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Summary

Every closed oriented surface S of genus g ≥ 2 can be endowed with a non-
unique hyperbolic metric. By the celebrated Uniformization Theorem, hyperbolic
and complex structures on S are in one-to-one correspondence. A question that
arises is: Can we parametrize the complex structures in a nice way? This question
brings us to Teichmüller theory.

Teichmüller space is the quotient of all complex structures on S by the group
of diffeomorphisms isotopic to the identity. The quotient of the Teichmüller space
by the mapping class group, i.e. the group of isotopy classes of orientation pre-
serving diffeomorphisms of S, is the moduli space, i.e. the set of all biholomorphic
equivalence classes of complex structures S can be endowed with.

The moduli space classifies Riemann surfaces of a given genus up to biholomor-
phic equivalence. But it turns out that, instead of looking at the structure of the
moduli space directly, it is easier to study the Teichmüller space: The Teichmüller
space is a complex manifold biholomorphic to a bounded domain in C3g−3, whereas
the moduli space is an orbifold rather than a manifold and has complicated topol-
ogy. There are several mapping class group-invariant metrics on Teichmüller space
which are useful when studying the structure of the moduli space and the Teich-
müller space. Among them is the Teichmüller metric, a complete Finsler metric
that is well-suited to measure differences in complex structures. For any pair of
points in Teichmüller space there is a homeomorphism which maps one point to
the other (respecting the marking) and which is quasi-conform with respect to the
two complex structures. The Teichmüller metric measures how much the “optimal”
quasi-conformal map differs from a biholomorphic isomorphism.

The cotangent bundle of the Teichmüller space can be identified with the bun-
dle of holomorphic quadratic differentials. There is a one-to-one correspondence
between unit speed Teichmüller geodesics and holomorphic quadratic differentials
of unit area. The vertical foliations of quadratic differentials play the role of “di-
rections” in Teichmüller space. We call a pair of geodesics with common direction
asymptotic if there are unit speed parametrizations of the geodesics such that the
distance between the two geodesics converges to zero.

Teichmüller space together with the Teichmüller metric is not negatively curved
in any reasonable sense, but it shares many properties with negatively curved spaces.
In 1980 Masur proved that for almost all directions pairs of Teichmüller geodesics
in that direction are asymptotic. On the other hand, Masur proved that there
are pairs of Teichmüller geodesics pointing in common direction and which stay
bounded distance apart. The distance between two asymptotic geodesics in the
hyperbolic plane decreases as an exponential function. To study the extend to
which Teichmüller metric shows the behavior of negative curvature one can ask the
question: How fast does the distance between asymptotic Teichmüller geodesics
decrease?
One outcome of this thesis is that the generic pair of Teichmüller geodesics with
common direction actually is exponentially asymptotic. We formulate the result as:

Theorem (Theorem 2.24 and Section 2.8). Let dT denote the Teichmüller metric.
For almost all Teichmüller geodesics ρ1, all Teichmüller geodesics ρ2 in the same
direction are exponentially asymptotic: There are unit speed parametrizations of the
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geodesics and constants ξ = ξ(ρ1) > 0 and D = D(ρ1, ρ2) > 0 with

dT

(

ρ1(t), ρ2(t)
)

≤ D exp(−ξt)

for large t > 0. On the other hand, there are examples of slowly asymptotic pairs
of Teichmüller geodesics for which such constants do not exist.

One tool to understand Teichmüller geometry is the theory of holomorphic qua-
dratic differentials and singular euclidean metrics. These metrics can be seen as
an attempt to flatten out a hyperbolic metric to one with zero curvature. By the
powerful Gauss-Bonnet formula such an attempt is bound to fail, but one can con-
centrate all curvature in a discrete set of singularities. For these so-called singular
euclidean metrics there is a globally consistent notion of direction. As in the case of
the flat torus, we get a directional foliation for every direction. One can ask for the
dynamical properties of the “flow” defined by the foliation. (Off the singularities
this is a flow, but it is not well-defined at the singularities. For the questions on the
dynamical properties, this issue can be handled.) The dynamics in vertical direc-
tion are strongly connected to the long term behavior of Teichmüller geodesics. In
the torus case, each direction is either periodic or the flow lines are dense (“mini-
mal”) and, up to scale, there is only one transverse measure invariant under the flow
(“uniquely ergodic”). It is an active area of mathematical research to translate dy-
namical properties of the torus case to higher genus. However, the above mentioned
dichotomy does not necessarily hold in higher genus. The classification of singular
euclidean metrics in higher genus according to whether or not this dichotomy holds
is open.
The second outcome of this thesis is a sufficient criterion for singular euclidean
metrics in genus 3 not to fulfill the dichotomy:

Theorem (Theorem 3.1). If the “vertical flow” of an orientable holomorphic qua-
dratic differential in genus 3 has four components, two of them cylindrical and
isometric to each other and two of them minimal, then there are uncountably many
minimal non-ergodic directions.

The thesis is divided into three chapters. The first chapter provides background
information needed to formulate precisely and to prove rigorously the two above
mentioned theorems. Moreover, the historical context is given and the results are
compared to current research status. Most of this material is well-known. Refer-
ences are included, whereas proofs are omitted. An exception is Section 1.3, where
we give proofs fitting to our context.

The second chapter deals with the quantitative asymptotic behavior of pairs
of Teichmüller geodesics. Techniques necessary for the proof are developed and a
proof of the theorem is given. We rely on notations introduced in Chapter 1 and
the results given in Section 1.3. Beside that, Chapter 2 is mostly self-contained.
The proof is based on the theory of zippered rectangles. Zippered rectangles are a
tool to describe the geometry of quadratic differentials. Rauzy-Veech-steps change
zippered rectangles according to the transformation of quadratic differentials along
Teichmüller geodesics. We bound Teichmüller distance from above along asymp-
totic pairs of Teichmüller geodesics in terms of zippered rectangles. Under certain
assumptions, Rauzy-Veech-steps reduce this bound by a uniform factor. Studying
the geometry of zippered rectangles and making use of Birkhoff’s Ergodic Theorem
we can show that generically these assumptions are fulfilled often enough to get



iv

exponential asymptotics.
However, exponential asymptotics do not hold in general. We construct an example
of slow asymptotics, illustrating this fact.

