a generic projection.

So it may be that generic projections turn out to be important for the classifi-
cation of algebraic surfaces of general type.



2 Generic projections and their Galois closures

Herr dieses Hauses!

Dein Keller birgt die Fiille des goldenen Weins!
Hier, diese Laute nenn’ ich mein!

Die Laute schlagen und die Gliser leeren,

das sind die Dinge, die zusammen passen.

2.1 Sufficiently ample line bundles

Let X be a smooth projective surface over the complex numbers.
Definition 2.1 We call a line bundle L on X sufficiently ample if
1. L is an ample line bundle with self-intersection number at least 5,

2. for every closed point x € X the global sections H°(X, L) generate the
fibre
L./m}- L,

3. for any pair {x,y} of distinct closed points of X the global sections of L
generate the direct sum

Lo/m} L& L,/ m- L,

4. for any triple {x,y, z} of distinct closed points of X the global sections of
L generate the direct sum

Lyjm-L & Lyjm L& L,/ m? L.

To produce such line bundles later on we will use the following lemma that already
appeared as a remark in [Fa, Section 2]:

Lemma 2.2 If a line bundle is the tensor product of at least five very ample line
bundles it is sufficiently ample.

PROOF. Let £;, ¢« = 1,...,5 be very ample line bundles and M their tensor
product. Since the intersection of £; with £; for all 7, j is a positive integer it
follows that the self-intersection of M is at least 25 and so even bigger than 5.

For each closed point z € X the global sections of each £; generate the fibre
L;./m2 since L; is very ample. It follows that the global sections of £; ® L;
generate the fibre (£; ® L£;),/m> and that the global sections of £; ® £; ® Ly
generate the fibre (£; @ £; ® Ly,),./m?.



For two distinct closed points z,y € X there exists a global section of £;
that is non-zero in £, /m, and vanishes in £;/m,. Using such sections (“partitions
of unity*) and the results above we see that the global sections of M fulfill the
conditions of Definition 2.1. OJ

For his conclusions in [Fa] he also needed that K x ® £#? is ample. However,
this is automatic under our ampleness assumptions:

Lemma 2.3 Let L be a sufficiently ample line bundle. Then the line bundle K x ®
L3 is very ample.

PROOF. This is an application of Reider’s theorem [Re]: We denote by L the
class of £ in PicX. By assumption we have L? > 4 and so in particular (3L)% >
10. Since L is ample every curve F on X fulfills (3L)E > 3. Now, if the
linear system to Kx ® £%3 had a base point or if it could not separate (possibly
infinitely near) points, Reider’s theorem would provide us with a curve £ such
that (3E)L < 3 which is impossible. From this we conclude that the line bundle
Kx ® L3 is very ample. O

Definition 2.4 We let X be a smooth complex projective surface and we let L be a
sufficiently ample line bundle on X. Let E be a three-dimensional linear subspace
of H°(X, L). We call such a subspace generic if

1. E generates L, i.e. there is a well-defined finite morphism
f=fg : X — P(E)=DP?
of degree n equal to the self-intersection number of L,

2. the ramification locus R C X of fg is a smooth curve,

3. the branch locus D C P? of fg is a curve with at worst cusps and simple
double points as singularities and

4. the restriction fg|r : R — D is birational.
We call the finite morphism fr associated to a generic three-dimensional linear
subspace E a generic projection.

We denote by G(k, V') the Grassmannian parametrising k-dimensional linear sub-
spaces of the vector space V. To justify the name introduced in Definition 2.4
there is the following well-known

Proposition 2.5 Let L be a sufficiently ample line bundle on the smooth complex
projective surface X. Then there is a dense and open subset G’ of G(3, H°(X, L))
such that all E € G' are generic and determine generic projections.

A proof of this proposition under our ampleness assumptions can be found in [Fa,
Proposition 1]. U



2.2 Galois closures of generic projections

Let f : X — Y be a finite morphism between normal surfaces over the complex
numbers. Then f induces an extension of the function fields K (X)/K(Y) of
degree n = deg f. Let L be the Galois closure of this field extension. Its Galois
group is a subgroup of the symmetric group G,,. Let X, be the normalisation of
X (or, equivalently, of V) inside L. We denote by fe. : Xgu — Y the induced
morphism.

Definition 2.6 Given a finite morphism f : X — Y between normal surfaces
we call the normal surface X, together with its morphism fg @ Xgu — Y the
Galois closure of the morphism f : X — Y.

Now let X be a smooth complex projective surface and £ be a sufficiently ample
line bundle on X with self-intersection number n. The following result is again
well-known

Proposition 2.7 There exists an open dense subset G' of G(3, H°(X, L)) such
that for all E € G’

1. the map [ associated to F is a generic projection,

2. the Galois closure X, of f is a smooth projective surface,

3. the Galois group K (Xga)/ K (P?) is the symmetric group &,, and
4. the branch curve D C P? of fg is an irreducible divisor.

For a proof of this proposition in our setup we refer to [Fa, Proposition 1]. U

So let X be a smooth projective surface with canonical line bundle K x and let
L be a sufficiently ample line bundle on X. We denote by L and K x the classes
of £ and Ky in Num(X), respectively.

Proposition 2.8 Let E be a three-dimensional linear subspace of H°(X, L) that
belongs to the G' of Proposition 2.7. Let [ = fg be the corresponding generic
projection of degree n := L* and let [y : Xga — P? be its Galois closure.

1. The branch locus D C P? of f (and fg) is an irreducible curve of degree

d = KxL+3L*) = KxL+ 3n.

2. This irreducible curve D has § simple double points and r cusps, where

§ = d*/2 — 15d + 24n — 4K% + 12x(Ox)
K = 9d — 15n + 3K% — 12x(Ox)



For a proof we refer to [Fa, Section 4] or [MoTel, Chapter 0]. Ul

Since the existence of singularities on the branch curve of a generic projection
plays an important role later on we remark that

Lemma 2.9 Let f : X — P2 be a generic projection given by a sufficiently ample
line bundle L.

1. There is at least one cusp on the branch curve of f.

2. There exists a positive integer mq (depending on L) such that for all m >
my the branch curve of a generic projection with respect to L™ has at least
one simple double point.

PROOF. The degree of a generic projection f is equal to the self-intersection
number of £ which is at least 5. By a theorem of Gaffney and Lazarsfeld (quoted
as [FL, Theorem 6.1]) there exists a closed point x on X with ramification index
at least 3. The image f(x) of x lies on the branch curve D of f and D necessarily
has a cusp in such a point.

The number of simple double points of a branch curve of a generic projection
with respect to the line bundle £%™ is a polynomial of degree 4 as a function of
m tending to +00 as m tends to +o0o. Hence there exists a positive integer m as
stated above. U

2.3 Questions on connectivity

Definition 2.10 We let G,, be the symmetric group on n letters. Then we denote
its subgroup of permutations fixing the letter i by 6](01)71.

Definition 2.11 For a permutation of G,, we define its support to be the largest
subset of {1, ..., n} on which it acts non-trivially. We say that two permutations are
disjoint or nodal if their supports are disjoint. In the case where their supports
intersect in exactly one element we say that they are cuspidal.

We let £ be a sufficiently ample line bundle on the smooth projective surface
X. We let E be a three-dimensional linear subspace of H°(X, £) belonging to
the G’ given by Proposition 2.7. We let f = fg : X — P? be the corresponding
generic projection of degree n and denote by fya : Xga — P? its Galois closure.

We denote by Ry, C Xga the ramification divisor of f,,. We know from
Proposition 2.7 that the symmetric group &,, acts on X,,;. For a transposition 7
of G,, we consider the following components of Ry;:

R, = Fix(r) = {z € Xgu, 72 =1}

Then there is the following result



Proposition 2.12 Let L be a sufficiently ample line bundle on X and let f =
fre : X — IP? be a generic projection coming from a three-dimensional linear
subspace E € G' with G' as in Proposition 2.7. We furthermore assume that the
branch curve of f has a simple double point. Then

1. The R,’s defined above are smooth and irreducible curves.

2. The ramification locus Ry Of fga1 is the union of the R.’s where T runs
through the transpositions of G,,.

3. If i and T are disjoint transpositions then R, and R., intersect trans-
versely. These intersection points lie over simple double points of D and
there is no other component of Ry, through such points.

4. If m; and Ty are cuspidal transpositions then R, and R., intersect trans-
versely. These intersection points lie over cusps of D and the only other
component of Ry, through such points is R, ;.7 -1 = R,z -1

For a proof we refer to [Fa, Lemma 1] and [Fa, Section 4]. We note that a less
precise statement without proof was already made by Miyaoka [Mi]. U

Definition 2.13 Let L be a sufficiently ample line bundle on a smooth projective
surface X. We call a generic projection f = fr : X — P? associated to a
three-dimensional linear subspace E € G’ with G’ as in Proposition 2.7 a good
generic projection if the branch curve of f has a simple double point.

By Lemma 2.2 the tensor product of five very ample line bundles is sufficiently
ample. Twisting a sufficiently ample line bundle with itself at least m times with
mg as in Lemma 2.9 we arrive at a line bundle £’ such that there is an open dense
subset of G(3, H°(X, L)) giving rise to good generic projections.

It is in this sense that a “sufficiently general three-dimensional linear sub-
space of the space of global sections of an ample line bundle gives rise to a good
generic projection for “almost all*“ ample line bundles.

We let f : X — IP? be a good generic projection of degree n with Galois
closure fga : Xgu — P2 Let £ be a generic line in P2, i.e. a line intersecting D
in deg D distinct points. We then define

A? = P2—y,
X = fY(A?),
ng = fea (A7),

We let p : YT — X2% be a topological cover of X2 or p : ¥ — X, be a
topological cover of X,,;. Then for all transpositions 7 of &,, the inverse image

p~!(R,) is a disjoint union of smooth and irreducible curves.
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Question 2.14 Is it true that for distinct transpositions T, and T, every irreducible
component of p~(R,,) intersects every irreducible component of p~*(R,,) ?

In this thesis we want to compute the fundamental groups W‘{Op(Xgal) and
P (X gﬁ). The main result (Theorem 6.2) is that there is always a surjective
homomorphism N

mP (X)) > K(m™ (X)), n)
where K (—, n) is the group-theoretic construction defined in Section 5.3.
Now, if Question 2.14 has an affirmative answer for all topological covers of

X gfl then the kernel of this surjective homomorphism is trivial.
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3 Semidirect products by symmetric groups

Ein voller Becher Weins zur rechten Zeit
Ist mehr wert, als alle Reiche dieser Erde!
Dunkel ist das Leben, ist der Tod.

3.1 Definition of /IC( — ,n) and £( — ,n)
Let GG be an arbitrary group and n > 2 be a natural number. We denote by 6 the
permutation representation of the symmetric group &,, on G™ given by
g : 6, — Aut(G™)
g = (0(0) : (gla"'agn) = (90'*1(1)7"'79071(71)))
Then we form the split extension of groups with respect to ¢

1 - G" —- G"x96, — 6, — 1

and denote by s : G,, — G™ xy G, the associated splitting.

We define the subgroup £(G,n) of G xy &, to be the group generated by
all conjugates of s(S,,) and define (G, n) to be the intersection G™ N E(G, n).
Hence we get a split extension

1 - K(G,n) — &G,n) — 6, — L

We give another characterisation of these groups in Proposition 3.3.
More generally, let S be a subgroup of G,,. Then we define
E(G,n)s = (gs(o)g '|GgeG"o€S) < &G, n)
K(G,n)s = E(G,n)sNK(G, n) <4 K(G, n)

These subgroups remain the same when passing to a G"-conjugate splitting. We
will therefore suppress s in future. Clearly, (G, n) g is always a normal subgroup
of G" and (G, n).

In the notation introduced in Definition 2.10 we have the following equalities
and isomorphisms:

E(G,n)s, = E(G,n)
E(G, n) E(G,n—1) forn>3

12

&,

and similarly for IC(—, n).

Later on we have to deal with subgroups of KC(G,n) that are generated by
K(G,n)-conjugates of a subgroup S of &,, rather than G"-conjugates. Fortu-
nately, we have the following

11



Lemma 3.1 Let S be a subgroup of S,,, n > 3 that is generated by transpositions.

Then
EG n)s € (FogllgeGr oes)
— (Fog|geK(G, n),0€S)
K(G, n)s © (g o]|jeGoeS)

= (lg, ollg € K(G, n),0 € 5).

Moreover, it is enough that o runs through a system of generating transpositions
of S in the expressions above.

PROOF. We will first assume that S = (7) for the transposition 7 = (12) of &,,.
For (g1, ..., 9») € G™ we calculate

(gla X gn)7(91, e gn)il = (9192717 9291717 L. 1)7-'

In this case the subgroup K (G, n)g of G™ is generated by (¢,¢7 1, 1,...,1), g € G.
Since we assumed n > 3 we may consider the element (g,1,¢97%,1,...). By
applying the previous calculation to the transposition (1 3) this is also an element
of K(G,n). From

(g7 179_17 17 R 1)7-(97 1’9_17 17 et 1)_1 = (g?g_17 17 et 1)7-

we deduce that (Gog ' |G € K(G,n),o € S) is generated by the same elements
as £(G,n)s. So both subgroups are equal. A similar calculation yields the result

for IC(G,n)s.

We now let S be a subgroup of &,, generated by transpositions. Then we can
write 0 € S as a product 7y - ... - 74 of transpositions all lying in S. For g € G"
we get

d d
ﬁa§_1:§<H7‘i> §_1:H§Ti§_1.
, =

We have seen above that all ;G ' can be written as products of of conjugates of
7, under K(G,n). So gog ' can be written as a product of (G, n)-conjugates of
elements of S.

To prove the remaining assertion we assume that 0 € S can be written as a
product of d transpositions of S. The case d = 1 was already done above. We can
find a transposition 7 and an element v that can be written as a product of strictly
less that d transpositions such that ¢ = 7 - v. Then also 77! can be written as a
product of strictly less than d transpositions and writing

1

[ga TV] = [gvﬂ ’ T[g7 V]Til = [gaT] ’ [Tg;T* 7TVT71]

we can apply induction. O

12



Remark 3.2 The assumption n > 3 is crucial:
1. Ifn=1then £(G,1) = K(G,1) = L.
2. Ifn =2 then K(G, 2) is the subgroup of G* generated by (g,g*) and

(Gog— |G € G* o€ &) = ((g.97).9€G) = K(G,2)
(Gog~' g e K(G, 2),0€63) = ((9°.97°)9€G) < K(G,2).

So in this case it depends on the structure of G whether these two subgroups
coincide.

3.2 Properties
There exists a quite different description of X(—, n) given by the following

Proposition 3.3 Let n > 2 be a natural number and G be an arbitrary group.
Then
K(G,n) = ker ( G" — GaP )
(91, 90) = g1 Gn
as subgroups of G™.

PROOF. Lemma 3.1 tells us that IC(G, n) is generated by elements of the form
(1,..,1,9,1,...,1,9g7% 1,...,1). Since these elements lie in the kernel of the map
G" — G? it follows that we already have K(G,n) < ker(G™ — G?P).

Conversely, suppose that (g, ..., g,) lies in the kernel of G* — G#P. Multi-
plying by (1, ..., gn, g, ') we obtain an element of the form (g, ..., g, ;,1). We
multiply this element by (1, ..., 1,9/ ,,g. ;. 1). Proceeding inductively, we see
that every element of ker(G™ — G®) can be changed by elements from (G, n)
to an element of the form (¢}, 1, ..., 1). Then necessarily ¢} € [G, G]. This means
that ¢/ is a product of commutators. Since n > 2 we can write a commutator as a
product of elements of (G, n):

[(h1,1, .., 1), (ho, 1, ..., 1)]
- (h17 h1—1’ 1, ceey 1) (hQ, h2_1, 1, ceey 1) ((hzhl)_l, (hzhl), 1, ceey 1)

For computations later on we remark that for n > 3 such a commutator is even a
commutator of elements of (G, n):

[(h1,1,..,1), (ho,1,..,1)] = [(h1, hi™ 11,0, (hoy 1, Rt 1,00)).

Hence every element of ker(G™ — G®) is a product of elements of X (G, n). This
proves the converse inclusion and so we are done. U
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The following proposition provides us with a couple of short exact sequences.
They turn out to be useful for calculations later on.

Proposition 3.4 Let n > 2 be a natural number. We denote by p; the projection
from G onto its i.th factor.

1. Let T be a transposition that moves the index i. Then p; induces a surjective
homomorphism
pi

IC(G, n)<7) - G.

If G is abelian then this is an isomorphism of groups.
2. Forn > 3 the projection p; induces a short exact sequence

1 — K(G,n) - KG,n) % ¢ — 1.

s,
This allows us to recover G from K(G, n).
3. Combining the projections 7 := py X ... X p, we obtain an exact sequence
1 - [G,G] - K(G,n) & @' — 1L
In general this exact sequence is not split as Example 3.11 shows.

PROOF. We will assume i = 2 and 7 = (12) € &,,. We have already seen in
the proof of Lemma 3.1 that K'(G, n) -y equals to the subgroup of G" generated
by (g7%,9,1,...,1). (For this statement it suffices to assume that n > 2.) The
projection p, of G™ onto its second factor induces a surjection of (G, n) ;) onto
(G. We can split this projection by the (set-theoretical) map

G — ’C(G,n)<7)
g = (971797]‘77]‘)

! is a homomorphism.

proving the surjectivity of p,. If G is abelian then g — g~
In this case p, and its splitting are isomorphisms.

From Proposition 3.3 we conclude that ker p; N (G, n) is equal to the kernel
of the restriction of G" — G*» to kerp; = [G", S ,]. But this is precisely

K(G,n), 65?_1] proving the second exact sequence.

Given an element (go, ..., g,) € 7(G") we set g1 = (ga ... - g,)~ . By
Proposition 3.3 the element (g1, go, ..., g,) lies in (G, n) and maps to (g, ..., gn)
under 7. This proves that 7 is surjective. An element of ker 7 is of the form
(g1,1,...,1) and if this element also lies in (G, n) Proposition 3.3 tells us that
g1 € [G,G]. On the other hand, given an element g; € |G, G| then (g1, 1,...,1)
lies in /C(G, n) by Proposition 3.3 and also in the kernel of 7. This is enough to
prove the third short exact sequence. 0
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Corollary 3.5 Letn > 2.
1. If G is abelian, i.e. [G,G] = 1, then K(G, n) = G 1.
2. If G is petfect, i.e. |G,G| = G, then K(G, n) = G".
PROOF. Let GG be abelian. Then we define a map from G"~! to G" via
Gn—1 _ an
(G150 gn-1) = (G5 G5 (g1 oo Gn1) 7).

Since G is abelian this defines a homomorphism of groups. Clearly, it is injective.
The image of G™ ! lies inside (G, n) by Proposition 3.3. Also all elements of the
form (1,...,9,1,..,1,¢7% 1,...) lie in the image. By Lemma 3.1 these elements
generate KC((G, n) and so this homomorphism is surjective.

If G is perfect then G* = 1 and so ker(G™ — G#) = G™. O

We denote by P,, the permutation representation of G,, on Z". This is the
same as the representation induced from the trivial representation of 65}21. Inside
P,, we form the direct sum of Z(1, ..., 1) with trivial S,,-action and the &,,-stable
hyperplane .

Pn - {(kl, ceey k’n) € Zn | Z?:l kfl = 0} .

After tensoring with Q this defines a decomposition of P,, ®z Q as direct sum of
the trivial representation and the irreducible representation 75n Rz Q.

From Proposition 3.3 we then get the following description of K(—,n) for
abelian groups in terms of the representation theory of the symmetric group G,,:

Corollary 3.6 There exists an isomorphism of Z[S,,)-modules
K(Z,n) = P,.
Moreover, for every abelian group G there is a S,,-equivariant isomorphism
K(G,n) = G®zPn.

The following corollary shows that /C(—, n) inherits many of the properties of
the group we plug in:

Corollary 3.7 Let n > 2 and consider the following properties of groups:
abelian, finite, nilpotent, perfect, solvable.

Then G has one of the properties above if and only if IC(G,n) has the respective

property.
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PROOF. If GG is abelian (resp. finite, nilpotent, solvable) then so is (G, n) being
a subgroup of G". If G is perfect then (G, n) = G™ which is perfect.

By the first exact sequence of Proposition 3.4 there exists a surjective homo-
morphism from (G, n) onto G. So if (G, n) is abelian (resp. finite, nilpotent,
perfect, solvable) then so is GG being a quotient of (G, n). O

We finally give some basic functoriality properties of our construction:

Proposition 3.8 Let n > 2 be a natural number and let G, G5, G be arbitrary
groups.

1. If Gy — Gy is an injection then so is K(G1, n) — K(Gaz, n).
2. If Gy — Gy is a surjection then so is K(G1, n) — K(Ga, n).

3. If G is a semidirect product then so is KC(G,n). However, the functor
KC(—, n) is not exact in the middle as Example 3.11 and Example 3.13 show.

4. ’C(Gl X GQ, n) = K(Gl, n) X IC(GQ, n)
5. If G is an abelian group then

K(Gv n)tors = ’C(Gtors, TL)
K(Ga n) Xz Q = K(G Xz Q, n)

where —..s denotes the torsion subgroup of an abelian group.

6. Forn > 3 the natural homomorphism from (G, n)* onto K(G®",n) is an
isomorphism. The assumption n > 3 is needed as Example 3.12 shows.

PROOF. Weassumethatl — K — G — ) — 1isexact. Then also the induced
sequence 1 — K" — G" — " — 1 is exact. This induces homomorphisms
(notation as in the beginning of this section)

Kn><196n — Gn><196n — QnXlan

and induces injections £(K,n)—E(G,n) and K(K,n)—I(G,n). This proves
the first assertion (we do not need the normality of K in G in this step). The
group £(Q,n) is generated by &,, and commutators [¢, 0], ¢ € Q. Since G—Q)
is surjective we see that £(G, n)—E(Q, n) is surjective since we can lift elements
of &,, and commutators. Similarly we see that (G, n)—/K(Q, n) is surjective.

If G is a semidirect product then there exists a split surjection G—(). This
map induces a split surjection IC(G,n)—K(Q,n). Therefore also (G, n) is a
semidirect product.
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The assertions about the torsion and the free part of an abelian group follow
immediately from Corollary 3.5.

The surjection G— G2 and the universal property of abelianisation imply that
there is a natural surjective homomorphism (G, n)**— (G n):

1 - KGn — G — G* — 1
l 1= I
1 — K(Gab’ TL) N (Gab)n N Gab - 1

An element of the kernel K(G,n) — K(G?",n) is also an element of the kernel
of G — (G*)™ which is [G, G]". Since we assumed n > 3 every commutator
(1,...,1,[h1, hol, 1..., 1) lies not only in (G, n) but is even a commutator of el-
ements of (G, n), cf. the proof of Proposition 3.3. This implies that the kernel
of K(G,n) — K(G,n)* is the commutator subgroup of K(G,n). Hence the
canonical homomorphism from (G, n)? onto (G, n) is an isomorphism for
n > 3. 0J

3.3 Universality

We assume that we are given a group X and a homomorphism ¢ : &,, — Aut(X)
with n > 3. Then we form the semidirect product

We consider G,, as a subgroup of the group in the middle via the associated split-
ting. For a subgroup S < &,, we denote [X, S| by Xs. Again, Xg is a normal
subgroup of X and does not change if we pass to an X -conjugate splitting.

Proposition 3.9 Let ¢ : G, — Aut(X), n > 3 be a homomorphism and let
1 - X - Xx,6, - 6, — 1
be the split extension determined by @. If we define
Y = Xg,/X

e
then there exists a commutative diagram with exact rows
I - Xs, — Xg, %6, — 6, — 1
l ! I
1 - KY,n) — KY,n)x6, — &, — 1

where all homomorphisms downwards are surjective. Moreover, we have an exact
sequence

1 — ﬂ?leG(i) — X@n — IC(Y,TL) — 1.
n—1
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PROOF. We will consider the projections p; : Xg, — Xg, /X ORI
n—1

Every 0 € G,, induces via conjugation an isomorphism
Xe,/[Xgir  — Xe,/Xgew
n—1 n—1
T — oro!

(i

We claim that this isomorphism depends only on the coset &,/ Gn)_lz
Ifo e 65?_1 then we compute

x mod X_s» +— oxo ' mod X _u
6n—1 6n—1

1 o] mod X

= zfx &,

So in this case, the induced automorphism is just the identity and we will identify
the different quotients X g, /X s via these isomorphisms in the sequel.
n—1

Combining the different projections p;, we obtain a homomorphism
p o Xe, — I Xeo/Xgow = V"

with kernel kerp = "}, X & -
n—1
We will show that the &,,-action on X s via ¢ is compatible via the projection
p with the &,,-action on Y via # as described in Section 3.1: Let 0 € &,, and
x € X. Then we calculate

Pl(0)@) = plo)(x) mod X
= oxo~' mod XGSL
= = mod 0_1X6£:-)_10

pafl(z‘)@)
0(o)pi(),

i.e. the homomorphism p is &,,-equivariant.

By the same calculations as in the proof of Lemma 3.1 we see that X is
generated by elements [z,7] = - o(7)(2z~!) where x runs through X and 7
runs through the transpositions of G,,. Hence the image of p is generated by the
elements [p(z), 7] = p(x) - 0(7)(p(x) ') and therefore lies inside (Y, n).

We define 7; := (1i) for @ > 2. Then the second isomorphism theorem of
groups yields
X, X
1 — 67’1 g }/’
A0 Xep, A,
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For j # 1, j > 2 the group X, is a subgroup of X so we see that we can in

S
fact construct a surjective homomorphism

P2 X .. Xp, @ Xg, —» YL

We have already seen in the proof of Lemma 3.1 that (Y, n) is generated by the
elements [(1,...,1,y,1,...), 7] withy € Y.

Solet 7 = (23) and y € Y be arbitrary. By what we have just proved and
using n > 3 we can find © € X with py(z) = y and p3(x) = 1. Then

Y forv =2
pilz, 7)) = pi(z - o(r)(2™h) = ¢y fori=3
1 else.

From this we see that all [(1,...,1,y,1,...),7], i.e. a system of generators of
K(Y, n) lies in the image of p. This proves the surjectivity of p : Xg, — (Y, n).
The rest about commutativity of the diagram is straight forward. U

In particular, we can apply this result to (—, n) and its &,,-action. The fol-
lowing result shows that C(—, n) is in some sense a universal construction:

Corollary 3.10 If X = K(G,n) withn > 3 and ¢ is the &, -action that comes
with IC(G, n) then
Xs, =X and Y =(G.

Moreover, the homomorphism
X = X@n — lC(Y, Tl)
given by Proposition 3.9 is an isomorphism in this case.

PROOF. The fact that Xg, = X follows from Lemma 3.1. Using the second
short exact sequence of Proposition 3.4 we see that Y = (.
If we use the fact that

K(G,n) K(G,n) N (G x {1} xGri+l) < G»
—~—

i.th position

&,

then it is clear that the intersection of all (G, n) overi = 1,...,n is trivial.

o,
Hence the homomorphism from X = X, onto K(Y, n) is an isomorphism. [
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3.4 (Counter-)Examples

We now compute some examples apart from those given by Corollary 3.5. They
also provide counter-examples to some naive ideas the author had about the short
exact sequences of Proposition 3.4 and further functoriality properties apart from
those given in Proposition 3.8.

We refer to Section 5.6 for further examples and a connection of £(—, n) with
the theory of Coxeter groups.

Example 3.11 Let n > 2 be a natural number. Let Doy, be the dihedral group of
order 2k. This group is a semidirect product of the cyclic group Z. by Z.s.

1. Ifk =1 mod 2 then K(Dyy,, n) = Zj x (Do ).

2. If k =2 mod 4 then K(Day,, n) = Zyjo X (Do ).

3. Ifk =0 mod 4 then K(Dak, n) = (Zyjs X Zy"™") x Zy" .
We remark that

1. In the first two cases the exact sequence of Proposition 3.4 splits whereas
this sequence is not split for k =0 mod 4 andn > 3.

2. The subgroup KC(Zy, n) of K(Day, n) is not normal.

3. Even though K(Day, n) is a semidirect product it is not not a semidirect
product of K(Z, n) by K(Z2, n).

PROOF. We will use the presentations
Dy, = (s,d|s* =d" =1,sds =d™ "), Zy = (d|d* = 1), Zy = (s]|s* = 1).

The commutator subgroup [Day,, Doy | equals (d?).
If k is odd we then get [ Doy, Do = (d) = Z,,.. We can split the exact sequence
of Proposition 3.4 by sending for i = 2, ..., n the elements d, s € Dy, to

¢i(d):=(1,...,1,d,1,..;1) and ¢4(s) :=(s,1,....,1,5,1,....1)

(in both cases there is a non trivial entry in the 7.th position). After checking that
¢i(Dar) < K(Dagx,n) we see that this splits the projection Dy, — Doy onto the
i.th factor. Also it is easy to see that ¢; and ¢,; commute for ¢ # j. This already
proves the assertions in case k is odd.

For k even we have Doy, Do) = (d?) = Zy>. To obtain a splitting of the
exact sequence of Proposition 3.4 we have to set fori = 2,...,n

bi(s) == (sd*,1,...,1,8,1,...,1) and ¢;(d) := (d",1,...,1,d,1,...,1)
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since the product over all components has to lie inside [Day,, Day] = (d?). For ¢;
to map into KC(Day, n) it is necessary that b; is odd and that a; is even for all 7. For
n > 3 and ¢ # j to ensure that ¢;(s) and ¢;(d) commute we must have

sd% - d% = d% . sd%

ie. a; +b; = a; —b; mod k. This implies that 2b; = 0 mod % and so b; = 0
mod (k/2). Together with b; = 1 mod 2 we see that we cannot find a solution
for b; if k/2 is even, i.e. if k is divisible by 4. So for n > 3 and 4|k the sequence
cannot be split.

If k£ is even and not divisible by 4 we can set

di(s) == (s,1,..,1,5,1,...,1) and  ¢;(d) := (d*/* 1,...,1,d,1,...,1)

and thus obtain a splitting for KC( D, n) in this case. This proves our assertions
for k =2 mod 4.

From Proposition 3.8 we conclude that C( Dy, ) is a semidirect product of
S := K(Dqy,n) N Z;" (we intersect inside Doy™) by K(Zy,n) = Zy" L. It is
easy to see that S contains K(Zy,n) and (..., 1, ¢, 1, ...) with g € [Day, Doi]. But
(...,1,d,1,...) cannot lie in .S because it is not even an element of /C(Day,n).
This implies that S is generated inside Z;" by the elements (..., 1,d? 1,...) and
KC(Zy, n). This is enough to identify S as Z o x Z;" . O

Example 3.12 Let (Qg be the quaternion group and Dg = D-.4 the dihedral group
of order 8. Then there are isomorphisms

K(Qs,2) = ZyxQs and  K(Ds, 2) = Zsx D,
In particular, we have K(G®, 2) % K(G, 2)2 for G equal to Dg or Qs.
PROOF. We will use the presentation
Qs = (a,b|a* =1,b> =a* bab™ ' =a™').

The commutator group [Qs, Qs] equals (a?). So we get Qs = Z,? and therefore
K(Qg®,2) = 7,2

We see that K(Qg, 2) is generated inside Qg* by the elements = := (a™', a),
y := (b71,b) (giving a set theoretical section of Qg to K(Qs,2)) and 2z := (a?,1)
(being a generator for the kernel of the surjection IC(Qsg, 2)—Qs). It is easy to
see that (z,y) = Qg and that (z) commutes with (x,y). Now K(Qs, 2) has order
16 being an extension of [Qs, Qs] = Zy by (Q)s. Therefore there are no further
relations among the x, y, z and there exists an isomorphism K(Qs, 2) = Zs X Qs.
In particular, K(Qg, 2)?" is isomorphic to Z3.

The proof for Dy is similar to the case of () and is left to the reader. L]
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Example 3.13 Let Qs be the quaternion group. We denote by Z(()g) the centre
of Qs. Then the short exact sequence

1 - Z(Qs) — Qs — ZoxZy — 1
induces for all n > 3 a sequence
1 - K(Z(Qs),n) — K(Qs,n) — K(ZyxZyn) — 1

that is not exact in the middle.

We remark that KC(Z(Qs), n) is a normal subgroup of K(Qs, n).

In particular, also the subgroup of K(Qs, n) generated by the conjugates
of K(Z(Qg), n) does not give the kernel of the surjective homomorphism from
K(Qs, n) onto K(Zo x Zs, n).

PROOF. Using the presentation of (Jg as in Example 3.12 we have Z(Qs) =
(a*) = (b*). We can identify K(Z(Qs),n) with the subgroup of Z(Qg)" where
the product over all components equals 1.

Since Z(Q)s) is the centre of Qs we see that K(Z((Q)s), n) is a normal subgroup
of 5" and hence also a normal subgroup of (Qs, n).

The kernel of the surjective homomorphism KC(Qg, n)—/C(Z2 X Zs, n) equals
K(Qs,n) N Z(Qs)™. However, the element (a?, 1, ..., 1) lies in this kernel but not
in K(Z(Qs),n). O
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4 A first quotient of 71 (X,a1) and 71 (X3,

Das Firmament blaut ewig, und die Erde
Wird lange fest steh’n und aufbliihn im Lenz.
Du aber, Mensch, wie lang lebst denn du?
Nicht hundert Jahre darfst du dich ergotzen
An all dem morschen Tande dieser Erde!

4.1 Etale and topological fundamental groups

In this section we recall some well-known facts that can be found e.g. in [SGAI,
Exposé XII].

Let X be an irreducible normal scheme of finite type over the complex num-
bers and let X*" be its associated complex analytic space. Then we consider the
following three categories:

1. The objects are connected and finite étale covers Y — X where Y is an
algebraic scheme and the morphisms are morphisms of schemes over X
between these covers.

2. The objects are connected holomorphic covers ) — X" where ) is a
complex space and the morphisms are holomorphic morphisms of complex
spaces over X " between these covers.

3. The objects are connected topological covers ) — X?" where ) is a topo-
logical space and the morphisms are continuous maps of topological spaces
over X*" between these covers.

The relationship between these three categories is as follows:
- Given a finite étale cover p : Y — X by a scheme Y this induces a finite
holomorphic cover p*" : Y — X3,
Moreover, every algebraic morphism between finite étale covers of X in-

duces a unique holomorphic morphism between their analytifications.

- Every holomorphic cover is also a topological cover and every holomorphic
map is continuous.

- Every topological cover of X?" can be given a unique structure of a complex
space such that the projection map onto X" becomes holomorphic.

Moreover, every continuous map between holomorphic covers over X *" can
be given a unique structure of a holomorphic morphism.
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- By Riemann’s existence theorem every finite holomorphic cover ) — X"
is algebraic, i.e. there exists a finite étale cover p : Y — X by an algebraic
scheme Y such that the associated analytification is isomorphic to ) —
Xon,

This implies that there is an equivalence of categories between the category of
holomorphic covers of X?" and the category of topological covers of X*". Both
categories can be described in terms of discrete sets with an action of the funda-
mental group 7.°° (X", ;) on it where x is a point of X"

As explained in [SGA1] there exists a profinite group w$( X, z) that classifies
connected and finite étale covers of X.

By the above the category of finite étale covers of the scheme X is equivalent
to the full subcategory of finite holomorphic covers of the category of holomorphic
covers of X", So there is a natural homomorphism 7;°? (X" ) — 7(X, 2¢)
that identifies the finite quotients of both groups. Hence this map induces an
isomorphism -

WEOP(Xanv xO) = ﬂ-(lét(Xv xO)
where ~ denotes the profinite completion of a group.

The homomorphism of a group to its profinite completion is in general not
surjective as the example Z — 7 shows. However, the image of a group inside
its profinite completion is always dense with respect to the profinite topology.
We recall that a group G is called Kesidually finite if the natural homomorphism
from G to its profinite completion G is injective. There do exist finitely presented
groups that are not residually finite, e.g. Higman’s 4-group [Se, Chapter 1.1.4].

Serre asked in loc. cit. whether there are complex algebraic varieties that have
non-residually finite fundamental groups. The facts are as follows:

1. If X is a smooth complex projective algebraic curve then 7,°° (X, ) being
a subgroup of SLy(R) is residually finite (cf. [LS, Proposition II1.7.11] and
Section 1.1).

2. If X is a smooth complex affine algebraic curve then 7;°"(X, x) is a free
group and hence residually finite.

3. Toledo [To] constructed smooth complex projective algebraic surfaces with
fundamental groups that are not residually finite.

So having proven Theorem 4.3 there is no way to deduce from it the corresponding
statement for topological fundamental groups since we are dealing with algebraic
surfaces and so the fundamental groups involved may not be residually finite.
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4.2 The quotient for the étale fundamental group

For the following quite elementary treatment of étale fundamental groups in terms
of Galois groups and the arguments on inertia groups used we refer the reader to
the book of H. Popp [Popp] for proofs and details.

We let f : X — IP? be a good generic projection of degree n with Galois
closure fga1 @ Xga — IP2. We define the following function fields:

L = function field of X,
K := function field of X
k.= function field of P2

We will assume that they are all contained in a fixed algebraically closed field €.
We have already seen in Proposition 2.7 that the Galois group of L/k is isomor-
phic to the symmetric group G,,. We may assume that K is the fixed field of 6;1_)1
in the notation of Definition 2.10.

We denote by K™ the maximal unramified extension of K i.e. the compositum
of all finite field extensions inside {2 of K such that the normalisation of X in
these fields is étale over X. We similarly denote by L™ the maximal unramified
extension of L and by k™ the maximal unramified extension of k. Of course, we
have k™ = k. But for later generalisations it is better to use this fact as late as
possible.

More or less by definition of the étale fundamental groups there are isomor-
phisms of profinite groups

T ( Xga) = Gal(L™/L) and 78(X) = Gal(K™/K).

To be more precise, there is an isomorphism of 7¢¢( X, Spec 2) with the opposite
group Gal(K™ /K) that depends on the choice of the embedding of K into €.
Of course there are similar dependencies for 7¢'(X,,1) and 7'(P?). So we fix
Spec €2 as base point for all étale fundamental groups occurring in this section.
Since we fixed €2 and embeddings of the fields &k, K, L, k™, K™ and L™ into §2
we will not mention base points and identify the étale fundamental groups with
their corresponding Galois groups with these choices understood. We refer to
Section 4.3 for more details on these choices.