The last chapter contains the result on dynamics of the “vertical flow” of qua-
dratic differentials and its proof. Some familiarity with quadratic differentials given,
this chapter can be read independently of the other chapters.
We use a theorem of Masur and Smillie from 1991 stating that certain sequences
of directions on quadratic differentials converge to non-ergodic directions. By an
inductive argument we construct uncountably many of these sequences. Not all of
them have to converge to minimal directions, but we can argue that among them
there certainly are uncountably many sequences converging to minimal directions.
The inductive step is based on a careful study of the geometry of the given quadratic
differential and uses a Ratner-style theorem.
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1. History and background information

As mentioned in the summary, this chapter contains the historic context of the
two main results. Moreover, definitions and well-known results from the wide and
beautiful area of Teichmüller theory are given, where we restrict to aspects related
to the aim of this thesis.
The first section provides us with the necessary definitions of Teichmüller space and
related objects. It follows a discussion on the curvature of Teichmüller space and on
the behavior of Teichmüller geodesics. The third section establishes the relation of
the dynamics on a surface and on ramified covers. We then investigate dynamical
properties of special singular euclidean metrics strongly connected to Teichmüller
geodesics.

1.1. Teichmüller space and quadratic differentials. From a topological point
of view an oriented compact surface without boundaries is completely determined
by its genus g. We know that there are additional structures that a surface can
have. For us, complex or hyperbolic structures are of special interest. In contrast to
the topology, these structures are not determined by the genus. The Uniformization
Theorem states that for g ≥ 2 there is a one-to-one correspondence between complex
and hyperbolic structures. Teichmüller theory deals with these structures and their
relations. Textbooks on Teichmüller theory are Imayoshi and Taniguchi [IT92] and
Hubbard [Hub06], to mention just two of them.

1.1.1. Teichmüller space and Moduli space. Let S be an oriented compact surface
without boundaries, of genus g, and with at most finitely many punctures. The
topological structure uniquely determines a differentiable structure on S, which we
again denote by S. We assume the Euler characteristic of S to be negative, thus S
admits complete finite volume hyperbolic metrics. A Riemann surface X is a one-
dimensional complex manifold. We say that X is modeled on S if the underlying
surface is diffeomorphic to S. A marked Riemann surface (X, f) is a pair of a
Riemann surface X modeled on S and an orientation preserving diffeomorphism
f : S → X , called the marking. Two such pairs (X1, f1) and (X2, f2) are defined
to be equivalent if there exists a biholomorphic isomorphism Φ : X1 → X2 such
that f−1

2 ◦ Φ ◦ f1 : S → S is isotopic to the identity on S. The Teichmüller space
T = T (S) of S is the set of all equivalence classes with respect to this equivalence
relation. If there will be no confusion which marking is meant or if the marking
itself does not matter, we sometimes just use the Riemann surface X to name a
point in Teichmüller space and assume the marking being implicitly given. For
ε > 0 define Tε = Tε(S), the thick part of Teichmüller space, to be the subset of
all (X, f) ∈ T (S) subject to the condition that the length, measured with respect
to the hyperbolic metric on (X, f), of every closed curve is at least ε.

Let Map(S) be the mapping class group, i.e. the set of isotopy classes of ori-
entation preserving diffeomorphisms on S fixing the punctures, if any. It acts on
Teichmüller space by precomposition with the marking. The complex structure is
not affected, only the marking changes. For a given point in Teichmüller space, its
orbit consists precisely of all possible markings of the respective Riemann surface.
Hence the quotient M (S) of Teichmüller space by the mapping class group is just
the set of biholomorphic equivalence classes of Riemann surfaces modeled on S. It
is called the moduli space of S. The image of Tε(S) in moduli space is Mε(S), the
thick part of moduli space.
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1.1.2. Quadratic differentials and measured foliations. Let S be an oriented com-
pact surface without boundaries with at most finitely many punctures and with
negative Euler characteristic. Given a Riemann surface X modeled on S we de-
fine a quadratic differential1 q on X to be a holomorphic section in T ∗X ⊗X T ∗X .
In local charts {(Uν, zν)} we can write q as qν(zν) dz2

ν with change of coordinates

qν = qµ

(dzµ

dzν

)2
on intersections Uν ∩Uµ, where dz2

ν = dzν ⊗C dzν and qν is holomor-
phic on Uν . Note that we allow quadratic differentials to be the square of Abelian
differentials. In this case we speak of orientable quadratic differentials. We mention
Strebel’s textbook [Str84] on quadratic differentials.

From now on we assume all surfaces to be of genus g ≥ 2 and without punctures,
unless otherwise noted. A measured foliation F on S is a singular foliation on
S together with a measure which is defined on transverse arcs and is invariant
under isotopies along leaves of F . We assume that every regular point of the
foliation has a neighborhood in the maximal atlas of S such that F is induced
by dy. Local neighborhoods of singular points s of F have a (k(s) + 2)-pronged
singularity, k(s) > 0. We allow k(r) = 0 for regular points r. By the Euler-Poincaré
formula the topology of S restricts the possible singularity patterns of measured
foliations: 4g − 4 =

∑

x∈S k(x). For a simple closed curve γ, denote its measure by
F(γ), where F(γ) is the infimum of the transverse measures of simple closed curves
in the homotopy class of γ. Fathi-Laudenbach-Poenaru [FLP79] is a good reference
to measured foliations.