Both extensions L/k and L™ /L are Galois. It is easy to see that L™ /k also
is a Galois extension: The Galois closure of L™ /k would have to be unramified
over L i.e. must be contained in L™. Hence there is a short exact sequence

1 — Gal(L™/L) — Gal(L™/k) — Gal(L/k) — 1

with Gal(L/k) & &,.
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We let Y be a connected and finite étale cover of X, with function field M
that we will assume to be Galois over & and to be a subfield of €2. We let R be the
coordinate ring of a generic open affine subset of P2, so that in particular k is the
field of fractions of R. We let S be the integral closure of R inside L and let 7" be
the integral closure of R inside M. Since f : X — P?is a good generic projection
the branch locus D is an irreducible curve inside P? and hence corresponds to a
prime ideal p of height 1 of R. From Proposition 2.12 we see that p splits in .S
into a product

p = [L%

where 7 runs through the transpositions of &,, and the 3..’s correspond to the
irreducible curves R, as defined in Section 2.3. Since 7" is étale over S the 3, ’s
do not ramify in 7. Each ‘I3, splits into a product of Q,,’s ¢ = 1,..., ¢ where {
divides the degree of the extension M /L. We thus get the following picture:

varieties: P? — Xg Y
function fields: k C L C M
coordinate rings: R C S - T
prime ideals: p = LB = Il IL 9%

Since the ramification indices e(3./p) = e(Q,,/p) are all equal to 2, we con-
clude that the inertia groups are subgroups of Gal(M /k) isomorphic to Z,. Under
the natural homomorphism Gal(M /k)—&,, the non-trivial element of the inertia
group of Q. ; maps to 7.

Galois theory provides us with the following two short exact sequences:

1 - Gal(M/L) — Gal(M/k) — Gal(L/k) — 1
| T T
1 - Gal(M/L) — Gal(M/K) — Gal(L/K) — 1

The arrows upwards are injective. We identify Gal(L/k) with &,, and Gal(L/K)
with & .

We let NV be the subgroup of Gal(M/K) normally generated (with respect
to Gal(M/K)) by the inertia groups of all prime ideals 9, ; lying above prime
ideals 3, with 7 € & :

NO = < I(Q,,)|Vi,vresl, > < Gal(M/K).

If we view N as a subgroup of Gal(M /k) then it maps to &', under the homo-
morphism onto Gal(L/k). Hence the fixed field Fix(N (™) is a Galois extension
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of K. The normalisation of X inside Fix(N(") is a finite étale cover since we
quotiened out all inertia groups. Hence it is contained in the field M N K™ where
we intersect these fields inside €2. Conversely, there is a surjective homomorphism
from Gal(M/K') onto Gal(M N K™ /K). Since the inertia groups cannot survive
under this surjection we conclude that N ™) must be contained in the kernel of this
homomorphism. Putting this together we see that there is a short exact sequence

1 - NO GalM/K) — GallMnNnK™/K) — 1.

In a similar fashion we define N to be the subgroup of Gal(M/k) that is normally
generated by the inertia groups of all the ;. With the same arguments as above
we conclude that N generates the kernel of the surjective homomorphism from
Gal(M/k) onto Gal(M N k™ /k).

For the non-trivial elements r; and 5 of two inertia groups of Q, ;, and Q, ;,
we define (cf. Definition 2.11)

1 ilezTQ

1

c(ry, o) == Tlrgrflrg’ if 71 and 7 are disjoint

rirorire i lry ™t if 7 and 7, are cuspidal.

We define C' to be subgroup normally generated inside Gal(M/k) by all the

c(r1,19)’s where the 7;’s run through all inertia groups of height one prime ideals
inside Gal(M/k).

Lemma 4.1 The subgroup C'is contained in Gal(M /L), N and NV,

PROOF.  All ¢(ry,r9)’s lie in Gal(M/L) and N and so the first two inclusions
are clear.

We let 71 and 7, be two disjoint transpositions and choose two inertia elements
r1 and 7o of Gal(M/k) mapping to 7; and 7o, respectively. One of the 7;’s, say
71, lies in &, Hence 71 lies in NV, Suppose 75 is the inertia element of some
prime ideal 9., ;. Then the element 757175 ~! is an element of the inertia group
of the prime ideal 7,9, ;. This latter inertia group is contained in N ™) and so
roriry ! lies in N, Hence c(ry, r5) lies in N,

We leave the case of two cuspidal transpositions to the reader. U

Hence the maps from Gal(M/k) onto Gal(M N k™ /k) and from Gal(M/K)
onto Gal(M N K™ /K) factor over the quotient by C. And so we obtain the
following two short exact sequences

1 —  Gal(M/L) — Gal(M/k) — GalL/k) — 1
| | I
1 — Gal(M/L)/C — Gal(M/k)/C — Gal(L/k) — 1 (%)

where the arrows downwards are surjective.
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Proposition 4.2 We can split the short exact sequence () using inertia groups.
With respect to this splitting there are the following isomorphisms

(Gal(M/L)/C) | (Gal(M/L)/C)s, = Gal(M N k™/k)
(Gal(M/L)/C) | (Gal(M/L)/C) ~ Gal(M N K™/K)

where the notations are the ones introduced in Section 3.1
If Question 2.14 has an affirmative answer for the finite étale cover Y — X,
then the group C' is trivial.

PROOF.  For every transposition (1 k) we choose a prime ideal Q; 1) ; and denote
by 7 the non-trivial element of its inertia group. We denote by 7 the image of
i inside Gal(M/k)/C. The elements 7, fulfill 7,2 = 1 and map to (1 k) under
the induced surjection onto Gal(L/k). Since we took the quotient by C' also the
following relations hold true:

(7i7i11)® = land (7;7;)* = 1for|i — j| > 2.

These are precisely the Coxeter relations for G,, (cf. Section 5.6) and hence the
7, define a group isomorphic to a quotient of &,,. Since there is a surjective

map from this group onto G,, it must be equal to &,,. This defines a splitting
s: Gal(L/k) — Gal(M/k)/C.

From Lemma 4.1 we know that C'is a subgroup of N. So we see that the map
from Gal(M/k) onto Gal(M N k™ /k) factors over Gal(M/k)/C. The kernel
of the map from Gal(M/k)/C onto Gal(M N k™ /k) clearly is the image N of
N inside Gal(M/k)/C. The group N is generated by the images of the inertia
groups.

From Lemma 3.1 we know that (Gal(M/L)/C)g, is generated by the com-
mutators [g, s(7)]’s where ¢ runs through Gal(A//L) and 7 runs through the trans-
positions of &,,. The element gs(7)g~! is the non-trivial element of the inertia
group of some prime ideal lying above ‘3,. With this said it is easy to conclude
the equalities

N = (Gal(M/L)/C)s, - s(6n)
and NN (Gal(M/L)/C)s, = (Gal(M/L)/C)e,

Applying the second isomorphism theorem of group theory we obtain

Gal(M/L)/C  Gal(M/L))C N-Gal(M/L)/C
(Gal(M/L)/C)s, _ NNGal(M/L))C N
Gal(M/k)/C

¥ >~ Gal(M N k™ /k).
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Hence the induced homomorphism from Gal(L/K)/C to Gal(M Nk™ /k) is sur-
jective with kernel (Gal(L/K)/C)g,,.
The assertion about the quotient of Gal(M/L)/C by (Gal(M/L)/C')

proved similarly and left to the reader.

1 iS
S

Now suppose that the curves corresponding to the Q. ;’s fulfill the connectivity
properties of Question 2.14.

For two disjoint transpositions 7; and 75 we choose two prime ideals 1., ; and
., ; and let r; and r, be the non-trivial elements of their inertia groups. Since
the curves corresponding to the two prime ideals intersect there is a maximal ideal
containing both of them. The inertia group of this maximal ideal is isomorphic to
75 X 7 and is generated by r; and 5. Hence these two elements commute and
c(ry,re) = 1.

If 71 and 75 have exactly one index in common then there is a maximal ideal
with inertia group G3 that is generated by r; and 75. So there is a triple com-
mutator relation between r; and ro and so also ¢(ry,r2) = 1 holds true in this
case.

So if Question 2.14 has an affirmative answer for Y — X,, then all the
c(ry,r2)’s are equal to 1 and so C'is trivial. O

We now pass to the limit of all finite étale covers of X, and keep track of the
induced homomorphisms between the corresponding field extensions and their
Galois groups. We will denote the limit of the subgroups C' by CP™J. Using
Proposition 4.2 we arrive at surjective homomorphisms

Gal(L™ /L)/CP™  — Gal(L™ N k™ /k)
Gal(L™/L)/CP® — Gal(L™ N K™/K).

Taking the compositum of L with K™ we get a subfield of {2 that corresponds to
a limit of étale extensions X,,. Hence this compositum must be contained in L™
and hence already K™ was contained in L™. So K™ N L™ is equal to K™ and
the second surjective homomorphism above takes the form

Gal(L™/L)/CP  — Gal(K™/K).

Its kernel is (Gal(Lnr/L)/C’pr"j)6<1)1.

Up to now have actually never needed that % is the function field of the pro-
jective plane over the complex numbers. This means that everything done in this
section works equally well in the affine situation. We denote by L™ the com-
positum of all fields corresponding to finite étale extensions of X gg inside €2. We
then define C*% to be the subgroup of Gal(L™* /k) normally generated by the
¢(r1, r2)’s where the r;’s run through inertia groups in this extension.
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No matter whether we are in the affine or the projective situation, since & is
the function field of the affine or the projective plane over the complex numbers
there are no non-trivial étale covers and so k™" = k as we already mentioned much
earlier. In particular, Gal(L™ N k™ /k) is trivial and so

(Gal(L™/L)/C™), = Gal(L™/L)/CP™)
(Gal(L™/L)/CPl) oy = ker(Gal(L™/L)/CP — Gal(K™/K))
nfl
where we have shown the second equality already above. Of course, we also get

the corresponding statements for the affine situation. Applying Proposition 3.9 to
Gal(L™/L)/C? and Gal(L**% /L) /C*" we obtain

Theorem 4.3 Let f : X — IP? be a good generic projection of degree n with
Galois closure X,,). Then there are surjective homomorphisms

T (Xgat) =~ ' (Xgu) /CP - K(n{'(X), n)

PE(XE) (X /O s K(nE(XOT), ).
If Question 2.14 has an affirmative answer for all finite étale covers of X gﬁ then
both C** and CP°} are trivial.

If Question 2.14 has an affirmative answer for all finite étale covers of Xga
then at least CP* is trivial.

Even if C*" is trivial we cannot expect these surjective homomorphisms to be
isomorphisms. We refer to Theorem 6.2 for details.

The quotient in positive characteristic

Only for the rest of this section we let X be a smooth projective surface over an
arbitrary algebraically closed field of characteristic # 2, 3.

For every finite and separable morphism we can form its Galois closure. We
say that a finite separable morphism f : X — P2 is a good generic projection if it
fulfills the conditions of a generic projection and if the conclusions of Proposition
2.7 and Proposition 2.12 hold true.

Then nearly all arguments given in Section 4.2 also work in this situation. We
assumed that the characteristic of the ground field is # 2, 3 and since all inertia
groups occurring are Zs, Z,> and G there are no problems with wild ramification.
But nearly at the end we used the fact that the affine and the projective plane over
the complex numbers are algebraically simply connected.

This is still true for the projective plane over an arbitrary algebraically closed
field and for the affine plane over an algebraically closed field of characteristic
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zero. Hence the proof also works always in the projective case and always in the
affine case if we work in characteristic zero.

However, the affine plane is not algebraically simply connected in positive
characteristic. In this case our result is still true for the prime-to-p part of the
étale fundamental groups in question. The general picture in the affine case is as
follows: For an irreducible and affine scheme A together with a finite morphism
a: A — A? we define the new part of the étale fundamental group of A to be the
kernel

T (a, A) = ker(a, : m(A) — w(A2)).

This name is motivated by the fact that in our case f, : 7$'(X?*") — 7¢*(A?) and
Joar + i (X28) — @8t (A?) are surjective homomorphisms and since 7¢'(A?)
is highly non-trivial in positive characteristic we are only interested in the “new
part coming from the morphisms f and fg,.

We leave it to the reader to use Theorem 3.9 together with the results of Section
4.2 to obtain a surjective homomorphism

ét,new Xaff IC ét,new Xaff
m (fear, ) =~ K(m (f, ), ).

gal

This is a sort of relative version of Theorem 4.3 that does not involve knowing the
group 7H(A?).

4.3 Classifying covers with group actions

In the following we recall some basic facts on fundamental groups from the point
of view of Galois categories and fibre functors. The standard reference is [SGAT1].
We especially refer the reader to [SGA1, Exposé V]. The category of G-covers is
introduced in [SGA1, Remarque IX.5.8]. For the topological details we refer e.g.
to [Di, Kapitel 1.9].

Let X be a normal irreducible complex analytic space and G a finite group
of automorphisms of X and so acting from the left on this space. We define the
following two categories

C Coversof X
The objects are holomorphic covers ) — X.

The morphisms are holomorphic maps between these covers over X.

Cce G-Covers of X

The objects are holomorphic covers p : 2) — X together with a left G-action
on ) that is compatible with the G-action on X via p.

The morphisms are G-equivariant holomorphic maps between these covers
over X.
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We already said in Section 4.1 that C is equivalent to the category of topological
covers of X. We identify C with Cyy; where {1} denotes the trivial group.

We recall that an object Y of a category in which coproducts exist is called
connected if it is not isomorphic to a coproduct Y; [[Y> where Y] and Y; are
objects of this category not isomorphic to the initial object.

For an arbitrary discrete group m; we define the following category:

C(my) mq-sets
The objects are discrete sets with a left or right action of the group 7.

The morphisms are 7 -equivariant maps between these sets.

We warn the reader that when discussing the fundamental group 7, in algebraic
geometry one often considers sets with left m-actions whereas in topology one
usually considers sets with right m-actions. Therefore the author decided to be
rather pedantic about this point, especially after he was trapped when he was not
paying attention to it.

We choose a universal cover p : X — X of X in the sense of topology. We
denote by Aut(i%) the group of deck transformations of X over X. Then we define
Ti°P(%, X) to be the opposite group to Aut(X). Given a (connected) cover p :
9) — X the group Aut(X) acts from the right on the set of cover morphisms
Hom(%,9). Hence there is a left 7°° (¥, X)-action on this set. This defines a
fibre functor from the category C to the category of sets with a left 7} (X, .’;E)—
action and makes C into a Galois category.

Here we have to relax Grothendieck’s terminology a little bit: We also allow
quotients by discrete groups rather than only finite ones. Also we assume that the
fibre functor maps to the category of discrete sets with a group action of a discrete
group rather than only to the category of finite sets together with a continuous
action of a profinite group.

Conversely, given a fibre functor F there is always a group 7" (¥, F) called
the automorphism group of the functor F'. A map between two covers 2); and ),
over X is uniquely determined by the 7}°°(X, F')-equivariant map from F();)
to F'(2)3). The main content of Galois theory and the theory of the fundamental
group in this setup is that a fibre functor induces an equivalence of categories
between C and C(my).

The connection with the fundamental group defined via loops is as follows:
We let F, () := p~'(xg) be the fibre of p : P — X above a point zy of
X. Lifting loops based at x( to paths in 2) defines a right action of the “loop*-
fundamental group 7;°" (X, zo) on the set F,,(2)). Now we fix a point &, on the
fibre F,, (%) of a universal cover. Then we compare the left Aut(%)-action with
the right 7,°° (X, z)-action in this point: For every automorphism ¢ there is a
unique element + in the fundamental group such that ¢ - £y = % - . This defines
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an isomorphism between these two groups that depends on the choice of Z,. In
fact, given another point i}, of I}, (X) there is a unique element o € 7" (X, z)
such that Zj, = Z - . We then compute

p 3y = (To-a) = (¢ T) a=(T7) o= (aya)

That is, with respect to i}, we obtain an isomorphism of 7% (¥, z¢) with Aut (%)
that differs from the isomorphism with respect to Z, by conjugation with a.

If we fix a point i, of X in the fibre p~!(z,) we can identify Hom(%,Q)) with
the set F},,(2)) by associating to a morphism ¢ : X — ) the point ¢ (Z). Under
this identification the right action of 7, (X, 7¢) on F},,(2)) becomes a left action
on Hom(.’% ,9)) and it is this point where the group actions change their side when
passing from topology to algebraic geometry and vice versa.

For a cover p : ) — X we recover the group of its automorphisms as follows:
The group Aut(X) acts on Hom(X%,2)). We choose a point on this latter set,
i.e. we choose a map from X to %), and denote by H the subgroup of Aut(X)
stabilising this point. This identifies ) with the quotient /1 \.’:E An element of
Aut(.’%) induces an automorphism of 2) if and only if it normalises /. Since the
elements acting trivially on ) are precisely those of H we get an isomorphism
between the group of cover automorphisms of ) over X and NH/H where N H
denotes the normaliser of H in Aut(X).

The same can be done for covers with a G-action. So we assume a finite group
G of automorphisms acts from the left on X. The following constructions were
already sketched in [SGA1, Remarque 1X.5.8] and we will fill out some of the
details:

For a connected C-cover p : ) — X we define the following Cg-cover:

DxG — X
(y,h) = h-p(y)

and a left G-action on ) x G via

G x OPxG) — PxC
g , (Wh) — (y.gh)

This clearly is a connected object of Ci. The object so associated to ) is the same
as the fibre product of ) with (X x G) with G-action as described above over X.

Every connected G-cover of X x G is dominated by a GG-cover of the form
2 Xx (X x G) where P — X is a connected topological cover. Indeed, forgetting
the GG-action, a connected GG-cover of X x GG becomes a cover of X consisting of
exactly |G| components. If we choose ) to dominate each of these components
it is not complicated to obtain a G-morphism from ) x G onto the G-cover of
X x G we started with.
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Given an arbitrary connected G-cover 3 — X we can form its fibre product
with X X G. Then we can find a connected component 3’ (with respect to C¢) of
this fibre product that dominates 3. Since 3’ is a G-cover of X x G it is dominated
by X x G. From this we conclude that X x G is a universal cover of Cg.

We define j¢ : X x G — X with the G-action as above and denote its group
of GG-automorphisms by Aut(.’% x (). For every point xq of X, this latter group
acts from the left on the fibre p ().

Definition 4.4 For a point xq of X and a group G that acts by automorphisms on
X we denote the opposite group of Aut(X x G) by ﬁioP(i{, G, x¢) and call it the
G-fundamental group of X.

As in the case of the classical fundamental group to give a G-cover is the same as
to give a discrete set with a right action of 7;°*(X, G, ) on it.

Given a subgroup H of GG the fundamental groups classifying covers with
actions of H and G are related as follows: We fix a system R of representatives
of G/H. We will assume that the class of H is represented by the unit element of
G. For a connected Cy-cover p : 2) — X we define the following C-cover:

DxR — X
(y,r) = 7r-py)

and a left G-action on ) x R via

G X QxR — PxR
g ) (y,?“) = (hgy,’f’gh)

where g = r,h, is the unique decomposition of an element of G into a product
of an element of H and an element of R. This clearly is a connected object of
Cs. The object so associated to ) is the same as the fibre product of ) with
q : X X R — X with the G-action described above. This is an exact functor from
Cp to Cg and hence defines an injective homomorphism of fundamental groups

ﬂ(’p(%, H, zg) — ﬂOp(%, G, xp).

With respect to the action of 7;°"(¥, G, x) on the fibre ¢! (z,) the image of this
homomorphism is the stabiliser of the point (xg, 1) of X x R.

Given an element ~y of 7,°°(X, G, x) it acts on the fibre ¢! (z,) of the G-
cover ¢ : X X R — X by sending (h 'z, h) to (h~'r(y) " 2o, 7(7)h). Moreover,
if H is a normal subgroup of GG then the map that sends  to () defines a homo-
morphism from 7;°° (¥, G, x0) to G/H. This homomorphism is surjective since
we can lift the map x — ¢-x to the universal cover as explained in [Di, Satz 1.8.9].