A saddle connection of a measured foliation F is a compact subsegment of a leaf
and which starts and ends in singular points of F . If the surface S has punctures,
the punctures are treated as singular points. A Whitehead move is a homotopy
on S collapsing one saddle connection of a foliation and the two singular points at
its ends into one singular point. The equivalence relation on measured foliations
generated by Whitehead moves and isotopies is called topological equivalence. We
remark that this relation is independent of the transversal measures. Let S = S(S)
be the set of homotopy classes of simple closed curves on S. Every measured
foliation F assigns a well-defined transversal length F([γ]) = F(γ) to [γ] ∈ S and
thus defines a map S → R≥0. Call two measured foliations F1 and F2 equivalent
if their images in RS

≥0 coincide. This equivalence relation allows Whitehead moves.
It is the finest equivalence relation for measured foliations coarser than topological
equivalence and with a Hausdorff set of equivalence classes (see Hubbard and Masur
[HM79]). This equivalence relation endows the set MF of equivalence classes with
a topology coming from RS . Let F be a measured foliation on S. A cylinder of F
is a maximal family of closed leaves of F that jointly fill up a topological annulus.
The boundary of every cylinder always is a union of saddle connections. If F is a
union of cylinders, we call F periodic. A minimal component of F is the closure of a
non-compact leaf of F . If F has saddle connections, the boundary of every minimal
component is a union of saddle connections. If F has only one minimal component
and this component contains all non-compact leaves, F is called minimal. It is
a well-known fact that F is minimal if there aren’t any saddle connections (see
[MT99] for instance). A measured foliation is called uniquely ergodic if it admits
only one transversal measure, up to scale.

Integration of a quadratic differential q 6= 0 locally along arcs gives a flat metric
in the conformal class of X . The flat metric is a singular euclidean metric with

1All quadratic differentials are meant to be holomorphic, unless explicitly stated otherwise.
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cone type singularities and distinguished vertical and horizontal direction. Off the
zeros of q, transition maps are of the form z 7→ ±z + c, c ∈ C, and zeros of order
k give singular points with cone angle (k + 2)π in the flat metric. Vice versa, such
a flat metric defines a quadratic differential via q = dz2 in local charts. Transition
maps preserve (unoriented) angles, hence for any direction θ ∈ [0, π) we get a
measured foliation which locally is given by Im d(e−iθz)2. We explicitly mention
the horizontal and the vertical foliation given by θ = 0 and θ = π/2. The foliation
in direction θ of q equals the horizontal foliation of e−2iθq. The euclidean norm
is invariant under the transition maps, thus we have a well defined notion of the
length of an arc α. We denote this length by ℓ∗q(α) and call it the ℓ∗q-length of α.
Geodesics in the flat metric are arcs which locally minimize ℓ∗q . Off the singularities
geodesics in this metric are straight euclidean lines. At singularities geodesics are
composed of straight euclidean lines which meet at the singularity and make an
angle of at least π on either side. For every simple closed curve γ either there is
exactly one geodesic in the homotopy class of γ or there is a one-parameter family
of parallel geodesics which jointly fill an euclidean cylinder.

It is often convenient to use the 1-norm to measure the length of an arc α.

Definition. Let α : [a, b] → X be a unit speed parametrization of α with respect
to the singular euclidean metric, then

ℓq(α) = vert(α) + hori(α)

is the ℓq-length of α, where

vert(α) =

∫ b

a

|Re
√

q|
(

α′(t)
)

dt

is the vertical length and

hori(α) =

∫ b

a

|Im√
q|
(

α′(t)
)

dt

is the horizontal length of α.

Remark. By the Cauchy-Schwarz-inequality we have ℓ∗q(α)/2 ≤ ℓq(α) ≤ 2ℓ∗q(α) for
every arc α (see [Raf05] for a computation of the first inequality; the other one
holds by a similar argument).

Geodesics with respect to ℓq and with respect to ℓ∗q do not necessarily coincide.
We emphasize that in this thesis we only consider geodesics with respect to ℓ∗q,
whereas we sometimes tend to use ℓq to measure lengths explicitly. We apologize
for any confusion that may arise.

A saddle connection in the flat metric defined by q 6= 0 is a saddle connection
of a directional foliation for q. Saddle connections are geodesic arcs. If q 6= 0 is
an orientable unit area quadratic differential and γ a saddle connection or the core
curve of a cylinder in the flat metric defined by q, then γ makes a well defined
angle θ ∈ [0, 2π) to the horizontal. The complex vector ℓ∗q(γ) eiθ =

∫

γ

√
q dz is the

holonomy of γ.

Remark. Let γ be a non-trivial closed geodesic in the flat metric defined by q 6= 0.
There are two cases. First, γ consists of one or more saddle connections; second,
γ avoids any zero of q. In the second case, γ and its equidistant parallels fill up a
flat cylinder, whose boundary circles (which have the same ℓq-length as γ) consist
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of saddle connections. Either way, there is a saddle connection with horizontal and
vertical length bounded from above by the horizontal and vertical length of γ.

There is a strong connection between quadratic differentials and measured foli-
ations, given by the Hubbard-Masur Theorem 1.1. Before we present this theorem
we need to introduce a topology on Teichmüller space.

1.1.3. Teichmüller metric and the cotangent bundle. We endow Teichmüller space
with the Teichmüller metric: For any two points (X1, f1) and (X2, f2) in Teichmül-
ler space define their distance to be dT

(

(X1, f1), (X2, f2)
)

= 1
2 log(infΦ KΦ), where

KΦ is the quasi-conformality constant of Φ, and Φ varies over all quasi-conformal
maps Φ : X1 → X2 with Φ homotopic to f2 ◦ f−1

1 . Note that biholomorphic iso-
morphisms are conformal maps. This metric is Map-invariant and projects down
to M (S). Teichmüller space and moduli space inherit a topology from Teichmüller
metric. With this topology, Teichmüller space T (S) is an euclidean (6g − 6)-
dimensional open ball if S is closed, oriented, without punctures and of genus
g ≥ 2. The structure of moduli space is much more difficult; it is an orbifold rather
then a manifold. Nevertheless, the thick part of moduli space is compact. Teich-
müller geodesics are bi-infinite arcs in Teichmüller spaces which locally minimize
Teichmüller distance. Let p be a point on a Teichmüller geodesic. The geodesic is
divided by p into two infinite sub-arcs called Teichmüller rays. Compact subarcs
of Teichmüller geodesics are Teichmüller segments.

The famous Hubbard-Masur Theorem establishes a strong relation between qua-
dratic differentials and measured foliations:

Theorem 1.1 ([HM79]). Let F be a measured foliation. For every point X ∈ T ,
there is a unique quadratic differential q(X,F) on X whose vertical foliation is
equivalent to F . The map X 7→ q(X,F) is a homeomorphism onto its image.

In the spirit of this theorem we will use the pair (X,F) to denote the quadratic
differential q = q(X,F) on X with vertical foliation equivalent to F . We call the
vertical foliation of q(X,F) the realization of F on X .

There is a notion of area of quadratic differentials : area(q) =
∫

X
|q(z)|dx dy with

z = x + iy in local charts. The area of a quadratic differential coincides with the
area of the induced flat metric. Unit area quadratic differentials play a central role
in this thesis.

The bundle Ω2(S) of quadratic differentials over Teichmüller space T (S) is strat-
ified by strata. A quadratic differential q ∈ Ω2(S) belongs to the stratum Q = Q(κ),
κ = (κ1, · · · , κk, κ∗) ∈ Nk ×{+1,−1}, if the orders of zeros of q form a vector equal
to (κ1, · · · , κk) up to permutation and κ∗ = +1 for orientable quadratic differen-
tials or κ∗ = −1 for non-orientable quadratic differentials. We denote the subset
of unit area quadratic differentials by Q1 = Q1(κ). The thick part of the stratum
is Q1

ε = Q1
ε(κ) ⊂ Q1, the locus of unit area quadratic differentials q with a lower

bound ε > 0 on the ℓ∗q-length of any saddle connection. We remark that in a fixed
stratum the length of the shortest saddle connection depends continuously on the
quadratic differential. The quotients of Q, Q1 and Q1

ε by their stabilizers in the
mapping class group are denoted by Q, Q1 and Q1

ε , and are called (thick part of)
strata over moduli space.
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Remark. There are conditions on the vector κ for Q(κ) being nonempty. One

necessary condition is
∑k

j=1 κj = 4g − 4, compare Section 1.1.2. In most, but not

in all cases this condition is sufficient, see Masur-Smillie [MS93].

Although hyperbolic length and ℓ∗q-length are quite different, we can locate the
intersection of the thick part of Teichmüller space and the image of a stratum under
the projection of quadratic differentials to the underlying Riemann surfaces in terms
of ℓ∗q-lengths:

Lemma 1.2. Let ε > 0. There exists c(ε) > 0 such that for every unit area
flat metric with lower bound c(ε) on the length of saddle connections it holds that
the underlying Riemann surface is an element of the thick part of the respective
Teichmüller space.

Proof. Let q be any unit area quadratic differential on a Riemann surface X and
let there be a simple closed curve γ that is shorter than ε when measured in the hy-
perbolic metric σ in the given conformal class. Then the extremal length extX,σ(γ)
is bounded from above by c = c(ε) > 0, where c(ε) ց 0 for ε → 0, see Maskit
[Mas85]. Hence, in the flat metric the length of the shortest curve in the homotopy

class of γ is bounded from above by
√

c · area(q) =
√

c. Recall that the shortest
saddle connection is not longer than the shortest closed curve. This finishes the
proof. �

The bundle Ω2(S) of quadratic differentials can be identified with the cotangent
bundle of Teichmüller space. There is a norm on the tangent bundle of Teichmüller
space such that the area of quadratic differentials is the dual norm. Teichmüller
metric is a Finsler metric coming from this norm on the tangent bundle. Thus unit
area quadratic differentials correspond to unit tangent vectors.

Teichmüller geodesics have a very nice description in terms of flat metrics or
quadratic differentials: Teichmüller geodesics in direction of a quadratic differential
q 6= 0 are precisely the image in Teichmüller space of scaling horizontal lengths
in the flat metric defined by q with et/2 and contracting vertical lengths by the
same factor, thus Teichmüller geodesic flow is just the action of the diagonal group
{diag(et/2, e−t/2) : t ∈ R} on flat metrics defined by unit area quadratic differentials.
In terms of the quadratic differential this corresponds to scaling (the transversal
measure of) the horizontal foliation of q by e−t/2 and (the transversal measure
of) the vertical foliation of the quadratic differential by et/2. Doing so we do not
change area, nor do we leave the stratum. We write ρq to refer to the Teichmüller
geodesic defined by q, normalized such that ρq(0) = X . For a unit area quadratic

differential q on X , the parametrization coming from the diag(et/2, e−t/2)-action
turns {ρq(t) : t ∈ R} into a unit speed Teichmüller geodesic. Let qt be the unit area
quadratic differential on Xt = ρq(t) that gives rise to the Teichmüller geodesic ρq,
up to parametrization. With this convention, (X0, q0) = (X, q) is the pair of the
Riemann surface X and the quadratic differential q on that surface.

Definition. Let q ∈ Q1 be a unit area quadratic differential on X ∈ T (S) and let
ε > 0 be given. We say that the a point ρq(t) on the Teichmüller geodesic is in the
thick part Q1

ε of the stratum if the corresponding unit area quadratic differential is
in the thick part: qt ∈ Q1

ε.

Given X ∈ T (S) and a measured foliation F , we use ρX,F to denote the Teich-
müller geodesic ρq(X,F) defined via the Hubbard-Masur Theorem 1.1.
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Remark. For every X∗ ∈ T and every measured foliation F there exists a unique
X ∈ T such that (X,F) has unit area and that the two Teichmüller geodesics
ρX∗,F and ρX,F are the same, up to parametrization.

Considering quadratic differentials as cotangent vectors, Earle [Ear77] proved
that Teichmüller distance is continuously differentiable off the diagonal in the
following sense: Fix X ∈ T (S) and let DX(Y ) = dT (X, Y ). The map DX :
T (S) \ {X} → R is continuously differentiable. (Earle uses another parametriza-
tion of Teichmüller rays, not proportional to arc length). Veech [Vee90] gave local
complex coordinates for each stratum of orientable quadratic differentials.

Teichmüller space with Teichmüller metric is a geodesic metric space, i.e. for
any pair of points there exists a geodesic realizing the distance; in fact there exists
exactly one length-minimizing geodesic between two points in Teichmüller space.
Moreover, T (S) is complete as a metric space, but it is not non-positively curved2.
Teichmüller metric is not the only interesting metric on Teichmüller space; the Weil-
Peterson metric for instance turns Teichmüller space into a non-positively curved
but non-complete metric space, see Hubbard’s textbook [Hub06]. Throughout this
thesis we only consider Teichmüller space with the Teichmüller metric.