Hence there exists a short exact sequence

1 — X% H, ) — mP% G ) — G/H — 1.
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In particular, for = 1 we obtain the short exact sequence
1 — m®X, z) — mP&E G ) — G — 1 (%)

To obtain an isomorphism of ! (%, G, z) with Aut(X x G) we have to choose
a point on the fibre pe~*(x9).

If we choose another base point, say z; on X then the GG-fundamental groups
with respect to two x;’s are isomorphic. However, such an isomorphism depends
on the choice of points Z; in the respective fibres pe'(z;), i = 0,1. We will
assume that the two z;’s lie on the same topological component of the universal
G-cover X x (. This means that we choose a path connecting x to z1. Then the
isomorphism

W;Op(%, G, Io) = W;Op(%, G, Il)

is well-defined up to conjugation by an element of 7;°"(X, x() and the two ho-
momorphisms onto G coming from the short exact sequence (*) are compatible
under this isomorphism.

For a G-cover p : ) — X and a closed subset of 2 of ) we call the subgroup
of G fixing 2 pointwise the inertia group of 2 (in G):

Iy = {g€Glga=a,VaecU}.

The possibly larger subgroup of G fixing 2l but not necessarily pointwise is called
the decomposition group of 2 (in G):

Do = {g€G|g(A) =2}

The inertia group is always a normal subgroup of the decomposition group.

We choose a point z; on X and let j : X x G — X be the universal G-
cover. Then the inertia group I, acts on the fibre p;~!(z1). We choose a point
71 on this fibre. Then we compare the left action of I,, with the right action of

7% (%X, G, x1) in this point Z,. This associates to each element of I, an element

of {°°(X, G, x1). Given another point &, above z; there is a G-automorphism ¢
that sends #; to 7). We assume that g - &1 = Z; - y, for an element g of I,,. Since
¢ is G-equivariant we compute

97 = g-(p(11)) = @(g- 1) = @(1-7) = ¢(T1) 7y = T)
Hence y, does not depend on the choice of a point in the fibre above x; and it
acts like multiplication by ¢ on all points on this fibre. This means that there is a
natural injective homomorphism

I,, — ﬂ(’p(.’{, G, x1).
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If we fix an isomorphism between the G-fundamental groups of X with respect to
xo and x; there is the following composition

I,, — W‘{Op(%, G, 1) = W‘{Op(%, G, ) — G.

Even though the isomorphism in the middle is only well-defined up to conjugation
by an element of 7;°"(¥, z,) the whole composition always coincides with the
inclusion map of I, into G.

In terms of automorphisms of the universal G-cover p; : X x G — X we
fix a point 7; on the fibre pe~'(z;). Given an element g of I, there is a unique
automorphism ¢, of X x G that sends 7, to ¢ - ;. However, this automorphism
really depends on the choice of 2.

We now let R be a path connected subset of X that contains the point z;. If
we forget the G-action for a moment then j; ! (2R) is a disconnected topological
cover of R if G is non-trivial. We let 9% be a component of j ' (9R) on X x {1}.
The group Ig acts on R simply by interchanging the |Ig| different but homeomor-
phic components. We choose a point of R above z; to obtain an isomorphism
of TiP(X, G, xy) with Aut(X x G). In this special situation we see that an auto-
morphism corresponding to an element of I depends only on PR and not on the
particular point lying above x;. Hence it makes sense to talk about an automor-
phism of the universal G'-cover that is the inertia automorphism of a component
of pa~ ' (R).

We finally want to stress that in general there is no natural way of relating
elements of G to cover automorphisms of X x G or elements of the G-fundamental
group of X since the GG-action usually does not respect the fibres. It is only inertia
that makes this possible.

Given a G-cover p : ) — X there is always an injection of inertia groups
I, C I, for all points y € ). Given a cover 3 — G\X we can form the fibre
product with X and obtain a G-cover p’ : 3 X x X — X. All points z on this
fibre product fulfill I, = I,(). Conversely, if p : 2) — X is a G-cover that
fulfills I, = I, for all points y of 2) then the quotient by G defines a cover
G\p : G\Y — G\X. Hence there is a one-to-one correspondence

{ covers of G\X } PN { G-covers p : J) — X such that }

I, =1, forally € Y

Since this remains true if we assume connectivity on both sides of this correspon-
dence the induced homomorphism of fundamental groups

P (X, G, wo) —» mP(G\X, To)

is surjective. Here, Ty denotes the image of x, under the quotient map X — G\ X.
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For an element g of the inertia group I, we denote by 2, the image of g in
(%, G, ;) as constructed above. We let p : 2 — X be a G-cover with
I, = I, for all points of ). If we fix a point  on X then there is a unique
cover automorphism ¢, of X x @ such that Qg+ T = T -14. By our assumptions
on the inertia groups of ) this automorphism ¢, will act trivially on ). So the
subgroup N normally generated by all inertia elements lies in the kernel of the
homomorphism from 7{°° (X, G, 24) onto 7;°"(G'\ X, Z,). Conversely, the quotient
of the universal G-cover by IV is a G-cover ¢ : 3 — X with I, = I .y for all points
z of 3. Hence 1" (X, G, z0)/N is a quotient of 7,°°(G\ X, Z,). But this means
that V is precisely the kernel we are looking for. So we obtain a short exact
sequence

1 - N — 7mi®X%, G, 20 — mPG\X,7) — 1

As a special case we obtain the following: If GG acts without fixed points on X then
X — G\ X is a regular cover with group G, there are no non-trivial inertia groups
and we just get the well-known short exact sequence

1 — m®(X,z) — mPG\X, ) — G — L

4.4 Loops and the orbifold fundamental group

The material of this section should be well-known. However, the author could not
find a reference for it.

As in the previous section we let X be normal irreducible complex analytic
space and GG be a finite group of automorphisms of X. We keep all notations
introduced so far.

We will always assume that the quotient space G'\ X is smooth, i.e. a complex
manifold. By purity of the branch locus the branch locus ® of ¢ : X — G\X isa
divisor, cf. [GR1, Satz 4]. We denote by ©,, : = 1, ..., r the irreducible compo-
nents of this divisor, cf. [GR2, Chapter 9.2.2]. We denote by e; the ramification
index of ;.

The inertia groups of the components of ¢~!(®;) for fixed i are conjugate
subgroups of GG. These components are divisors and so their inertia groups must be
cyclic. More precisely, every inertia group of a component of ¢~ (D;) is abstractly
isomorphic to the cyclic group Ze, .

Given a G-cover p : 3 — X we form the quotient G\p : G\ — G\X.
Outside | J, ®; this is a topological cover. This defines a homomorphism from
the fundamental group of G\X — © to the G-fundamental group of X. If ) is
connected as a G-cover then its quotient is also connected. We assumed X to
be normal so also ) must be normal and so the same is true for the quotient
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G\2. After removing the ramification locus of G\ — G\X which has real
codimension two this space remains connected since we assumed that our spaces
are normal, cf. [GR2, Chapter 7.4.2]. This connectivity result implies that the
homomorphism

M (G\X =D, q(x)) — mP(X, G, x0) (%)

is surjective. It remains to compute its kernel.
However, first we want to define a surjective homomorphism

v o mP(G\X - D, q(zy)) — G.

For this we lift a loop y in the group on the left to a path in X starting at x(. This
lift ends at a point g - o where the element g € G is unique. This defines the
homomorphism we are looking for. Of course if we take the pull-back via the
morphism X — G\X we are in the situation of Section 4.3 where we defined a
homomorphism 7;°°(X, G, 2¢)—»G in a similar way via lifting elements of the
group on the left to the point 2y x 1 of X x (. Chasing through the diagrams we
see that the homomorphisms onto G are compatible with the homomorphism ().

For the divisor ©; we define the following loop I'; in 3 := G\X — ©: We
choose a point w; on ®, that is a smooth point of . We let 7; be a path connecting
q(zo) to w; inside 3. We shorten ~; a little bit before reaching w;. Then we put
a little circle around w; starting at the end of ;. This defines a loop I'; based at
q(xg). Such a loop is usually called a simple loop.

If we lift this loop to a path based at xy € X it “winds around** a component R,
of ¢ }(D;): We choose a small neighbourhood U (w;) of the point w; € D; that
we have chosen above. We let V' (w;) be the connected component of ¢~ (U (w;))
such that the lift of T'; to 2o meets V' (w;). The map ¢ : X — G\ X looks in local
coordinates like

V(wi) — U (wz)

(z1,22,...) +— (1%, 29,...)

where e; is the ramification index of ©;. The reason for this is that locally around
w; the map ¢ is a branched Galois cover with group Z., and branch locus D;.

In these coordinates fR; is given by the equation z; = 0. The automorphism of
X induced by the lift of I'; to z, clearly is the map = +— ¥(I';) - x. It is clear from
this local description that 9R; must be fixed by ¢ (T';).

We let p : X — X be a universal cover of X. We choose a point Z, lying
above ry € X. Lifting I'; to p we get a path that “winds* around a component
R’ of 5~ 1(9R;). It corresponds to an automorphism of X that fixes R]. Via base
change to X x G — X we get exactly an element that corresponds to the inertia
automorphism of 9%, corresponding to 9(I';) as described in Section 4.3.
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This automorphism has order e; and so the image of I';* under (*) must be
trivial. In particular, the subgroup normally generated by the I';%’s lies in the
kernel of (x). We stop for a moment to define a new object:

With respect to the I'; and e; we define the orbifold fundamental group with
respect to G\ X, D, ¢; to be the quotient

T (G\X, {Di, e}, q(20)) = m™ (G\X =D, q(z0) / < T >

If we choose different set of loops [, around the ©;’s as described above then
they are conjugate to the original I';’s and so this set generates the same normal
subgroup. Hence this quotient is well-defined.

This orbifold fundamental group is the opposite automorphism group of some
topological cover & : 9) — G\X — ©. By what we have said above the homo-
morphism () factors through the orbifold fundamental group and so 9) dominates
X — (gop)~'(D). For a smooth point w; on ®; we let U(w;) be an admissible
neighbourhood, i.e. a neighbourhood such that &' (U (w;)) is a disjoint union of
spaces that are homeomorphic to U(w;). We assume that ©; is smooth in U (w;)
so that U (w;) —®; is homeomorphic to (C — {0}) x C1™*~1, This means that the
fundamental group of U (w;) — ®; is isomorphic to Z. It is generated by a loop I';
as described above. Looking at this locally we can extend D — X —(qop) H(D)
to some map 9 — X — (g o p)"'(&) where & is the finite set of singularities of
. Since both spaces are locally homeomorphic this is a topological cover map.
The space X is normal and simply connected. Since (¢ o )~'(&) is a discrete set
of real codimension 4 also ¥ — (g o p)~!(&) is simply connected. Since 9) is a
connected topological cover of ¥ — (q o p)~1(&) they must be homeomorphic.
Then there is only one way to complete this to a cover of X: namely to take the
trivial cover of X. So we conclude that ) is homeomorphic to X — (qop) YD)
and this means that the homomorphism (x) induces an isomorphism

TP (G\X, {9y, e}, q(w)) = m™(X, G, x).
We already noted above that both groups possess surjective homomorphisms onto

G that are compatible under this isomorphism.

4.5 The quotient in the topological setup

We let X be smooth projective surface over the complex numbers and f : X — P2
be a good generic projection of degree n. From Proposition 2.7 we know that G,
acts on X,,. With respect to this action and the action of the subgroup 61(1121 we
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obtain the following two short exact sequences

1 — WEOP(Xgal) — W‘{Op(Xgal, S, — 6, — 1

I 7 7
1 — mPX.) — ©mPX,60) — 6, - 1

The arrows upwards are injective. We now fix a universal cover ),(;1 of X, and
also do not mention base points unless it is important for our considerations.

The quotient &,,\ X, is isomorphic to IP? and the inertia groups generate the
kernel of the homomorphism from 7, (X a1, &,,) onto 7,°°(&,,\ Xa1). Since this
latter group is trivial it follows that the inertia groups generate ;"> (X sal; On).

The quotient 6;1_)1\Xgal is isomorphic to X. So the kernel of the surjective
homomorphism onto the fundamental groups of X is the the subgroup normally
generated by the inertia groups contained in 7, (X a1, e,

By Proposition 2.12 the ramification divisor Ry, Of fea : Xgal — P? is the
union of the curves 12, where 7 runs through the transpositions of G,,. We denote
by p : )/(\g;l — Xgal the universal cover of X,,. Then we let RT be a connected
component of p~(R,). We have seen in the previous section that there is a unique
inertia automorphism of the universal G,,-cover )/(\g; x &, that sends RT x {1}
to R, X {7}. Since the inertia group of R, is Zs this automorphism is the only
non-trivial inertia automorphism of R..

We let 71 and 75 be two transpositions of &,, and choose two components
R, and R, of p—'(R,,) and p~'(R,,), respectively. For the non-trivial inertia
elements r; and r, of their inertia groups we set (cf. Definition 2.11)

1 ilezTQ

1

c(ry, o) == 7“17“27“1_17“2’ if 71 and 7» are disjoint

rirorire i lry ™t if 7 and 7, are cuspidal.

Then we define CP™ to be the subgroup normally generated by all the c(ry, 72)’s
inside 7,°" (X a1, &,,) where the 7,’s run through all transpositions of &,, and the
r;’s Tun through all inertia groups of all components of the p~1(R,,)’s.

Lemma 4.5 The subgroup C™ is contained in ﬁOP(Xgal) and in the following
kernels:

ker(| m”(Xgat, €0)  — mP(P?) )

ker( m™(Xg, &,01) — mP(X) )
The proof is completely analogous to the proof of Lemma 4.1 and therefore left
to the reader. U
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Hence the homomorphisms from 7;°"(Xga1, S,,) onto m,°°(IP?) and the map

from 71" (Xgal, 6 ) onto 7,°°(X) factor over the quotient by "), Moreover,
we get the following two short exact sequences

1 — 1P (Xgat) — TP (X gal, S,) ~ 6, — 1
! i |
1 — mP(Xg)/CPO = mP(Xpa, 8,)/CPF — &, — 1 (x)

where the arrows downwards are surjective.

Proposition 4.6 We can split the short exact sequence () using inertia groups.
With respect to this splitting there are the following isomorphisms

(M (Xga) /CP) ) (M (Xga) [CP s, = P (P?) = {1}
(M (Xga) /CP) /(11 (X ) /CP) g1 ™ (X)

n—1

12

where the notations are the ones introduced in Section 3.1
If Question 2.14 has an affirmative answer for the universal cover Xgu1 of Xgal
then the group CP™ is trivial.

PROOF. The proof is analogous to the one of Proposition 4.2:

For every transposition (1 k) we choose a component of p~*(R(; &) and denote
by 7, the non-trivial element of its inertia group. We denote by 7, the image of 7,
inside 7, (X a1, &,,)/CP™. As in the proof of Proposition 4.2 we conclude that
these 7,’s fulfill the Coxeter relations of the symmetric group and so they provide
us with a splitting s : &,, — T (X1, &,,) /O™,

As in the proof of Proposition 4.2 there are the following equalities for the
kernel NV of the homomorphism from 7;°" (X1, &,,) onto 7,°"(P2):

N = (T (X) [OP)s, - 5(6,)
and N 0 (10 (Xa) /CP)g, = (11 (Xp)/CP ),

Applying the second isomorphism theorem of group theory we obtain the first
statement. Again, we leave the second identity to the reader.

Now suppose that the components of p~* (Rga) fulfill the > connectivity proper-

ties of Question 2.14 with respect to the universal cover p : X, gal — Xgal.
For two dlSJOlIlt transpositions 7, and 75 we choose components R1 and R2 of
“1(Ry) and p~1(Ry), respectively. We let 7, and 7, be the non-trivial elements of
their inertia groups. We know that these components intersect in a point z. There
is an inclusion of Zy x Z into 7,°"(Xga1, G,, (2)). This group is generated by
r1 and r5. Hence these two elements commute and ¢(rq, 73) is equal to 1.
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If 71 and 7, have exactly one index in common then there is a point with inertia
group Gj that is generated by r; and 75. So there is a triple commutator relation
between 7 and 75 and so also ¢(r1,75) = 1 holds true in this case.

So if Question 2.14 has an affirmative answer for the universal cover )/(;1 of
Xa then all the ¢(rq, 7)’s are equal to 1 and so CP™ s trivial. O

Again, everything said so far can also be done in the affine setup. We then
define C* to be the normal subgroup of 7;"" (X2, &,,) defined by the c(r1,72)’s
where the r;’s run through the inertia groups corresponding to some universal

&,,-cover of X2 We then get

Theorem 4.7 Let f : X — IP? be a good generic projection of degree n with
Galois closure X,,. Then there are surjective homomorphisms

M (Xga) = ™ (Xga) /CP = K(11(X), n)

top i top i f top f
T (Xgal) - M (X§a1)/0a = K(m P (X)), n).
If Question 2.14 hqs an affirmative answer for the universal cover of X gg then
both C*" and CP* are trivial.
If Question 2.14 has an affirmative answer for the universal cover of X, then
at least CP™) is trivial.

Again, even if C*f is trivial we cannot expect these surjective homomorphisms to
be isomorphisms. We refer to Theorem 6.2 for details.

Corollary 4.8 For a good generic projection f : X — IP? of degree n there are
surjective and non-canonical homomorphisms

H\(Xg,Z) -  (Hi(X,Z)""
Hy (X, 7) — (H(X* 7))"".

gal?
PROOF. From Morse theory ([Mil]) it is known that smooth affine and smooth
projective varieties are CW-complexes. So we can apply Hurewicz’s theorem that
H,(—, Z) is isomorphic to the abelianised fundamental group.
Thus our statement follows from the fact that XC(—, n) for n > 3 commutes
with abelianisation by Proposition 3.8 and the computation of X(—, n) for abelian
groups given by Corollary 3.5. UJ
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5 A generalised symmetric group

Seht doch hinab! Im Mondschein auf den Grdbern
Hockt eine wild-gespenstische Gestalt!

Ein Aff ist’s! Hort ihr, wie sein Heulen
Hinausgellt in den siiffen Duft des Lebens?

5.1 Definition of S,,(d)

We let 7, be the transposition (k k + 1) of &,,. From the theory of Coxeter groups
(cf. also Section 5.6) it is known that G,, admits a presentation as

G, = <Tk, kE=1,...,n—1| T2, (7‘ka+1)3, (Tij)QVU{? —jl > 2>.

Letd > 1 and n > 3 be natural numbers. We want to construct a generalised
symmetric group where we have d copies of the transposition (12). For this we
let sq, ..., sq be free generators of the free group §4 of rank d. Then we define the

group

Su(d) = (gd * 63)1) /R
where I? is the subgroup normally generated by the following elements

5;2 fori=1,..,d

(82“7-2)3 forizl,...,d

(si-m)? fork>3andi=1,...d.
The reader will identify this group as the d-fold amalgamated sum of &,, with
itself where we amalgamate the subgroup G Szl in every summand.

Every summand has a map (the identity) onto G,, that is compatible with the
subgroup that is amalgamated. These homomorphism patch together to a homo-
morphism ¢ onto &,,. Sending G,, via the identity to the first summand we obtain
a splitting ¢ of .

But we still want more relations to hold true: We define

S.(d) = S,(d)/R
where R’ is the subgroup normally generated by the following elements:

(p(0)sip(o)™t - s;)* ifo(12)0~ " and (12) are nodal transpositions
(p(o)sip(o)~t-s;)* ifo(12)0 " and (12) are cuspidal transpositions

The homomorphisms ) and ¢ induce homomorphisms on the quotient S,,(d) that
we will call by abuse of notation again by 1) and ¢.
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5.2 The connection with £( — ,n)

Before dealing with the general situation we do the cases d < 2 first:
For d = 1 we clearly have S,,(1) = &,, for all n > 2.