Convention. From now on, we assume that every quadratic differential is non-
vanishing.

1.2. Teichmüller geometry: Curvature and geodesics. For any Teichmüller
geodesic ρ there is a unique complexification of ρ which is an isometrically embedded
image of the Poincaré disc in T (S) and which contains ρ. This image is called
Teichmüller disc and the restriction of the Teichmüller metric to any Teichmüller
disc is negatively curved. In the late 1950’s the first results on the curvature of
Teichmüller space were published. Teichmüller space with Teichmüller metric was
believed to be of negative curvature. This turned out to be false. Beginning with
the 1970’s new results on the curvature of Teichmüller space were established.

1.2.1. Curvature. Teichmüller space is not non-positively curved in the sense of
Busemann3. This is due to Masur [Mas75]. He showed that two different Teichmül-
ler rays (X1,F1) and (X2,F2) not in the same Teichmüller disc stay in bounded
distance if the vertical measured foliations F1 and F2 decompose into cylinders and
if the homotopy classes of the cylinders of F1 and F2 coincide, i.e. if the foliations
are topologically equivalent and without non-compact leaves. On the other hand,
Teichmüller space and moduli space share some properties with negatively curved
spaces. In most cases converging pairs of Teichmüller rays are asymptotic: A re-
sult of Masur’s is that pairs of Teichmüller rays whose quadratic differentials have
common uniquely ergodic vertical foliation are positively asymptotic ([Mas80]).
Moreover, the Teichmüller geodesic flow on moduli space is ergodic (equally due to
Masur, [Mas82a]). These phenomena could possibly arise from Teichmüller space
being negatively curved in a weaker sense. Masur and Wolf [MW95] answered

2We will come back to this fact in the following.
3A space is non-positively curved in the sense of Busemann if the distance between the end-

points of two geodesic segments emanating from the same point is at least as large as twice the
distance between the two midpoints.
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the question whether or not Teichmüller space is Gromov-hyperbolic4: Teichmül-
ler space is not Gromov-hyperbolic. Thus Teichmüller space has an interesting
geometry which is not globally comparable to spaces of non-positive curvature,
nevertheless there are isometrically embedded Poincaré discs in Teichmüller space.

In fact, the complement of the thick part shares properties of spaces with positive
curvature. Minsky ([Min96]) found a very nice description of the Teichmüller metric
outside the thick part: For ε > 0 and a multicurve Γ (i.e. a set of disjoint simple
closed curves) let Thinε(Γ) be the set of all (X, f) ∈ T such that on (X, f) the
hyperbolic length of every γ ∈ Γ is at most ε. Define YΓ = T (SΓ) ×∏γ∈Γ Hγ ,

where SΓ = S \Γ is considered as a punctured surface and each Hγ is a copy of the
hyperbolic plane. The Fenchel-Nielsen coordinates give rise to a homeomorphism
T (S) → YΓ, where for each γ ∈ Γ the pair (twist, length) is mapped to (x, y) =

(twist, length−1) in the factor Hγ . Endow YΓ with the sup-metric. Minsky’s product
regions theorem states that this homeomorphism is a quasi-isometry:

Theorem 1.3 ([Min96]). For ε sufficiently small, Thinε(Γ) and YΓ are isometric
up to a bounded additive error.

In spaces with a Gromov-hyperbolic metric, given δ > 0 and three points x, y
and z with d(x, z)+d(z, y)−d(x, y) < δ, the distance d([x, y], z) between a shortest
path [x, y] from x to y and the point z is bounded from above by a number R(δ),
independent of the three points. In spaces with positive curvature, it is possible
that the distance d([x, y], z) grows proportional to d(x, y). This happens in Minsky’s
product regions, too ([Min96]). In this sense, Teichmüller space has properties of
positive curvature on large scales.

On the other hand, the thick part of Teichmüller space can be compared to a
Gromov-hyperbolic space. Harvey [Har81] introduced the curve graph C(S). This
graph can be made into a metric space: The vertices of C(S) correspond to the
homotopy classes of simple closed curves on S, and there is an edge of euclidean
length 1 between two vertices if the corresponding simple closed curves can be
realized disjointly. Endowed with this metric, the curve graph is Gromov-hyperbolic
(this is due to Masur and Minsky [MM99], also compare Bowditch [Bow06] and
Hamenstädt [Ham07]). The connection between the curve graph and the thick
part of Teichmüller space is as follows: Every Teichmüller geodesic projects to an
unparametrized quasi-geodesic in the curve graph ([MM99]), and the image is a
parametrized quasi-geodesic if and only if the Teichmüller geodesic is completely
contained in a thick part of Teichmüller space. This vague statement is borrowed
from [Ham07], the precise version is in Hamenstädt’s paper [Ham10].

Thus Teichmüller space has regions where Teichmüller metric has properties
of positive curvature, and there are regions which seems to have negative curva-
ture. Another way to understand the geometry of Teichmüller space, different
from comparing to spaces of well-known geometry, is to understand the behavior
of Teichmüller geodesics.

1.2.2. Teichmüller geodesics. As already noted, Teichmüller geodesics can easily be
described in terms of quadratic differentials. We begin our study of Teichmüller
geodesics by understanding the relation of properties of a geodesic in Teichmüller
space and the geometry of the respective quadratic differentials.

4A space is Gromov-hyperbolic if there exists a δ > 0 such for every triangle the third side is
contained in the δ-neighborhood of the first two sides.
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Let ρ be a unit speed Teichmüller geodesic which projects to a closed geodesic in
moduli space5. The one-parameter family of unit tangent vectors along the closed
geodesic defines a loop in a stratum over moduli space, thus there is a lower bound
for the length of the shortest saddle connection of any quadratic differential on
that loop. In particular the vertical foliation is without saddle connections, hence
minimal. Moreover, the vertical foliation is uniquely ergodic by Masur’s criterion:

Theorem 1.4 ([Mas92]). Every recurrent Teichmüller geodesic (i.e. it returns to
the thick part of Teichmüller space after arbitrarily large times) is defined by qua-
dratic differentials with uniquely ergodic vertical foliation.

This result has been improved by Cheung and Eskin. In [CE07a] it is established
that the vertical foliation is uniquely ergodic if the corresponding Teichmüller geo-
desic does not leave larger and larger thick parts too fast. However, closed geodesics
in moduli space may avoid arbitrarily large regions inside moduli space; again in
contrast to the behavior Riemann surfaces with finite volume hyperbolic metrics
show. Let S be not one of three exceptional surfaces. For every ε > 0, Hamenstädt
[Ham05] established the existence of a closed geodesic in moduli space which avoids
the thick part Qε(S).

Contrary to the case of Teichmüller geodesics with closed projection to moduli
space is the case of a Teichmüller geodesics whose vertical foliation has a cylinder:
The core curve is pinched along the Teichmüller geodesic, and the projection of the
Teichmüller geodesic to moduli space enters directly into a cusp.

These two situations are the extremal behaviors of Teichmüller geodesics, and
there are Teichmüller geodesics with a behavior in between. Cheung and Eskin
[CE07b] gave examples of Teichmüller geodesics with minimal non-ergodic vertical
foliation which diverge to infinity arbitrarily slowly: These Teichmüller geodesics
avoid arbitrarily slowly growing thick parts.

As one might already have noted, it is a general principle that the vertical foli-
ation of the quadratic differential determines the long term behavior of the Teich-
müller geodesic. This principle will be present in the study of pairs of Teichmüller
geodesics, too.

1.2.3. Pairs of Teichmüller geodesics. In spaces with a hyperbolic metric, the dis-
tance between two converging geodesics behaves like an exponentially decreasing
function. Do pairs of converging Teichmüller geodesics have the same property? To
answer this question, we first classify pairs of Teichmüller geodesics into asymptotic
pairs, diverging pairs, and pairs which stay asymptotically in finite distance.

An easy observation is the following. Pairs of Teichmüller rays inside the same
Teichmüller disc behave exactly as hyperbolic geodesics, since Teichmüller discs are
isometrically embedded hyperbolic planes in Teichmüller space.

Suppose that we have two Teichmüller rays ρ1 and ρ2 whose vertical folia-
tions6 F1 and F2 are not topologically equivalent. The rays diverge in the sense
that dT

(

ρ1(t), ρ2(t)
)

→ ∞ as t → ∞. The case of nonzero intersection number
i(F1,F2) 6= 0 is due to Ivanov [Iva01], Lenzhen and Masur [LM10] established the
result in the case i(F1,F2) = 0.

5Closed geodesics in moduli space are in one-to-one correspondence with so-called pseudo-

Anosov -elements in the mapping class group.
6The vertical foliation of a Teichmüller ray is understood to be the vertical foliation of a

quadratic differential defining the ray. As a measured foliation it is defined up to scalar multiple.
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Now consider the situation of topologically equivalent vertical foliations.
Let Γ be a multicurve. If a pair of Teichmüller rays is determined by a pair of
measured foliations each of which decomposes the surface into a union of cylinders
in the homotopy class of Γ, then the asymptotic distance along the Teichmüller
geodesics is bounded from above. If additionally the rays do not belong to the
same Teichmüller disc, the asymptotic distance is bounded from below, too (Ma-
sur, [Mas75] and [Mas80]).
Again, suppose that the non-uniquely ergodic measured foliations F1 and F2 are
topologically equivalent, but this time with at least one minimal component. There
are two cases. Case one, the measured foliations F1 and F2 are absolutely continu-
ous with respect to each other in the minimal components. Pairs of Teichmüller rays
with vertical foliations F1 and F2 stay bounded distance apart (Ivanov [Iva01]).
Case two, the two foliations are not absolutely continuous with respect to each other
in at least one minimal component. Lenzhen and Masur [LM10] proved that pairs
of quadratic differentials with vertical foliations F1 and F2 determine divergent
Teichmüller rays.
Finally, let F be a uniquely ergodic measured foliation. All topologically equivalent
measured foliations are of the form λF for some λ > 0. It is a result of Masur’s
that pairs of Teichmüller geodesics with common vertical foliation F are asymptotic
([Mas80]).

Masur’s result does not tell us how fast the distance between two asymptotic
Teichmüller rays decreases. The thick part of Teichmüller space shows properties
of negatively curved spaces. Wishful thinking suggests that the distance along
asymptotic pairs of Teichmüller geodesics with common uniquely ergodic vertical
foliation decreases exponentially fast if both geodesics are completely contained in
the thick part of Teichmüller space. Very recently Rafi showed that, if two Teich-
müller geodesic segments start and end in the thick part of Teichmüller space and
with endpoints of small distance, they stay uniformly close to each other, even if
the segments are not completely contained in the thick part of Teichmüller space
(in preparation). This suggests that exponential asymptotics for pairs of Teichmül-
ler rays in thick part could lead to exponential asymptotics for pairs of recurrent
Teichmüller rays. However, Rafi’s result relies on estimating extremal lengths of
simple closed curves by calculating their lengths in the flat metrics given by the qua-
dratic differentials along the Teichmüller geodesic segment. Comparing extremal
lengths to flat metric lengths always produce multiplicative errors (see Rafi’s pa-
pers [Raf05] or [Raf07], to give two examples). These errors come from Minsky’s
expanding cylinders ([Min92]) and translate by Kerckhoff’s theorem, which relates
Teichmüller distance to the logarithm of quotients of extremal lengths ([Ker80]),
to additive errors in estimates for Teichmüller distance. Obviously, additive errors
produce great difficulties for proving results on asymptotic rays.

With different arguments, we prove in Chapter 2 that the distance along asymp-
totic pairs decreases like an exponential function:

Theorem 1.5. For almost all7 pairs ρ1 and ρ2 of Teichmüller rays with common
uniquely ergodic vertical foliation there are unit speed parametrizations of the rays
with

log dT

(

ρ1(t), ρ2(t)
) .≺ −t

7This holds for an uncountable family of measures.
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for large t > 0. On the other hand, there are examples of pairs of Teichmüller
geodesics with common uniquely ergodic vertical foliation and slow asymptotics such
that the above conclusion fails.