Proposition 5.1 Forn > 2 there is an isomorphism

S.(2) = E(Z, n)
S1 — (1 2)
sy — (1,—1,0,...,0)- (12)

compatible with the respective split surjections onto S,,.
PROOF. We consider the following elements of S,,(2)

a = (2n)(s2(12))(2n)"t-(1n)
Ty = (kk+1) k=1,...,n—1.

The affine reflection group A,,_; has the following presentation, c.f. Section 5.6

W(A.—1) = (a7 72 (emiar)?, (mer)? for |k — j| > 2,
042, <a71)37 (O[Tnfl)37 (aTk>2 for k # 1,71 - 1>

We define a map ¢ : W(A,_1) — S,(2) by sending « to a and 7y, to 73 for all
k. The relations inside W (A,_;) also hold true for the corresponding elements
in the image i.e. ¢ extends to a homomorphism. In a similar fashion we define
a homomorphism in the opposite direction being the inverse of ¢. Hence ¢ is an
isomorphism.

Finally, we identify W (A,_) with £(Z,n) using the description given in
Corollary 3.6 or Example 5.26. 0

Remark 5.2 There is a general “Coxeter flavour* in connection with E(—,n).
We refer to Section 5.6 for some examples and details.

We let §4_1 be the free group of rank d — 1 freely generated by elements
f2y ..., fa- We denote by 6 the action of &,, on §; 1" given by permuting the
factors. We recall that we constructed £(—, n) using such a 6 in Section 3.1.

We want to define a map

¢ Suld) — Sd—1" xp G,
51 (12)
Sa = (far fa81,.,1)-(12) Va=2,...d
p(o) o Vo € G,

where ¢ is the splitting that comes together with S,,(d). Since we have fixed the
splitting ¢ of 1 we consider G,, as a subgroup of S,,(d) and do not mention ¢
any further. The content of the following theorem is that this map ¢ is not only a
homomorphism but also injective with image £(§4_1,n):
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Theorem 5.3 Forn > 5 there exists an isomorphism

¢ Suld) = E(Sa-1, n) < Fa-1" Xo Gy
s1 (12)
Sa = (fo fa51,..,1)(12) Va>2

compatible with the respective split surjections onto S,,.

PROOF. First we have to check that ¢ extends to a homomorphism. For this
we only have to check that all relations of S,,(d) hold inside the image. These
calculations are straight forward and are done in Lemma 5.5.
Also, we see from Lemma 5.5 that the image of ¢ is precisely £(Fq4_1,n).
Foa=2,....,dandi,j = 1,...,n we define:

fCLZj = (17"'717 fa 717"'717 fail 717"'71> e gdn'
1.th position j.th position

These elements generate K(F4_1,7) as can be seen from applying Lemma 3.1
using transpositions as generating set for S,,.
We want to define a homomorphism from K(§,4-1,n) to S, (d) by sending

~

o K(S;Al,n) — S,(d)
CLZZ = 1
fa" = (149)(25) - (s4(12) - (25)7H(15) 7 i #

From Proposition 5.6 we know all the relations that hold between the f, inside
K(Fa-1,n). The relations (*2) and (*3) hold true in S,,(d) by the relations coming
from cuspidal transpositions. The relations (x4) hold true because of the relations
coming from nodal transpositions. We leave the details to the reader.

By definition ¢ is the identity when restricted to &,,. To show that gz§ extends
to a homomorphism from K(§4_1,n) X9 S, to S, (d) we only have to show that
é is G,,-equivariant with respect to the G,,-action given by conjugation in both
groups. We leave it to the reader to show that foro € G,,

) (sa(12)- @)W e

2071(j)) - (sa(12)) - (20715) 7 (Lo ()~

holds true proving G,,-equivariance. R
Hence, there is a homomorphism from &(§q-1,7) to S,(d) prolonging ¢ and

compatible with the split surjections onto S,,. Since ¢ is surjective and ¢po¢(s,) =
s, for all a it follows that ¢ is an isomorphism. 0
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Remark 5.4 The really hard part of this proof is Proposition 5.6. It says that
the relations of K(§q4,n) are only some “obvious ones, i.e. a certain set of
commutator relations.

The author’s original proof used a Reidemeister-Schreier rewriting process to
obtain a presentation of the subgroup £(Fa_1,n) of Fa_1" g S,. However, since
the subgroup has infinite index in the ambient group he obtained an infinite set of
relations. The computations were a ten page flow of quite messy calculations.

Meanwhile, [RTV] appeared and the author decided to copy their proof.

Lemma 5.5 Let G be an arbitrary group and §;, i = 1,2 two elements of K(G, n).
We define

S = .@(12>§1_17Z:172
Then the following relations hold inside (G, n)
52 i=1,2
(si-7)2 if T and (1 2) are nodal transpositions

(si-7)°
(osio™t - s)?
(osio™t - s5)3

if T and (1 2) are cuspidal transpositions
if0(12)0~" and (12) are nodal transpositions
ifo(12)0~! and (12) are cuspidal transpositions.

If n > 3 and if the elements g, ..., gs generate G then £(G,n) is generated by
[(9i,1,...,1),(12)] and an arbitrary generating set of S,,.

PROOF. The first relation is straight forward from Lemma 3.1. Furthermore it
allows us to view the remaining relations as commutator relations or triple com-
mutator relations, respectively.

We do the computations inside G" x &,, as usual. We set 7 =
d= (91,92, .-, 9n) € G™, and check that §(12)g ' and 7 commute:

(G(12)g " - 7)°

(34) and

— o~

= [g(12)g7", 7]
§12)57" 7 (9192 ' 9291 1, 1) 7M1 2) ) 7
g12)g 7 (9192, 9297 51, ., 1)) 71 (12)
- 5(1 2).6’71 ' (919517929;17 17 sy 1)71(1 2)71
= §12)7t-(ga2g
=1

We leave the remaining relations to the reader.

We have already seen in Lemma 3.1 that £(G, n) is generated by &,, and all
elements of the form (g, ¢~*,1,...,1). Let g1, ..., g, be a generating set for G. We
define g; := (g;, 1, ..., 1) and compute for n > 3

[gia (1 3)] ’ [gjv (]- 2)] ’ [gla (]- 3)] = (gigj7 (gigj)_17 17 X3 1)

So we get all elements (g, %, 1, ...., 1) from the set [g;, (12)] and &,,. O
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Proposition 5.6 (Rowen, Teicher, Vishne) We let §, be the free group of rank d
and assume that it is freely generated by elements f, ..., fq. We set:

f7 = (1,1, fo L1 f 1,01 €
~~ ~
1.th position J.th position

If n > 2 then K(Fq,n) is generated by f," witha = 1,...,dand 1,5 = 1,....n.
And ifn > 5 then all relations inside IKC(§ 4, n) follow from the following relations:

faz‘z‘ = 1

faij : fajk = faik

faz‘k . faz‘j — faz‘k

[f9, KM = 1 if1, 7, k,l are all different.

1)
*2)
*3)

4)

*

In other words we have a finite presentation of K(§4,n) forn > 5.

PROOF. The proof is taken from [RTV, Theorem 5.7]. However, we adapted the
notations to our situation.

First of all, the f,"’s generate K(§4, n). This follows from Lemma 3.1 applied
to the generating set f; of §,; and taking as generating set for G,, the set of all
transpositions.

We leave it to the reader to show that the relations given in the statement of
Proposition 5.6 hold true in §," and hence in K(§4, n).

We define K, to be the group generated by elements f,” witha = 1, ..., d
and ¢,7 = 1,...,n subject to the relations given by Proposition 5.6. We have
shown above that there is a surjective homomorphism from K ,, onto K(Fq4, n).

Next, we define K, to be the group generated by elements

f.9 and t, witha=1,..,d, i,j=1,...,n
subject to the relations of /;,, and the relations
e 7] = [f% F] k#iG (1)
o, o] = [f", f™] i#jandi,j#n (12)
Then we define the following map
po Ki, — Sd"
ta fa"

fo o= (L)

where f," denotes the element (1,...,1, f,,1,...,1) of F4" having its non-trivial
entry in the 7.th position. By Lemma 5.7 this map p defines an isomorphism of
groups.
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So we obtain the following commutative diagram

Kd,n - K:;d
! 1=
K(Ea,n) — 3§

We already know that the map from K, to (4, n) is surjective. To show that
itis also injective it is enough to prove that the homomorphism from Ky, to K,
is injective.

To achieve this we define a series of groups lying in between K4, and K :
We define K dss to be the group generated by /;,, and the elements ¢, witha < k
subject to the relations (1) and (12). Of course, only those relations that involve
to’s and tp’s with a,b < k are imposed. Hence we obtain the following groups
and homomorphisms

_ <0 <1 <d _ pox
Kya= Kn,d — Kn,d — .= Ko =K

By Lemma 5.8 each of these homomorphisms is injective and so the composite
homomorphism from K, 4 to K7, ; is injective. U

Lemma 5.7 The map
pos Kog o= Sa"

defined in the proof of Proposition 5.6 is an isomorphism of groups.

PROOF. Itis clear that ;4 defines a surjective homomorphism.
We define a map /i via

pos Sdt = Ko
fCLn — tCL
fai = ta : fam

If we can show that /i defines a homomorphism of groups it will be the inverse of
1 and it follows that p is an isomorphism.

The group §4" is generated by the elements f,’ witha = 1,...,d and i =
1,...,n subject to the commutator relations [f,°, f,’] = 1 forall i # j .

First we establish two further sets of relations that hold true inside K7, :

fit oty (f™M)TH = Tty te i (t3)
fam ! fb]n ' (fam)il = tai1 ’ fb]n ta 1 7é j, and i,j 7é n (T4)

The relation (3) can be seen by applying (12) to the right hand side of (11) with
j = n. The relation (f4) is only a reformulation of (1).
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First, assume that = = n. Then

/:L([fana fbjD

= o tpfi?" bt (G fy?)

= to-ty fil" ta (A7) T
appl;’(ff%)

= oty -ty Mt Myt

= 1
Now assume that ¢ # n. Then

[ fa's 1)

= tafam : tbfbjn ! (tafam>_1 ' (lfbfbjn)_1
b fu ™ - ((Fa™)7L F) - B0 () 7 ()t ta ™) -1
appl;r (13) appl;/r (14)

= g~ tailtbta . famfbjn(fam)il : fam(fbjn)il(fam)il : tailtbi1

=1

Hence /i defines a homomorphism and so we are done. U

Lemma 5.8 Keeping the notations introduced in the proof of Proposition 5.6
there is an isomorphism

<k~ pe<k-l
Kb = K%z

where the infinite cyclic group 7. is generated by ty. In particular, the map from

K510 K EZ considered in the proof of Proposition 5.6 is injective.

n,
PROOF. We want to define a map from K 5271 to itself via
. <k—1 <k-1
v Knac.l. - Kmd
fa? e S ()T me# G
ta s fknm . ta . (fknm)fl m 7é n

First we have to show that 1 does not depend on the choice of m in the definition of
©: For the definition of 9( f,*) this means we have to check that for m, m’ # i, j, n

fknm ’ faij ) (fknm)il = fknml ! faij ' (fknml)il

holds true. If 4, j # n then both expressions are equal to f,” by relation (x4). If
i = n then we conjugate this expression with f,”™ and after applying (+2) we
are done since f;"™™ and f," commute using (x4).
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For the definition of ¥(t,) we have to check that for m, m’ # n

fknm Tty - (fknm)fl — fknm’ ty - (fknm/)fl

holds true. We conjugate by f,”" and then we are done since t, and f,™™
commute by (T1).

Hence the definition of ¥} does not depend on the choice of the m’s occuring.

Next we want to show that ¢} defines an endomorphism of K <k ', For this we
have to show that the relations are preserved by o). If we pick a relat1on from (x1)
0 (*4), (f1) and (2) then we can find an index m distinct from the 7, j, k, n’s in
this particular relation since we assumed n > 5. The action of ¥ is then given by
conjugating every element occuring in this relation by f;™". Since the relations
form a normal subgroup this means that ¥/ preserves the relations of K <k ! and
so ¢ defines an endomorphism of this group.

Clearly, ¢ defines an automorphism of K 5271 for we can just define its inverse
by replacing fk"m by (f7™)~! in the definition of ¥.

To obtain KE, from K;Z_l * (tr) we only need the relations (1) and (2) .

For (1) it is enough to consider all relations with a = & and arbitrary b:

tksz‘jtk—l — fknmfbij(fknm)_l — 19(sz3)

We have to impose one relation for every m # i, j but we have already shown
above that all these elements define the same element 9( f,”) of K skt

And for a = k and b < k the relation (12) is equivalent to

ittt = S B (R ) (f )lj'tb
apply (4)

= ARETT = i)

As we have shown above this element does not depend on the choice of m # n.
Hence we have shown that

Kb o KSR (1)) < bty = 0(x) Vo € K351

and this is precisely the semidirect product of K 52_1 by (tx). O

5.3 Affine subgroups and the construction of /C( — ,n)

We denote by §, be the free group of rank d > 1. We embed (4, n) as usual
into §4", cf. Section 3.1.

Definition 5.9 A subgroup of K(F4, n) with n > 3 is called an affine subgroup
if it is normally generated by elements of the form (r,r=1,1,..,1), r € F4 and
their &,,-conjugates.

50



We note that for affine subgroups normal generation with respect to C(F4, n) has
the same effect as normal generation with respect to §,;": This follows since we
assumed n > 3 and so we compute for (f, 1, f~',1,...) € K(F4,n) and r € Fa:

(f,1,1,.,1)  (rr41,.,1) (f,1,1,..., 1)
= (f,1, 74,0 (rmr 41,1 (f,1, 4., 1)L

We let GG be a group and n > 3 be a natural number. We then choose a presentation
Sa/N = G of G. Then we define R :=< KC(N,n) >. This is an affine subgroup
of K(F4,n) since it is normally generated by the elements (s,s71, 1, ..., 1) with
s € N and their G,,-conjugates. We define

K(G,n) = K(Fa n)/R.
Since R is &,,-invariant the &,,-action on KC(F4, ) descends to an action on the
quotient (G, n) and we define

E(G, n) = K(G, n)x6,.
with respect to this action. This is well-defined because of

Theorem 5.10 Let n > 3 be a natural number. For every finitely generated group
G the construction of (G, n) and its S,,-action do not depend on the choice of a
presentation for G. Moreover, the construction of K (—,n) is functorial in its first
argument.

If we denote by Hs(G) the second group homology of G with coefficients in
the integers then there is a central extension

0 — Hy(G) — K(G,n) — K@G,n — 1
and the image of Hy(G) lies inside the commutator subgroup of lz(G, n).

PROOF. We embed K(F4, n) into §4". We denote by 7 the projection from § ;"
onto its last n — 1 factors. From Proposition 3.4 we know that ker 7 restricted to
KC(F4,n) equals the commutator subgroup [§q, Tal-

Welet f € §sand s € N. Then

[(f, 1, f751,.), (5,574 1,.0] = ([f,s],1,1,1,..)

and this element lies in R. Thus [§4, V] is contained in R N ker 7.

Conversely, R is generated by elements of the form (fsf~! s71 1,...) and
their G,,-conjugates where f runs through §, and s runs through N. From this it
follows that every element of R can be written as a product of the form

H(fisifi_la 1, ceey 82‘_1, 1, ) = H (([fl, 5i]7 1, ) . (8i7 1, ceey 82‘_1, 1, )) .

K3 K3
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with f; € §;and s; € N. Using that [§4, N]| is a normal subgroup of §; we see
that every element of R can be written as a product

(H([f;,sg],1,...)> : (H(s;,1,...,sgl,1,...)>.
i J
Such an element lies in ker 7 if and only if the second product over the j’s lies
in ker 7. From Proposition 3.4 applied to /C(/V, n) we see that such an element is
of the form (', 1,...,1) with s € [N, N]. In particular, an element of ker 7 N R
is a product of elements (r, 1, ..., 1) with r € [§4, N]. Thus we have shown that
R Nker 7 is equal to [F4, N].

So there is the following diagram of groups with exact rows and where the
maps downwards are injective:

=R
1 — [Sd,N] — <<]C(]\f7 n)>> - N1 51
l ! |
1 — NN[Fs8] — N'NK@sn) — NUo— 1
l ! |

1 — [T, Sl — K(Sa, n) |

Taking successive quotients we exhibit the group K(§4,n)/R as an extension

of (N N [§a,84))/[§a, N] by K(Fa, n)/(N™ N K(Fg, n)). The latter group is
isomorphic to (G, n) whereas the first group is isomorphic to Hs(G) by Hopf’s
theorem (quoted as Theorem 5.23). Hence we get an extension

1 - Hy(G) —K(Fsn)/R — K(G,n) — 1

We can also take the quotient of the upper exact row by the lower exact row and
obtain the following short exact sequence (cf. Corollary 5.14)

1 — [F4 F4/[8a, N] — K(F4 n)/R — G1 — 1
The inclusion of Hy(G) into KC(F4, n)/R is given by
Hy(G) = (NN [8a, Sal)/[8a; N1 = [8a, Sal/[Sa, N| = K(Sa, n)/R.
Every element of the group in the middle can be written as product of commutators

[(fla flila 17 )7 (f27 17 f2717 )]

where the f;’s are appropriate lifts to §,. Hence this group lies in the commutator
subgroup of K(§4,n)/R. Since Ho(G) is a subgroup of this group in the middle
also Hy(G) lies in the commutator subgroup of X(F 4, n)/R.
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Every element of H5(G) maps to an element in KC(F4, 7)/ R that can be lifted
to an element of KC(F4, n) of the form & = (z,1,...,1) with x € N N [Fq, Ta)-

Given any element § = (y1, ..., ¥, ) of K(F4, n) we compute
yryt = (yiwy 1 1,.0,1)
= (y, 2,1,...,1) - (2,1,..., 1)
~——
E[S’va}
= ¥ mod [§4, N].

Hence H,(G) maps into the centre of C(F 4, n)/R.

Suppose we are given two free groups §4 and §, two normal subgroups N
and N’ in them and a homomorphism « between their quotients. Since free groups
are projective objects there exists a homomorphism ¢ : §; — §4 making the
following diagram commute

Je

Sa - B
! !
Sd/N “ Sd//N'.

Then ¢ induces a map from /N to N’ and hence a map from IC(N, n) to (N’ n).
We will call R the normal closure of (N, n) in §," and similarly R’ the normal
closure of (N’ ,n) in F4". Then ¢ induces a map from R to R’ and we get an
induced homomorphism

v : K(§4n)/R — KSa,n)/R.

We want to show that the map induced by ¢ does not depend on the choice of
the lift of o. So suppose we have a second map ¢’ : §; — 4 lifting o. Since
elements of the form (f, f~1,1,..., 1) generate K(F4, n) it is enough to compare
the induced morphisms on these elements. For f € §, there exists an element
sy € N’ (depending on f) such that p(f) = ¢'(f)ss. Hence

G510 1) = (@) ()7L
= (gp(f)Sf,Sf ! f) 1717' ) )
:SD()(SfSD() 1() 1)
ER’

So the induced maps coincide. In particular, if §; = o, N = N’ and « is the
identity we can choose ¢ to be the identity. By the uniqueness just shown we see
that the identity induces the identity.

If cv is an isomorphism from §;/N to Fu /N’ then the induced homomorphism
from K(§q4,n)/R to K(Fa,n)/R must be an isomorphism. This shows that this
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quotient does not depend on the choice of the presentation and we may refer to
both quotients as (G, n).