Here and throughout the thesis, we use the following short-form notations: If
there exists α > 0 independent of A and B, we write A

.≺ B for A ≤ αB. If A
.≺ B

and B
.≺ A hold, we write A

.≍ B.
For a precise statement on the dependencies of the constants involved in this

theorem we refer to Section 2.7.

1.3. Covers and quadratic differentials. In this section the surface S is allowed
to have finitely many punctures. Let F be a measured foliation on X ∈ T (S) and

let p : X̂ → X be a ramified covering with 0 < k < ∞ sheets and such that every
ramification point is either a singularity of F or a puncture of S. Let F̂ = p∗F be
the lift of F to X̂.

Suppose γ is a saddle connection of F . Its preimage in F̂ is a union of at most

k saddle connections γ̂i. Vice versa, saddle connections γ̂ on F̂ project to saddle
connections γ on F . The same is true if we replace ‘saddle connections’ by ‘regular
leaves of F which are simple closed curves’.

Lemma 1.6. Let the covering be as above. Minimal components downstairs lift to
unions of minimal components upstairs, and minimal components upstairs project
to minimal components downstairs. Non-uniquely ergodic foliations do not lift to
uniquely ergodic foliations.

Proof. The statements on minimality are immediate from the discussion above.
To see the last statement, let the foliation downstairs be non-uniquely ergodic. We
can find a regular transverse arc downstairs with the property that there are two
measures, transverse to the foliation, which are mutually singular on that arc. The
same is true for the lifted measures with respect to one preimage of the arc, hence
the lifted foliation is not uniquely ergodic. �

Let q ∈ Q1(S) be a unit area quadratic differential on X ∈ T (S). The area of the

lift p∗q of q to X̂ is k-times the area of q. Rescaling of a quadratic differential does
not change the underlying Riemann surface, nor does it change the unparametrized
Teichmüller geodesic. Let q̂ be the unit area quadratic differential in the projective
class of p∗q.

A special case occurs if every critical point of the covering is a zero of q or a
puncture of S. In particular this occurs if a directional foliation of q equals F . The
quadratic differentials q and q̂ define unit area flat metrics on X and X̂. In terms
of these metrics the covering projection is of the form z 7→ z/

√
k locally at regular

points (mind the scaling!). At ramification points with ramification index l ≤ k the

projection locally has the form z 7→ z1/l/
√

k.
Let γ be a saddle connection for q. Its lift to q̂ is a union of at most k saddle

connections γ̂i with length ℓ∗q(γ)/
√

k ≤ ℓ∗q̂(γ̂i) ≤
√

k ℓ∗q(γ). Vice versa, a saddle
connection γ̂ upstairs projects to a saddle connection γ downstairs, and their lengths
are related by ℓ∗q̂(γ̂)/

√
k ≤ ℓ∗q(γi) ≤

√
k ℓ∗q̂(γ̂).

Lemma 1.7. Let ε > 0 be given and let the covering be as above. If q ∈ Q1
ε is

on the boundary of the thick part of the stratum, i.e. there is a saddle connection
of length exactly ε, then ε/

√
k is a lower bound and

√
k ε is an upper bound for
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the length of the shortest saddle connection on q̂. Hence the Teichmüller geodesic
defined by q returns to the thick part of the stratum after arbitrarily large times if
and only if the Teichmüller geodesic defined by q̂ does so.

Proof. The statement on the lengths of saddle connections is established above.
The last statement follows from Lemma 1.2 as the action of the Teichmüller flow
diag(et/2, e−t/2) is linear and the lengths of saddle connections in the flat metrics
defined by q and q̂ differ only by a uniformly bounded multiplicative error. �

Corollary 1.8. Let (X,F) give rise to a Teichmüller geodesic such that (Xt, qt)

returns to the thick part of the stratum after arbitrarily large times. Let p : X̂ → X
be defined with respect to F. Then F and F̂ both are uniquely ergodic measured
foliations.

Proof. As (Xt, qt) returns to the thick part of the stratum after arbitrarily large
times, there isn’t any saddle connection in vertical direction, hence F does not
have any saddle connection. Therefore F is minimal, and so is F̂ by Lemma 1.6.
Moreover, Lemma 1.7 tells us that the lifted Teichmüller geodesic returns to the
thick part of the stratum after arbitrarily large times. Lemma 1.2 implies that
downstairs and upstairs recurrence takes place in the thick parts of the respective
Teichmüller spaces. Now Masur’s criterion (Theorem 1.4) proves the corollary. �

Theorem 1.5 is a statement on quadratic differentials with uniquely ergodic mea-
sured foliations, orientable or not. The techniques we use to prove it in Chapter
2 rely on oriented measured foliations. Thus non-orientable measured foliations,
which possibly arise as the vertical foliations of non-orientable quadratic differen-
tial, need extra work. We introduce a tool to solve this issue.

Let F be a measured foliation. If it is not orientable, we can pass to a special
two sheeted cover of the surface such that the lift of F is orientable. Lanneau gave
an explicit construction of an orientable ramified double cover.

Theorem 1.9 ([Lan04]). Let S be compact without boundary. Let F be a measured
foliation on S and let X ∈ T be a point in Teichmüller space such that (X,F) is not
orientable. There exists a ramified two-sheeted covering p : covF (X) → X such that
the lift covF (F) = p∗ F of the foliation and the lift

(

covF(X), covF (F)
)

of the qua-

dratic differential become orientable and the areas of (X,F) and
(

covF (X), covF(F)
)

coincide. The ramification points are exactly the singular points of F that have an
odd number of prongs. If we describe p in terms of the respective flat metrics, it
locally has the form z 7→ z/

√
2 at regular points of p and z 7→ z1/2/

√
2 at critical

points of p. We call this cover the orientation double cover.

Remark. This construction is a ramified covering as in the beginning of this section.
Thus the above lemmas apply.

The orientation double cover depends on the foliation F , and even its topological
type is not uniquely defined for a fixed X ∈ T . This follows from Theorem 1.1 for
instance.