Since R is &,,-invariant the action of &,, on K(F4,n) descends to the quo-
tient C(F4, n)/R. A similar reasoning as above shows that also this action only
depends on G and n. O

Again we denote by p; the projection from §," onto its first factor. By abuse of
notation we will also denote its restriction to /C(F4, n) with p;. As a consequence
of the previous theorem we can determine quotients by affine subgroups:

Corollary 5.11 Suppose we are a given a natural number n > 3 and an affine
subgroup R of K(§4,n). We define

N = pi(R) and G = §Fy4/N.

Then there is an isomorphism

K(&q, n)/R =2 K(G,n).
In particular, the quotient is completely determined by G and n.

PROOF. Since p; is surjective the subgroup N of §, is indeed normal. Also R is
stable under G,, and so N does not depend on the projection we have chosen.
We have a short exact sequence

1 - N'"NK(Fa,n) — KFan) — KG,n) — 1.

Clearly (N, n) is a subgroup of R and since R is a normal subgroup also its nor-
mal closure with respect to IC(§4, n) is contained in R. Conversely, R is normally
generated by elements of the form (r, 77!, 1,...) and their &,,-conjugates. Since
these 7’s lie in N we conclude that R must be contained in < (N, n) > and so
R and < K(N, n) > coincide. Hence K (4, n)/R is isomorphic to K (G, n) by
definition of the latter group. U

Corollary 5.12 If o : G — H is a homomorphism between finitely generated
groups then there are induced maps

0 — Hy(G) — K(G,n) — K(G,n) — 1
| ! |
0 — Hy(H) — K(H,n) — K(H,n) — 1

The induced map K(G,n) — K(H,n) coincides with the one induced from
K(—,n). The map from Hy(G) to Ho(H) can be made compatible with the map
induced from group homology.
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PROOF. We let §,/N = G and §4/N' = H be presentations of G and H,
respectively. Again we lift o : G — H toamap ¢ : §4 — F«. The map between
the two H>’s is the one induced from ¢ and

Hy(G) = (NNI[Fa,8al)/[Sa N
l |
Hy(H) = (N'N[Sa,Sa])/[Sa, N']
By [Br, Exercise 11.6.3.b] this can be made compatible with the homomorphism
o, : Hy(G) — Hy(H) on homology. O
The connection with the universality results for X(—, n) given in Proposition

3.9 and Corollary 3.10 is as follows:

Corollary 5.13 Let n > 3 be a natural number and G be a finitely generated
group. With respect to the action of &,, on K(G,n) given by Theorem 5.10 we
define

X = KG,n) and Y = Xg,/X

Then'Y is isomorphic to G and X is equal to X g, . The universal homomorphism
given by Proposition 3.9 takes the following form:

- X, — KY,n) — 1

| | |
0 — Hy(G) — K(Gn) — KGn) — 1

where the maps downwards are isomorphisms.

PROOF. Let F4/N be a presentation of G. Since [K(Fq, 1), &,] equals K (T4, n)
the same is true for the quotient by the affine subgroup R. Hence we have
[X,8,] = X. Also, identifying [K(Z4,n), 6" ,] with K(Fs,n — 1) we con-
clude that [ X 6;1_)1] is the same as I%(G ,n — 1). Using the exact sequence of the
statement of Theorem 5.10 we conclude

def

Y =Xg,/X = K(G,n)/K(G,n—1) = G.

S
Applying Proposition 3.9 we get our statement. 0

Corollary 5.14 Let n > 3 and G be a finitely generated group. We choose a
presentation §q/N = G of G. Then there exists a short exact sequence

1 — [§a8d/[8sN] — K(Gn) — G — 1

If G is perfect then the group on the left is just its universal central extension.
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PROOF. We have seen the above short exact sequence already in the proof of
Theorem 5.10. For details on universal central extensions of perfect groups we
refer to Section 5.5. O

Corollary 5.15 Let n > 3 and consider the following properties of groups:
finite, nilpotent, perfect, solvable.

Then G has one of the properties above if and only if K(G ,n) has the respective
property.

PROOF. If G is finite then so are Ho(G) and KC(G, n). Hence if G is finite then
SO 1s IE(G ,m) being an extension of two finite groups.

Since H,(G) is an abelian group it is also solvable and even nilpotent. Hence
if G is solvable (resp. nilpotent) then so is K (G,n) being a (central) extension of
two solvable (resp. nilpotent) groups.

If G is perfect then so is its universal central extension G. So in this case also

K(G, n) is perfect being an extension of two perfect groups by Corollary 5.14.

If (G, n) is finite (resp. nilpotent, perfect, solvable) then so is G being a
quotient of (G, n). O]

Remark 5.16 Since Hy(G) occurs as a subgroup of the commutator subgroup of

K(G,n) it follows that KC(G,n) cannot be abelian if Hy(G) is non-trivial. For
example, if G = Ziy X Zs then Hy(G) = Zs and so IKC(G, n) is non-abelian.

Despite the complexity of IE(—, n) we can always compute its abelianisation:

Corollary 5.17 Letn > 3 and let G be a finitely generated group. Then there are
isomorphisms

K(G,m)™ = (G n)™ = K(G,n)™ = K(G™n) = (G)"".
We note that only the last isomorphism is not natural.

PROOF. We consider the short exact sequence of Theorem 5.10. Since H(G)
lies inside the commutator subgroup of I%(G ,n) the induced homomorphism of
abelianisation
K(G,n)® — K(G,n)»®

is an isomorphism. The abelianisation of (G, n) is computed in Proposition 3.8
and induces an isomorphism of this group with X(G#, n) which is isomorphic to
(G#)"=1 by Corollary 3.5.

By what we have just proved K (G2, n)? is isomorphic to (G?>, n) proving
the remaining isomorphism. U
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5.4 Examples

We now compute /6(—, n) in some cases. Since the computation of Hy of a group
is a difficult business we will only give a couple of examples that will be important
in the sequel.

Example 5.18 Let n > 3. If G is a (possibly infinite) cyclic group then there are
isomorphisms

K(G,n) & K(G,n) = G L

PROOF. Hopf’s theorem (Theorem 5.23) shows us that Hy(—,Z) vanishes for
cyclic groups. After applying Corollary 3.5 we are done. U

Example 5.19 Let n > 3. Then there is an isomorphism
Hy(24) = zdd-1/2
and we get a central extension
0 — ZWD2 o Kz n) — ZUY 1
However, Remark 5.16 tells us that IE(Zd, n) cannot be abelian for d > 2.

PROOF. We consider the d-dimensional torus 7; := S' x ... x S! in the sense
of algebraic topology. Applying Theorem 5.22 to T, we conclude that Hy(Z<) is
isomorphic to Hy(T}, Z) which is isomorphic to Z#?~1/2, We compute kC(Z?, n)
via Corollary 3.5 and apply Theorem 5.10. 0J

Example 5.20 Let n > 3. We let 11, be the fundamental group of a smooth
projective algebraic curve of genus g > 1, cf. Section 1.1. Then there exists an
isomorphism

H2(Hg) = 7

and we get a central extension
0 - Z — K, n) — Kd,n) — 1.

PROOF. We forget the complex structure and consider a smooth projective curve
only as a closed orientable surface S, of genus ¢ > 1. This is a K (II,, 1)-
space and we can apply Theorem 5.22 to conclude that H5(Il,) is isomorphic
to Hy(S,, 7Z) which is isomorphic to Z. The rest follows from Theorem 5.10. O

Skipping through the references given at the beginning of Section 5.5 we find
the following
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Examples 5.21 The following H>’s vanish
Hy(Z,) = Hy(Qs) = Ha(Z) = Hy(Doo) = 1,

where Qg denotes the quaternion group and D, denotes the infinite dihedral
group. For the dihedral groups of order 2n we have

B 1 ifnisodd
Hy(Dan) = { Zo ifnis even.

Forn > 4 itis known that

HQ(ZQ X Zg) = HQ(Gn) = ZQ.

Appendix to Section 5

5.5 Group homology and the computation of H,

In this section we first recall the construction of group homology. Then we give
some of its properties and give some statements that allow us to actually compute
H, of a given group. As references we refer to [Br, Chapter II], [We, Chapter 6],
[Rot, Chapter 7] and [Rot, Chapter 11].

Let G be an arbitrary group. For a left G-module M we define its module of
co-invariants to be the quotient of M by the module /; generated by all elements
g-m—mforall g € Gand m € M:

MG = M/]G

Taking co-invariants defines a right exact functor for left G-modules and we can
consider its left derived functor. We define the i.th homology H;(G) of G to be the
i.th left derived functor of —¢ applied to the G-module Z with trivial G-action:

H(G) = H/(G, 7).

Using the standard resolution of Z over the group ring Z[G] it is not hard to prove
that for all groups

Hy(G) = Z

H(G) = G

holds true. Clearly, all homology groups are abelian groups. Using again the
standard resolution mentioned before one can show that if G is a finite group then
also its homology groups are finite.

The origins of group homology lie in algebraic topology: We recall that a
connected CW-complex Y is called a K (G, 1)-complex if 7}°?(Y) 2 G and if its
universal cover is contractible.
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Theorem 5.22 Fora K(G,1)-complexY there exist for all i > 0 isomorphisms
H,(G) = H)(Y,7Z)
where H;(Y, 7Z.) denotes the singular homology of the topological space Y .

A short exact sequence
0 - A - X —- G — 1

is called a central extension of G if A lies in the centre of X. A central extension
0 — A— X — G — 1is called a universal central extension if for every central
extension | — B — Y — (G — 1 there exists a unique homomorphism from X
to Y making the following diagram commute

0 - A - X — G — 1

l l |
0 - B —Y — G — 1

If such a universal central extension exists it is unique up to isomorphism.

Central extensions 0 — A — X — G — 1 with a fixed abelian group A
are classified by Hom(H(G), A). In particular, central extensions with C* are
classified by Hom(H,(G),C*) = H?*(G,C*) =: M(G). This latter group is
called the Schur multiplier of G. If G is finite then Pontryagin duality provides us
with a non-canonical isomorphism between Hy(G) and M (G).

A group G has a universal central extension G if and only if it is perfect. In
this case the universal extension takes the form

0 - H)G) — G — G — 1.

Now let NV be a normal subgroup of a free group F' such that G = F//N. Then
there is a central extension

0 — (NN[F,F])/[N,F] — [F,F]/IN,F] — [G,G] — 1.

In case G is a perfect group this is exactly its universal central extension. But even
in the case where G is not necessarily perfect we have the following

Theorem 5.23 (Hopf) Let G be an arbitrary group. If N is a normal subgroup
of a free group F such that G = F/N then

Hy(G) = (NNJ[F,F])/[F,N].
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5.6 Examples from the theory of Coxeter groups

There is a certain “Coxeter flavour* in connection with the groups £(G, n) as for
example Lemma 5.5 indicates. For the following we refer to [Hum, Chapter 5].

A symmetric n x n matrix M = (m;;);; with entries m;; € Z>; U {oo} is
called a Coxeter matrix if

1. my;; = 1 forall 7 and

2. m;; > 2forall i # j.

Let S = {s1,..., s, } be a set with n elements and M/ = (m;;);; a n x n Coxeter
matrix. A group given by generators and relations

W(S, M) = <5i € S | <8i8j)mij = 1>
is called a Coxeter group. The associated Coxeter graph is defined to be the
(undirected) graph with

vertices : the elements of S
edges : there is an edge joining s; to s; if and only if m;; > 3.

If m;; > 4 then we will write this number above the edge joining s; to s;.
The finite Coxeter groups are classified, cf. [Hum, Chapter 1.2].

We now consider the following three series of finite Coxeter groups given by
the following graphs:

A, o O O - 0——0—0 n>1
D, oO—oO0—0—- 4©—©<z n >4
m

It is known that
W(A—1) = (7|72, (TkTi1)?, (mem;)? for |k — j] > 2)

is isomorphic to &,, by sending 7}, to the transposition (k k + 1).
The upper chain forms a subgraph of type A,,_; inside D,,. This defines a
subgroup isomorphic to &,, inside W (D,,). We define a split surjection

v o W(D, — 6,

being the identity when restricted to the subgroup &,, and sending the remaining
reflection to the image of the reflection “lying above* it in the graph D,,. From the
description in [Hum, Chapter 2.10] we get
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Example 5.24 The homomorphism 1) makes ker 1) into K(Z.5,n) and induces an
isomorphism

Next we define a split surjection
”Lp . W(IQ(TR)) — 62 = ZQ

by sending both reflections to the non trivial element of Z,. This Coxeter group
is the dihedral group of order 2m.

Example 5.25 If m is odd then ) makes ker into K(Z.,,,n) and induces an
isomorphism

If m is even then

Wily(m))s, = W(l(5)).

The effect of the previous example is best explained by the fact that there are roots
of different lengths that may or may not be conjugate to short roots. This is why
we are only interested in simply laced graphs.

Next we consider the following graphs giving rise to infinite Coxeter groups
(they are examples of affine Weyl groups):

The upper chain forms a subgraph of type A,, inside A,,. We number it from the
left to the right by 74,...,7,,. This defines a subgroup isomorphic to &,,;; inside
W (A,) where we identify 7, with the transposition (kk + 1). Again, we may
define a split surjection

(N W(An) — G,
by sending the “extra“ reflection to (1 n). We refer to [Hum, Chapter 4.2] for

Example 5.26 The homomorphism ¢ makes ker 1 into K(Z,n) and induces an
isomorphism 3
W(A,) = E(Z,n+1).
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Under the isomorphism given in the example the “extra® reflection maps to the
element (1,0,...,0,—1)(1n) of £(Z,n) .
The upper chain forms a subgraph of type A,,_; inside D,,. This defines a

subgroup isomorphic to &,, inside W (D,,). We define a split surjection
Y W(D,) — 6,

being the identity when restricted to the subgroup G,, and sending a remaining
reflection to the image of the respective reflection “lying above® it in the graph
D,,. We leave it to the reader to show that we get the

Example 5.27 The homomorphism 1) makes ker 1 into (D, n) and induces an
isomorphism

W(D,) = &(Du,n)

where D, denotes the infinite dihedral group.
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6 Conclusion

Jetzt nehmt den Wein! Jetzt ist es Zeit, Genossen!
Leert eure gold’nen Becher zu Grund!
Dunkel ist das Leben, ist der Tod!

6.1 The algorithm of Zariski and van Kampen

Let C be a reduced but not necessarily smooth or irreducible projective curve of
degree d in the complex projective plane. We choose a generic line { C P ie.
a line that intersects C' in d distinct points. We set A? := P? — ¢ and denote the
intersection C' N A? again by C. We are interested in computing the fundamental
groups

m®(P? —C) and 7P(A? —C).

An algorithm that yields presentations of these groups is given in van Kampen’s
article [vK]. The result was known to Zariski before and also Enriques, Lefschetz
and Picard should be mentioned in this context.

We now follow [Ch] and [Mo] to describe this algorithm: We choose a generic
line ¢ in A2, i.e. a line intersecting C' in d distinct points. The inclusion maps
induce group homomorphisms

mPA2-C) — m®P(P?-C)
m®PU—iNC) — 7wP(A% - ).

Both homomorphisms are surjective. A modern proof for this is for example given
by [N, Proposition 2.1] and its corollaries.

The underlying topological space of ¢ — ¢ N C' can be identified with R? with
d points cut out. Hence its fundamental group is the free group of rank d. To get a
system of d generators we may proceed as follows: We let u( be the base point for
the fundamental group of £ — ¢/ N C. We let wy,...,wy be the points of £ N C'. Next
we choose paths ~; from ug to w; for all « = 1, ..., d and assume that distinct 7;’s
meet only in uy. Next we shorten the +;’s such that they stop before reaching their
w;’s. Putting a little circle around w; at the end of the so shortened ~;’s we obtain
loops I'; that lie in £ — ¢ N C'. Loops like this are usually called simple loops and
we already met them in Section 4.4. These [';’s freely generate the fundamental
groupof ¢ — (N C"

mPU—(NC i ug) = (Tyi=1,...d) = Fa

We consider the closure ¢ of ¢ inside IP? and denote by co := £ — ¢ the point at
infinity. We may put an orientation on the I';’s and order them in such a way that
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the composition
0 = I'y-...-Ty

is homotopic to a loop around oo. Sticking to Moishezon’s terminology we will
call such a system {I';},—1 4 a good ordered system of generators. By abuse of
notation we will denote the image of I'; in 7;°? (A% — C') and 7}°(P? — (') again
by Fi-

Having established a generating set we have to determine all the relations that
hold between them: For this, we choose yet another line ¢’ inside A? intersecting
C' in d distinct points. We denote the projection from oo to ¢’ by w. We will call
a point in the fibre of 7 exceptional if it lies on a singularity of C' or if the fibre is
tangent to C' at this point. If we choose the lines ¢ and ¢’ generically then there is
only a finite set M of points on ¢’ such that there are exceptional points in the fibre
71 (m) if and only if m € M. Moreover, since we have assumed that ¢ and ¢’ are
generic there is at most one exceptional point in each fibre of 7. Furthermore, we
may assume that all tangent points are simple, i.e. have multiplicity two. We will
also assume that ¢ and ¢’ intersect in ug so that we can take this point as the base
point for all fundamental groups involved.

The map 7 restricted to E := A* — C' — |J,,c,, 7' (m) is a C* fibre bundle
with base ¢/ — M and fibre £ — ¢ N C. Since the homotopy type of ¢/ — M
is a wedge of 1-spheres its second homotopy group vanishes. The long exact
sequence of homotopy groups of a fibration then becomes a short exact sequence
of fundamental groups

1 - m®l—(nC) - mPA*=C— | 7' (m)) = @ = M) — 1.

meM

As above we may construct loops based at u that form a good ordered system
of generators for 7,°° (¢’ — M). These loops also lie in E and give elements in
7P (E) that lift the system of generators of m;°"(¢’ — M). Since this system of
generators generates 1, (¢’ — M) freely this lift extends to a homomorphism s
and we can split the short exact sequence above.

Using the natural inclusion maps of spaces we see that the surjection from
(L — 1N C) to 7{°P(A? — C) factors over m;°" (E). Hence we have a surjective
homomorphism

TP (A2 = C = Upenrm (M) — mP(A2-0).

It is clear that s(7;°”(¢ — M)) lies in the kernel of this map. The main point is
that the kernel is exactly the group normally generated by s(}°" (¢’ — M)) inside

7°°(E). For a proof of this in our setup we refer to [Ch, Partie 3.2].
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This can be also formulated as follows: Using the splitting s we can define the
monodromy homomorphism

9 o MW —-M) —  Aut(mP(l—£nC))
v = ([ s(y) - Tes(y)7).

Thus 7;°?(A? — ) is generated by the I';’s i = 1, ..., d subject to the relations
I, = 9(7)(I;) for all i’s. Of course, it is enough if v runs through a generating
set of T°P(#/ — M) e.g. a good ordered system of generators. This provides us
with a finite presentation of the fundamental group we are looking for. Taking the

quotient of the subgroup normally generated by d inside 7,°°(A? — C') we obtain
P (P2 — C).

We now compute locally the monodromies that are interesting for us: For this
we let z and w be coordinates on A? and define the lines ¢’ := {z = 2} and
0 :={w = wy} with wy > 2 and z; < —2. We assume that the projection 7 is
given by (z,w) — w.

In case of a simple tangent point we may assume that C' is given by the equa-
tion 22 = w. The fibre of 7 consists of two points except for w = 0, z = 2, hence
this is the only point of M. We let y be a simple loop around this point in ¢ — M.
The set £ N C' consists of exactly two points and we let I'; and I'; be simple loops
around these points in £ — ¢ N C'. If we number the I';’s appropriately then

’19(’}/) . Fl — FQ
FQ — F2F1F2_1

This induces the relation I'y = I's.
In case of a simple double point we may assume that C' is given by the equation
2?2 = w?. In this case we obtain the following monodromy

d(y) : Ty — IR P
r, — F2F1F2F1’1F2’1

and it induces the relation [['y, T'y] = [ Tl 71071 = 1.
In case of a cusp we may assume that C'is given by the equation 2% = w
this case we obtain the following monodromy

3. In

dy) I o PV P P
I's — F2F1I’2I’1I’2’1F1’1F2’1

and it induces the relation (I'y, T'y) := Iy T[Ty 1T 7107t = 1.
We refer to [Ch, Partie 6.2] for more details.

A way to visualise the monodromy is as follows: We define a half-twist of
¢ — ¢ N C to be a homeomorphism of ¢/ — ¢ N C' with itself that is the identity
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outside a small disc containing the two points ¢ N C' and that has the effect of
turning this disc by an angle of 7. In particular, a half-twist fixes the base point
(20, wo). Under such a half-twist I'; is moved to a loop homotopic to I'; and T's is
moved to a loop homotopic to I',' T’y L.

Hence the monodromy coming from a simple tangent point acts like a half-
twist on I'y and I's. Similarly, the monodromy of a simple double point of C' acts
like two half-twists (a so-called full-twist), and the monodromy coming from a
cusp corresponds to three half-twists.

This is the starting point of the braid monodromy introduced by Moishezon:
Half-twists generate the braid group of the pair (¢, ¢ — ¢ N C') and so there is an
induced map from 7;°° (¢’ — M) to this braid group describing the monodromy.
Moishezon used this also for the global situation where things are getting more

complicated. We refer the fearless reader to [Mo] for an introduction.

We now treat the global case of an irreducible curve C of degree d that has at
most simple double points and cusps as singularities. We denote the d points of
(N Cby P, ..., Pyand choose in £ — ¢ N C simple loops 'y, ..., 'y around these
points in ¢ — ¢ N C with a common base point. As already mentioned above, these
loops generate 7,°°(A? — (). The relations induced from a simple tangent point
come again from a half-twist of some P; around some P;. This leads to a relation
of the form I'; = ~I';4~! for some ~. Similarly, simple double points lead to
full-twists and cusps lead to three half-twists of some P; around some P;.

Finally we obtain a presentation of 7;° (A% — D) given by generators I'y, ..., I'y
and relations of the form

ATyt - T;7' = 1  tangent points
Y[iy~5, T;] = 1  simple double points
(W™ T;) = 1  cusps.

In a given situation these v’s can be made explicit. However, for our purposes
later on this is already enough. Pictures, details and quite complicated examples
can be found in [Mo, Proposition 1.2] and [MoTe3, Section V].

An application of this algorithm is the case of a smooth curve C' of degree d.
Then 7;°?(A? — C) is generated by elements I';, i = 1,...,d. Then all relations
come from simple tangent points as explained above and then one can show that
['; = I for all 4, j holds true. In particular, we get § = I'; and conclude:

Proposition 6.1 Ler C' be an irreducible and smooth projective curve of degree d
in the projective plane. Then there are isomorphisms

mPA2-C) = Z and mP(P2-C) = Z,
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Severi claimed that a curve with only simple double points as singularities can be
deformed “nicely* into a union of lines in general position. Using this assertion
of Severi, Zariski [Za] gave a proof of the proposition above also in the case that
(' is an irreducible curve that has at worst simple double points as singularities. A
rigorous proof of Severi’s assertion was finally given by Harris [Ha]. However, in
the meantime Deligne and Fulton had come up with a proof of Zariski’s conjecture
that went along different lines, cf. [De].

In general, the computation of 7}°° (A% — C') is a very difficult business. To get
some ideas about the subtleties occurring we refer to [Dc, Section 4.4] for some
classical examples.

aff

6.2 On the fundamental group of X2,

We let f : X — P2 be a good generic projection of degree n with Galois closure
faal © Xga — P2 We denote by A? the complement of a generic line £ in the
projective plane IP2. We obtain X% and X gg by removing the inverse image of ¢
from X and X,,, respectively.

In Section 4.5 we constructed a short exact sequence

1 — WEOP(ng, x9) — WEOP(ng, Gn, o) — 6, — 1. (%)
We let D be the branch curve of f and denote by d := deg D its degree. Then we
choose another generic line ¢’ in A?. We assume that ug := fga(o) lies on ¢ but
not on D. The intersection of ¢ with A? — D cuts exactly d points out of ¢’ and
the inclusion 2 of ¢/ — ¢’ N D into A? — D induces a surjective homomorphism

i = TP —0ND,u) = mPA2— D, u)

where §, denotes the free group of rank d. To be more precise, we can choose a
good ordered system [';, i = 1, ..., d of generators that freely generates the group
(¢ — ' N D, ug) as explained in the previous section.

The image of T; in 7;°? (A% — D, u) is exactly a simple loop as described in
Section 4.4. Since f is a good generic projection the curve D is irreducible and so
the images of the I';’s are conjugate elements in 7;°° (A% — D, ug). As explained
at the end of Section 4.4 there exists an isomorphism

mP(A? = D, ug)/ € w(l3)? > =2 mP(XH, &, 20).  (+%)

In Section 4.5 we defined a normal subgroup C*% of 7;°"(X o, &y, xp) that

was normally generated by certain commutators and triple commutators between

inertia elements attached to the ramification locus g, of fga 1 X gg — A2, After
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taking the quotient of () by C*% we explained in Theorem 4.7 how to split the
resulting short exact sequence.

We now combine the algorithm of Zariski and van Kampen with Theorem 4.7
and Corollary 5.11 and obtain our main result:

Theorem 6.2 Let f : X — P2 be a good generic projection of degree n. Then
there exists an isomorphism

m P (X /O = K (™ (X4T), n).
If Question 2.14 has an affirmative answer for the universal cover of X gfl then
C* is trivial.

PROOF. We keep the notations introduced so far. By abuse of notation we call
1.(I";) again I'; and we consider the following composition

TP — 0 AD) 5 rPA2— D) —» miP(A2 - D)/ < T2 Cf >
If n denotes the degree of the good generic projection f then there is a surjective
homomorphism

Y o mPA2-D)/ <30 > - G,

Under the isomorphism (xx) the I';’s are identified with (conjugates) of inertia
elements. In particular, 1) sends the I';’s to transpositions. So we can choose for
each T'; a permutation o; of &,, such that o;9)(T';)o; =t = (1 2).

We explained in the proof of Theorem 4.7 how to find a splitting s of 1) using
inertia groups. Inside m°°(A% — D)/ < I';2,C* > we define the following
elements:

siy1 = s(o)Tys(oy) ™t fori=1,..,d.
Clearly, s(6,,) and these s;’s generate the whole group.

Moreover, for every transposition 7, = (k k+ 1) of &,, there exists an element
Y in T (¢ — ¢ N D) such that in 7" (A? — D)/ < I';2, 0 >

s(1) = () Troe(y)™! fork=1,..,n—1

holds true.

Since the s;’s are conjugate to the I';’s the relation s;2 = 1 holds true. As
we have taken the quotient by C*" also the commutator and triple commutator
relations of Section 5.1 hold true. So there exists a surjective homomorphism

Si(d+1) — mP(A? =D, ug)/ < T2 0 >
Si — s; i=2..,d+1
plo) +— s(o) o€,
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where ¢ denotes the splitting of ¢ : S,(d) — &,, we fixed in Section 5.1. In
particular, we will need the fact that ¢((12)) = s;.

The group 7;°° (¢’ — ¢’ N D) is freely generated by the T';’s. We let F be
the group freely generated by elements 7;’s, Kk = 1,...,n — 1. Then we obtain
surjective homomorphisms

(A2 - D)

WEOp(f/—E/mD)*F —a» Sn(d+1) _‘*’» < .2 Caff >
r  eo) gl T,
T — ©(Tk) — Wl

We denote by R the kernel of 71}°" (¢ — ¢’ D) onto 7,°° (A2 — D). Then the kernel

of w o v is the subgroup subgroup normally generated by R, C'* and the relations

7 = v:L'17. ! and I';2. Now since « is surjective the image of the kernel of w o v

in S,,(d + 1) is the kernel of w. We note that C* and T';? already lie in ker a.
We proved in Theorem 5.3 that for n > 5 there is an isomorphism

Sp(d+1) = K(Faq, n) x &, < St x G,
S1 = (1 2)
s — (fi £ D(12) i=2,.,d+ 1
(o) — o Yo € G,

where §, denotes the free group of rank d, freely generated by some elements
fi»i = 2,...,d 4+ 1. The goal now is to show the kernel of w becomes an affine
subgroup in the sense of Definition 5.9 under this isomorphism.

By definition of a good generic projection the branch curve D of f is irre-
ducible and has at worst simple double points and cusps as singularities. The
group 7;°?(A% — D, uy) is generated by the I';’s and we have already seen in the
previous section that the algorithm of Zariski and van Kampen provides us with a
presentation in which all relations follow from relations of the following form:

ATy~ - T;7' = 1  tangent points
Y[iy~5, T;] = 1  simple double points
(W™ T;) = 1  cusps.

Under « the element I'; maps to () ~'s;1¢(0;). Thus, under « the relations
coming from simple tangent points are sent to elements of the form

-1, -1
Vs Si -

Such an element has to lie in the kernel of the homomorphism ¢ onto &,,. Hence
the permutation /() fixes (12). By conjugating this relation with s; we may
assume that ¢)(~y) is a permutation that is disjoint from (1 2). And after conjugating
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with s(¢)(7)) we may assume that y € ker ¢). Thus, we may write v = (71,72, -..)
under the isomorphism of S,,(d + 1) with £(F4,n). Under this isomorphism the
relation maps to

vy tsi Tt e (nfie T e it s 1, 1),

Conjugating this element with (1, f;, f;7',1,...) (again one of the many events
where we need n > 3) we obtain an element of the form (r, 71, 1,...).
By a similar argument we see that the relations

e "YkFl’Yifl

are mapped to relations of the form s;7}s27; . As already shown above this

leads to relations that are conjugate to relations of the form (r, 71,1, ..., 1).
Now we consider the relations

[vsiv™", 5]

coming from simple double points of D. Since such a relation maps to 1 under
we conclude that ¢ (ys;7~!) and y(s;) = (12) are disjoint transpositions or that
() = 1. In the first case this relation already holds true by Lemma 5.5. In the
second case we write again v = (71,72, ...) via the isomorphism of S,,(d+ 1) with
E(F4,n). Under this isomorphism this relation maps to

[’782"7_17 Sj_l] = (’Vlfﬁz_l : fj_l ‘yfiret fj_17
Yofi 't fy el fis 1 L),

Conjugating this element with (1, f;, f;7', 1, ...) we obtain an element of the form
(r,r=1,1,...).

We leave it to the reader to show that also relations coming from cusps either
automatically hold true or lead to relations that are conjugate to elements of the
form (r,r=1,1,...).

Hence, 1}"(A2 — D)/ < T';2, C* >> is the quotient of S,,(d + 1) by a sub-
group that is normally generated by elements of the form (r,7=!,1,...,1). Thus
the relations form an affine subgroup in the sense of Definition 5.9.

Corollary 5.11 tells us that the structure of this quotient is already determined
by the quotient §,/p1(R). By Theorem 4.7 and Corollary 5.13 this quotient is

isomorphic to 7,°° (X ). Hence we conclude that there are isomorphisms

WEOP(AZ _ D)/ < FZQ’ Caff > o 7T11:Op(Xaff Gn)/Caﬂ

gal?

E(m™(X*), n).

1%

The statement about the triviality of C*! if that Question 2.14 has an affirmative

answer for the universal cover of X gg was already proven in Theorem 4.7. U
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Corollary 6.3 Under the assumptions of Theorem 6.2 we let C*% be the image of
C* in the abelianised fundamental group of X gﬁ. Then there is an isomorphism

]{1 (Xaff

gal»

Z)/C*T = Hy(X*, zZ)"

In particular, if 7;°° (X1 is already abelian then we get

TP (X) /O e (et

gal

We want to stress that these isomorphisms are not canonical.

PROOF.  Corollary 5.17 tells us that the abelianisations of K(—,n) and K(—,n)
are isomorphic. The rest of the proof is similar to the one of Corollary 4.8 and
therefore left to the reader. U

6.3 Adding the line at infinity

We have chosen a generic line ¢ in P2, defined A? := IP? — ¢ and chosen a point
ug € A% — D. Then we have chosen a generic line ¢’ in A? containing the point
ug. We denote by ¢ the line ¢’ with point at infinity added.

The inclusion maps of topological spaces induce surjective homomorphisms
of fundamental groups:

mP(W -0 ND) — m(A%2— D)
| e
nP(0' =0 ND) — m®P?—- D)

t

The group m°" (¢ — ¢’ N D) is a free group of rank d freely generated by a good
ordered system of generators [';, 7 = 1, ..., d. By definition the element

0 = I'y-...- Ty

is homotopic to a loop around the point at infinity of ¢’. The subgroup normally
generated by ¢ defines the kernel of both homomorphism downwards in the dia-
gram above.

Proposition 6.4 The element § is a central element of \°°(A? — D) that lies in
the kernel of 1.

Moreover, lifting 0 to loops in X
central sequences

gfl and X we obtain two short exact and

0 — () — mPXD) — mP(Xgm) — 1

and B
0 — (9 — mPXT) - mPX) - 1
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PROOF.  For both groups 7}°?(A? — D) and 7}°?(P? — D) there are surjective
homomorphisms 1 onto &,, that are compatible with ¢,. Since ¢ is trivial in
7P (P2 — D) we conclude that 1(§) = 1.

By a theorem of Oka (cf. [FL, Corollary 8.4]) the short exact sequence

0 — A —- mPA2-D) &% m®P?-D) — 1

is central. We know that A is normally generated by ¢ and hence o must be a
central element of 7}°?(A? — D). Of course § remains central in every quotient of
top (AQ D)
We recall the short exact sequences

1 — WtOP(ngl) — mP(A?2 - D)/ < T2 > Yos, - 1

l |2 I
1 — W‘{Op(Xgal) — mP(P? - D)/ < T3> 4, G, — 1
We already noted that the kernel of the surjective homomorphism 2, is generated
by 4. Since ¥(6) = 1 the loop 4 lies in m°"(X2%). This yields the first exact
sequence.
There exist surjective homomorphisms
tOp(Xaff 6(2)_1) s WEOP(XaH)

galy

! !
T (X, ©01) = w7 (X)

The kernel of the upper horizontal homomorphism N is generated by inertia
groups. The kernel of the lower horizontal homomorphism is generated by the
image of N from above. The kernel of the left arrow downwards is generated by
0. Chasing around this diagram we find that the kernel of the surjective map from

% (X onto 7P (X) is generated by ¢. O

In Theorem 6.2 we constructed an isomorphism

M (Xa) /O 2 K(m™(XP), n).

gal

Since 9 is central it is stable under the &,,-action on the right. The same holds true
when passing to the quotient IC(7}? (X*%), n). So if we consider K(7;°? (X ), n)
as a subgroup of 7,°°(X*")" then § maps to an element of the diagonal. And
Proposition 6.4 tells us exactly what this element is:
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Proposition 6.5 Under the isomorphism of Theorem 6.2 and the surjective map
of Theorem 4.7 the loop 6 maps as follows
m P (X /CT = K (X)), n) — K(m™(X*),n)

) — 0 — (8,...,0)
where § is the central element of Proposition 6.4. 0

Again, we can say a little bit more for the abelianisation

Corollary 6.6 We keep the notations and assumptions of Theorem 6.2. Then we
denote by C?™) the image of C** in the abelianised fundamental group of X ga1.
Then there exists an isomorphism

Hy\(Xga, Z)/CP™ = (X, 7Z) & H(X*, Z)"2.
In particular, if 7\°°(X*%) is abelian then
7Tilzop()(gal>/crp1r0j ~ 7Tiop (X) % 7Tiop (Xaff)n72.
We note that these isomorphisms are not canonical.

PROOF. To increase readability, we abbreviate Hq(—, 7Z) just by Hq(—).
Since abelianisation is not an exact functor we have to proceed by hand:

L= () = m™(X) - m"Xe) — 1

l l l
(@) = H(Xg) — Hi(Xea)

gal

where &’ denotes the image of 0 in Hy(X2). Let x be an element of Hy(X?2f)

that maps to 0 in H;(X,.). We can lift this to an element & of 7, (X af) that
has to map to a product of commutators in ;°"(X.) by commutativity of the
diagram. But this means that 7 is a product of ¢® for some integer s times some
commutators. Changing # by commutators we still get a lift of . So we may
assume that 7 actually equals 6°. Therefore, z is equal to 6°. This shows that we
have an exact sequence

1 — {8 — H (X% — Hi(Xga) — L

gal

We denote by 6 the image of § in 7}°° (X ") we know from Proposition 6.4 that the

subgroup generated by ¢ inside 7}°"(X?) is equal to the kernel of the projection

7% (X1 71°P(X). So we obtain another exact sequence

1 — {(0) — Hi((X) — H(X) — 1
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where ¢’ denotes the image of ¢’ in H; (X?f).
Using Theorem 6.2 we know that there is an embedding

Hl(Xaff)/C_vaff SN Hl(Xaﬁ)n

gal

that sends &' to (&', ..., ') by Proposition 6.5. The image of this homomorphism
equals the subgroup given by (written multiplicatively)

{(z1, .., z0) | ngz =1}

and is abstractly isomorphic to H;(X?®)"~! by Corollary 3.5. This isomorphism
is given by projecting onto the last n — 1 factors of H;(X®*")". The element ¢’
maps to (&, ..., ") (n — 1 factors) under this projection.

So we conclude that H;(X,,) is isomorphic to the quotient of H,(X*T)n~1
by the subgroup generated by (¢',...,4") in it. Since the quotient H;(X?®%) by
the subgroup generated by ¢’ is isomorphic to H;(X) the result follows from the
following lemma. O

Lemma 6.7 Let G be an abelian group and N be a subgroup. Let n > 2 be a
natural number. We let A : G — G" be the diagonal embedding of G into G"
given by g — (g, ..., g). Then there exists a non-canonical isomorphism

G"/A(N) = G"' x G/N.
PROOF. We define the map (written multiplicatively)

Uy G" — Gt
(gla"'7gn) = (9291_17---7gng1_1)-

Since G is abelian this defines a homomorphism of groups. The kernel of v; is
equal to the diagonal embedding A(G) of G inside G™.

We denote by ¢, : G — G/N be the natural quotient map. Then the kernel of
the homomorphism

(I G" - G!' x GJN
g’: (917---,gn) = (wl(g) ) 1/12(91»
is equal to A(G) N (N x G™ 1) = A(N). We leave it to the reader to show
surjectivity.

We finally note that we have somehow “favoured* the first component when
we constructed this isomorphism and this is what destroyed the symmetry. U
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Remark 6.8 Proposition 6.5 shows us that 7, (X za1)/C™ is the quotient of
K(mi°P (X)) by the cyclic group A({5)).
From this we see that the natural surjection

T (Xga) /CPO1 2 K(m™(X*T), ) /A((6))
- Km™X*/(&),n) = Km™(X)n)

given by Theorem 4.7 need not be an isomorphism for projective surfaces. In fact,
Proposition 7.1 gives us an example where this is not the case.

6.4 Generic projections from simply connected surfaces

We start with a result that should be well-known but the author could not find a
reference for it.

Proposition 6.9 Let X be smooth projective surface that is simply connected. Let
D be an smooth and ample divisor on X.
Let d be the maximum

d(£) = max{m|IM, M®" =L}
Then d(L) exists (i.e. there is a finite maximum) and there is an isomorphism
mP(X = D) 2 Zyy).
In particular, this group is always a finite cyclic group.

PROOF. By a theorem of Nori [N, Corollary 2.5] we know that 7{°”(X — D) is
abelian.

But since D is smooth and irreducible (ample implies connected and being
connected and smooth implies irreducible) every cover branched along D is a
cyclic Galois cover. Such a cover of order c is given by a line bundle F and an
isomorphism F%¢ = Ox (D).

On the other hand, 7}°°(X — D) is a finitely generated group and with maximal
finite quotient Z; where d = d(L) as defined above.

To see that d is actually a well-defined and finite number we consider the long
exact cohomology sequence associated to the exponential sequence:

. — HY(X,7) - H' (X, Ox) — H' (X, 0%) & H*X,7Z) — ..
(X)
=~ Pic

Since X is simply connected its first Betti number vanishes and so we conclude
from Hodge theory that H'(X, Ox) = 0. Hence the map ¢; : Pic(X) —
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H?(X, Z) is an injection. The latter group is a finitely generated abelian group
and so Pic(X') must be.

Actually, Pic(X) is a free abelian group: By the universal coefficient for-
mula in algebraic topology all torsion in H?(X, Z) comes from the torsion of
H,(X, 7Z.) which is the abelianised fundamental group of X. Since we assumed
that X is simply connected there is no torsion in H?(X, Z) and so also Pic(X) is
without torsion being a subgroup of H%(X, Z).

From this it follows that d is a well-defined finite number. 0J

Definition 6.10 We call the number d associated to an ample divisor D on a
simply connected surface the divisibility index of D.

As an easy consequence we get the following

Theorem 6.11 Assume that f : X — P2 is a good generic projection of degree n
given by a sufficiently ample line bundle L. Assume furthermore that X is simply
connected.
We denote by d := d(L) the divisibility index of L. Keeping the notations of
Theorem 6.2 there are isomorphisms
ﬂ_EOp (Xaff)/cvaff ~ Zdn—l

gal

t i~ —
™ (Xga) /CP) 2 772,
In particular, these quotients are both finite and abelian.

PROOF. For a generic projection f : X — P2 the inverse image of a generic line

¢ on X is a smooth and ample curve by Bertini’s theorem. To be more precise, we
have Ox (f~1(¢)) = L.

Applying Corollary 6.3 and Corollary 6.6 to Proposition 6.9 we get the result.

0J

Remark 6.12 This result is similar to the one obtained in [ADKY]. However,
there they consider a different quotient than we do and use the technique of braid
monodromy factorisations in the setup of symplectic topology.

6.5 A purely topological description of the Galois closure

Given a good generic projection f : X — IP? of degree n with Galois closure
X,al there is an action of &,, on X,,;. We denote by D the branch locus of f and
note that its ramification index with respect to fg.1 : Xga — P? equals 2. We have
seen in Section 4.4 that there exists an isomorphism

ﬂ-?rb(]sz {D7 2}7 fgal(xO)) = 71-Eop()(gala 6717 xO)-
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We remark that the group on the left is the starting point for the computation of
7P (Xgal) in [MoTel].

We define ug := fga(xo). Every loop inside P? — D based at uy can be
lifted to the n points of f~!(ug). The resulting paths inside X — f~1(D) yield a
permutation of the set f~!(ug). This defines a homomorphism

Y o mP(P?—D,u) — G,

This is of course the same homomorphism as the one constructed in Section 4.4
and so it is surjective.

In [Mi] and [MoTe1] the Galois closure of a generic projection was defined in a
slightly different way. From [SGA1, Exposé V.4.g] it follows that their definition
defines the same object. For the sake of completeness we decided to include a
proof in the topological setup:

Proposition 6.13 Let f : X — P2 be a good generic projection of degree n.

1. As a topological space X g, — fgal_l(D) is homeomorphic to the subspace
{(ar, ... an) [ ai # a5, flai) = fla;)Vi# 5} € (X = f7H(D)"

2. As a topological space X, is homeomorphic to the closure of Xga —
fea ' (D) inside X™.

Moreover, there are unique analytic structures on these spaces that are in fact
algebraic making the homeomorphisms above algebraic isomorphisms.

PROOF. The map from Xy, — fea ' (D) to P? — D is a regular topological cover
with group G,,. Hence there is a short exact sequence

1 — 7Tiop()(gal_fgal_l(l)» - W;OP(IPQ—D) ﬁ Gn — 1.

Moreover, X — f~1(D) is a cover lying in between. Also, Xa — fgafl(D) is
the Galois closure of the topological cover X — f~}(D) — P? — D since the
function fields are the same as for the projective surfaces. This now coincides
with the topological notion of a regular cover associated to a given cover. Hence
up to conjugation v and ¢ are equal.

Welet Z C (X —f~1(D))" be the space defined in the second assertion. There
is a fixed point free action of &,, on Z with quotient P? — D. This is exactly the
principal fibre bundle with fibre G,, associated to the homomorphism . Since 1)
is surjective Z is connected. So there must be a homeomorphism between Z and
Xgal — fgafl(D) since we can identify their fundamental groups with the same
subgroup of 7°° (P2 — D) and the inclusions are induced from the respective cover
maps.
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We look at the projection f" : X™ — (IP?)™ and consider the diagonal embed-
ding A of D in (IP?)". To obtain the closure of Z inside X" we have to glue in
points above A.

In the proof of [Fa, Proposition 1], Faltings computed how X xp: X — P2
locally looks like above points of D. The same local computations applied to the
n-fold fibre product X Xp2 ... Xp2 X show that we can complete Z to a smooth
analytic surface Z. The complement Z — Z is a divisor on Z that locally looks
the same like g1 in X,a1. So there is only one way to define a map of topological
spaces from Z to X, compatible with the projections to P?— D and the respective
embeddings of X, — fgafl(D). Also the local analytic structure can be made
compatible giving a map of analytic spaces Z — X,.. Since Z is a compact
subspace of the projective space X" this map is projective and hence algebraic by
[GAGA]. 0

Composing the homomorphism from 7,°° (A2 — D, ug) onto 7,°" (P? — D, uy)
with the homomorphism 1) from the latter group onto G,, we obtain a homomor-
phism that we will also call 1)

v o mP(A2 =D, uy) — G,

Clearly, it is also surjective. Furthermore we can identify X gfl — fgal_l(D) with
the space

{(ar,...,an) |a; # a;, fla;) = f(a;)Vi# 5} C (X — f~1(D))".

A remark on symmetric products

For a natural number n > 2 and a topological space Z there is an action of the
symmetric group &,, on Z" given by permuting the factors. By definition the n.th
symmetric product of Z is the quotient

Sym"(Z) = 6,\Z".

If we choose a point (z, ..., z) on the diagonal inside Z" its inertia group is the
whole symmetric group. Using the inertia group at this point we obtain a splitting
of the short exact sequence

1 — ﬂ_iop(zn) N ﬂ_iop(zn’Gn) N 611 - 1

Under an appropriate isomorphism of 7;°"(Z") with 7,°°(Z)" the action of &,

on 7;°?(Z™) is given by permutation of the factors of 7\ (Z)".

So we are in the situation considered in Section 3.1. Hence the kernel of the

homomorphism from 7,°°(Z", &,,) onto 71;°”(Sym"(Z)) can be identified with
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E(m\°?(Z),n). By Corollary 3.3 we there exists a surjective homomorphism and
an isomorphism

MR WP = m Sy (2)).

This was (in a slightly different form) already remarked in [SGA1, Remarque
IX.5.8].

So let f : X — IP? be a good generic projection of degree n. We have seen
in Proposition 6.13 that the Galois closure X, occurs as a subspace of X". Also
the action of G,, on X" coincides with the one on X,,;. Taking the quotient by
G,, we obtain maps

X" — Sym"(X)
T2 T
Xgal - IP2
where the maps upwards are inclusion maps of topological spaces. It is known
that the n.th symmetric product of a smooth algebraic surface has singularities as

soon as n > 2.
From the commutativity of this diagram we conclude that

e (1 (7 (X)) ker (m”(X") — m™(Sym" (X))

K(m™(X), n).

1N

In this setup Theorem 4.7 says that the homomorphism ¢, is surjective. Clearly,
everything also works in the affine situation.

It is tempting to think of (X*T)" — Sym™(X?T) as something that is close
to an algebraic fibre bundle with typical fibre X g;ﬁ. Then it would be natural to
expect an exact sequence of homotopy groups

?

C o TP(A%) Do) aP T - P (Sym” (X)) — 1.

={1} 24 tOP(X)ab

However, Theorem 6.2 tells us that in the affine case 7, (X gg) is in general not
a subgroup of 7;°(X*T)" even though the rest of this sequence is exact.
The author does not know whether this point of view may nevertheless shed

new light on the whole problem of determining the fundamental groups of X,
and X2

gal*
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7 Examples

71 P2

Let X := IP? be the complex projective plane.

For k > 5 the line bundle £, := Op2(k) is sufficiently ample by Lemma
2.2. Combining Proposition 2.5 with Proposition 2.8 we see that a generic three-
dimensional linear subspace of H°(IP?, £},) gives rise to a good generic projection
that we denote by f.

Proposition 7.1 Let X, be the Galois closure of a good generic projection fi,.
Then there are isomorphisms

mP (X ot = 7,
P (Xga) /CPOT 22 7,2,

PROOF. The morphism f, has degree n = deg f, = k2. The divisibility index
of Ly in Pic(X) is k and we only have to plug in this data into Theorem 6.11. [

Remark 7.2 The results of Moishezon and Teicher [MoTe2] show that C*% and
CPrl gre trivial.

72 P! x P!

Let X := P! x PL.

Fora > 5 and b > 5 the line bundle L, = Opiyp:(a,b) is sufficiently
ample, cf. Lemma 2.2. Combining Proposition 2.5 with Proposition 2.8 we see
that a generic three-dimensional linear subspace of H°(IP! x P!, L, ;) gives rise
to a good generic projection that we denote by f(,4).

Proposition 7.3 Let X, be the Galois closure of a good generic projection f(, ).
Then there are isomorphisms

7Tiop (Xgag)/caff o~ chd(a,b)Qabil

7P (Xga) [CP = Dgeaap)™
PROOF. The morphism f, ;) has degree n = deg f(, ) = 2ab. The divisibility
index of L, in Pic(X) is ged(a, b) and we only have to plug in this data into
Theorem 6.11. 4

Remark 7.4 The results of Moishezon and Teicher [MoTel ] and [MoTe4] show
that C* and CP™ are trivial.
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7.3 Surfaces in P3

Let X,, be a smooth surface of degree m > 2 in P3.

For k > 5 the line bundle £, := Ops(k)|y,, is sufficiently ample, cf. Lemma
2.2. Combining Proposition 2.5 with Proposition 2.8 we see that a generic three-
dimensional linear subspace of H°(X,,, L) gives rise to a good generic projec-
tion that we denote by f;, : X,, — P2,

Proposition 7.5 Let X, be the Galois closure of a good generic projection fi.
Then there are isomorphisms
o a; a, ~ mk?—
tp(ng)/Cﬂ o Zk k*—1
TP (Xgat) /CP 22 7,052,

PROOF. The morphism f; has degree n = deg f,, = mk?>.

Lefschetz’s theorem on hyperplane sections tells us that the surface X,, is
simply connected. We let C' be a smooth section of Ops(1)|x,,. The surface
X,, — C'is simply connected by [N, Example 6.8]. So the divisibility index of £
equals 1 for and hence this index is equal to & for L.

Applying Theorem 6.11 we get the result. U

7.4 Hirzebruch surfaces

Let X :=F. := Pp1(Op1 @ Op1(—e)) with e > 2 be the e.th Hirzebruch surface.

We denote by F' the class of a fibre of X — P! and by H the class of the
tautological bundle Op, (1) in Pic(IF.). We refer to [Hart, Section V.2] for details
on the intersection theory and the canonical line bundle of Hirzebruch surfaces.

For a > 0 and b > ae the line bundle L, ) := Op, (aH + bF) on I, is ample
by [Hart, Theorem V.2.17]. We assume that L, ;) is sufficiently ample which can
be achieved by taking a tensor product of at least five very ample line bundles cf.
Lemma 2.2. If Proposition 2.8 assures the existence of simple double points then
we denote by f(,p) @ Fe — IP? the good generic projection associated to a generic
three-dimensional linear subspace of H(F., L(44)).

Proposition 7.6 Assume that f,p) : Fo — P2 is a good generic projection. We
let X1 be the Galois closure of f.). Then there are isomorphisms

top aff aff ~ 2ab+ea?—1
T ( gal)/c = Zgea(ap)

P (Xgar) /CP)

12

chd 2ab+ea2—2.
PROOF. The morphism f(, ) has degree n = deg f(,5 = 2ab + ea’. The divis-

ibility index of L4 in Pic(X) is gcd(a, b) and we only have to plug in this data
into Theorem 6.11. ]
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Remark 7.7 Using the results of Moishezon, Teicher and Robb [MoTeRo] we see
that C* and CP* are trivial.

7.5 Geometrically ruled surfaces

We let C' be a smooth projective curve of genus g and we let £ be a rank 2 vector
bundle on C. We assume that H°(C, E) # 0 but that for all line bundles £ with
negative degree the bundle £ ® L has no non-trivial global sections.

Then we define 7 : X := P(£) — C to be the projectivisation of £ and
e := —deg&. This is a geometrically ruled surface over C' with invariant e.
Conversely, by [Hart, Proposition V.2.8] every geometrically ruled surface over
a curve is the projectivisation of a rank 2 vector bundle that fulfills the above
assumptions on the global sections.

The Picard group of X is isomorphic to Z @ Pic(C). It is generated by the
pull-back of Pic(C') and by the class Cj of a section of 7 with O x (C}) isomorphic
to the tautological line bundle Ox (1) on X. We choose a natural number k£ > 0
and a line bundle L on C of degree deg L > ke. Then we define the line bundle
Lx on X to be

EX = Ox(00)®k &® W*(ﬁc).

This line bundle is ample by [Hart, Proposition V.2.20] and [Hart, Proposition
V.2.21]. We assume that L x is sufficiently ample which can be achieved by tak-
ing the tensor product of at least five very ample line bundles, cf. Lemma 2.2.
If Proposition 2.8 assures the existence of simple double points then we denote
by fr, : X — P? the good generic projection associated to a generic three-
dimensional linear subspace of H(X, Lx). The degree of f., equals the self-
intersection of Lx

n = degfr, = 2kdegLc — ek
Also we denote by
d(Lx) := max{m € Z|3IM € Pic(X), M®™ = L}
the divisibility index of Lx in Pic(X'). This number divides the greatest common
divisor ged{k, deg L }.

Proposition 7.8 Let X be a geometrically ruled surface over a curve of genus g
and let Lx be the line bundle considered above.

We assume that L is sufficiently ample and that f;, : X — P?is a good
generic projection. We let Xg, be the Galois closure of fr.. Then there are
isomorphisms

1%

(PO = Ty @ 20
T (X)) /CPOT 22 Ly )72 @ 22907,
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PROOF. If we denote by II, the fundamental group of C' (cf. Section 1.1) then
7" (X) is isomorphic to I1, since X is a smooth surface that is birational to the
product P! x C.

Proposition 6.4 tells us that there is a central short exact sequence

0 — Z — mPXM - nPX) — 1
1

where Z is a cyclic group. If we abelianise we obtain a short exact sequence

0 — ¢(2) - mPAHP* - HPX)P = 0
———

~7,29

where ¢ denotes the homomorphism from 7;°" (X ) onto its abelianisation. Since
the quotient group on the right is a free abelian group we can split this short exact
sequence and obtain a non-canonical isomorphism

WEOP(XaH)ab o gb(Z)@ZQg

Then the direct summand ¢(Z) occurs as a quotient of 7,°”(X)2. This quotient
describes cyclic covers branched along H := f., ~'(¢) where ¢ is a generic line
in P?2. This H is a smooth and irreducible divisor and so to give a cyclic cover
branched along H is the same as to give a line bundle M and an isomorphism
ME™ = Oy (H). Since Ox(H) is isomorphic to L£x we see that the maximal
cyclic cover possible is of degree d(L x). Hence

A(Z) = Zacy)

and so we found the structure of 7;°° (X )b,

Using Corollary 6.3 we obtain an isomorphism

W;op(xaﬁ)ab/c_faff o~ Zd(LX)n_l D Z2g(nfl)

gal

and using Corollary 6.6 we obtain the structure of the abelianised quotient in the
projective setup. U

7.6 An instructive counter-example

We consider again the projective plane IP? but this time together with the line
bundle £, := Op2(2). The image of P? in IP® with respect to £, is usually called
the second Veronese surface.

We denote by f, : P? — P? a sufficiently general projection from this
Veronese surface onto a linearly embedded P2 inside IP°.
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Moishezon and Teicher [MoTe2, Proposition 2] computed the fundamental
group of the Galois closure X, of fs:

7TEOP(Xgal) = 77

The interesting point is that the branch curve of f, has 9 cusps but no simple
double points. But this means that if 7; and 7, are two disjoint transpositions then
the curves R, and R., do not intersect. So Question 2.14 has a negative answer
already for the trivial cover Xz, — Xga. And indeed the quotient computed by
our method is Z->.

This is in fact the only example known to the author where C*" is non-trivial
and the quotient computed by Theorem 6.2 is not isomorphic to the fundamental
group of the Galois closure.

This example suggests that the existence of simple double points on the branch
curves really is essential.

However, the second Veronese surface arises in many situations as a counter-
example and there are several classical theorems in classical algebraic geometry
that have to exclude this surface to be true. For example, this surface and its
projection onto P2 would also be a counter-example to Chisini’s conjecture (Con-
jecture 1.3) if we had not imposed the condition that the degree of the generic
projection has to be strictly larger than 4. We refer to [Cat] for details and further
information.
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Notations

Varieties and morphisms

f X —P? a generic projection from a smooth
complex projective surface
fear 0 Xga — P2 the Galois closure of f : X — IP?
14 a generic line in P2
A2 = P2/ the affine plane w.r.t. /
Xt = X — L0 the affine part of X w.r.t. £
XM= Xga — fea "(£)  the affine part of Xy, w.r.t. £

Constructions in group theory

[X,Y]  subgroup generated by commutators [x,y],z € X,y € Y
G*P abelianisation of a group G, i.e. the quotient G/ |G, G|
K(G,n) the construction defined in Section 3.1

E(G,n) the construction defined in Section 3.1

Xa the notation introduced in Section 3.3

S,(d) the group defined in Section 5.1

K(G,n) the construction defined in Section 5.3

E(G,n) the construction defined in Section 5.3
Hy(G)  the second group homology with integral coefficients

Special groups
Z, the cyclic group of order n
7z the infinite cyclic group

Dy,  the dihedral group of order 2n

11, the fundamental group of a smooth projective
curve of genus g > 1

G the symmetric group on n letters

Gni)_l the subgroup of G,, fixing the letter ¢

Fundamental groups

Y the étale or algebraic fundamental group

P (Y) the topological fundamental group

(Y, Q) the G-fundamental group defined in Section 4.3
(

™
7 (Y, D;,n;)  the orbifold fundamental group defined in Section 4.4
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