It is possible for X ∈ Tε in the thick part of Teichmüller space that the ori-
entation double cover carries a simple closed curve that is arbitrarily short when
measured in the flat metric: If (X,F) has a saddle connection γ that connects two

odd-order singularities, this saddle connection lifts to a closed curve of at most
√

2
times the length of γ. Hence if we consider a sequence Xj ∈ Tε such that on every
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(Xj ,F) there is such a saddle connection γj with length 1/j, the sequence of ori-
entation double covers comes with a sequence of closed curves, the ℓ∗(Xj ,F)-lengths

of which converge to zero.
Although the orientation double cover does not necessarily preserve the thick

part of Teichmüller space, it preserves Teichmüller distance:

Proposition 1.10. Let F be a non-orientable measured foliation on S and let X
and X̃ be two different points in Teichmüller space T (S). The distance between X

and X̃ coincides with the distance between their orientation double covers:

dT (X, X̃) = dT (covF (X), covF(X̃)).

Note that we use the symbol dT for the Teichmüller distance in two different Teich-
müller spaces.

Proof. Let q be the unit area quadratic differential on X which defines the Teich-
müller geodesic from X to X̃ and let D = dT (X, X̃). We want to emphasize that
there is no correspondence at all between q and F .

The lift of any unit area quadratic differential q′ on any X ′ ∈ T (S) to a quadratic
differential on covF(X ′) has area twice the area of q′. Rescaling of a quadratic differ-
ential neither changes the Riemann surface nor does it change the unparametrized
Teichmüller geodesic. Let covF(q′) be the unit area quadratic differential in the
projective class of the lift of q′.

Recall that Teichmüller spaces are geodesic metric spaces with a unique length
minimizing geodesic between any two points, and that this geodesics are described
by unit area quadratic differentials. Thus it suffices to show that diag(eD/2, e−D/2)
transforms the flat metric given by covF(q) on covF (X) into a flat metric in the

conformal class of covF(X̃).
From the explicit description of the orientation double cover in Theorem 1.9 we

deduce that horizontal and vertical lengths in the flat metrics defined by q up-
stairs and covF(q) downstairs coincide up to multiplication by

√
2. This commutes

with the stretching/contracting-action of Teichmüller flow in the flat metric pic-

ture. As the flat metrics defined by q on X and by qD on XD = X̃ differ by
multiplication with diag(eD/2, e−D/2), the same is true for the lifted flat metrics.
Thus diag(eD/2, e−D/2) transforms the flat metric on covF (X) into a flat metric on

covF(X̃). �

1.4. Directional foliations on quadratic differentials. The general principle
that the vertical foliations determine the long term behavior of (pairs of) Teichmül-
ler geodesics underlines the importance of understanding the directional foliation
of quadratic differentials.

1.4.1. SL(2, R)-action on quadratic differentials. Let P ⊂ R2 be a polygon whose
sides come in pairs of equally long edges with common angle to the horizontal.
We identify C and R2 in the usual way. Glueing the boundary of P along paired
edges by maps of the form z 7→ ±z + c, c ∈ C, one gets a flat metric and a qua-
dratic differential via dz2 (Zorich [Zor06]). Vice versa, given q ∈ Q(S) one can
find a finite set of saddle connections with disjoint interior such that by cutting
along these saddle connections one decomposes the flat metric into a finite union
of polygons with a pairing on the edges as above. The usual GL(2, R)-action on
R2 translates to an action on Q(S). The action of SL(2, R) is area preserving and
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the rotation subgroup SO(2) fixes the underlying Riemann surface. The diago-
nal subgroup {diag(et/2, e−t/2) : t ∈ R} < SL(2, R) corresponds to Teichmüller
flow. Its complexification is a Teichmüller discs in T (S) and equals the isomet-
ric projection of the orbit of a quadratic differential under H = SO(2)\SL(2, R)
to Teichmüller space. Given a quadratic differential q ∈ Q, the Veech group
SL(q) = {A ∈ SL(2, R) : q and A.q project to the same point in Q(S)} is the sta-
bilizer under the SL(2, R)-action of the singular euclidean metric defined by q.
Hence the image of SO(2)\SL(2, R)/SL(q) in M (S) is isometrically embedded. If
this quotient has finite volume, the flat metric defined by q is called a Veech sur-
face. By abuse of notation we then call q a Veech surface, too. Veech surfaces have
particularly nice dynamics, as we will see.

1.4.2. Dynamics on flat metrics. We take the once-punctured torus as an example
to begin with. Its flat metric has very nice dynamics. It is well-known that the
directional foliation in direction θ ∈ [0, π) decomposes into periodic cylinders if θ is
a rational multiple of π. If θ is not a rational multiple of π, there aren’t any saddle
connections, hence the foliation is minimal. Moreover, it is a uniquely ergodic
measured foliation. In general we say that a quadratic differential or a flat metric
fulfills the Veech dichotomy if for every direction the directional foliation is either
periodic or minimal and uniquely ergodic. We will speak of a periodic, minimal or
uniquely ergodic direction if its directional foliation has the respective property.

Flat metrics which are ramified coverings of the once-punctured torus, where
the ramification takes place at the puncture, are called arithmetic surfaces. By
Section 1.3, arithmetic surfaces fulfill the Veech dichotomy. The Veech group of an
arithmetic surface is commensurable to SL(2, Z), i.e. the Veech group and SL(2, Z)
share a common finite index subgroup.

Arithmetic surfaces aren’t the only examples of surfaces fulfilling the Veech di-
chotomy. It is a theorem of Veech [Vee89] that every Veech surface fulfills the Veech
dichotomy. Whether or not the converse is true was an open question for some
years. McMullen proved that for quadratic differentials with orientable vertical fo-
liation in genus 2, Veech surfaces are exactly the ones fulfilling the Veech dichotomy
([McM05], see also Calta [Cal04]). In higher genus, the converse to Veech’s theorem
is not true. Smillie and Weiss [SW08] produced a family of quadratic differentials
which fulfill the Veech dichotomy and still aren’t Veech surfaces. These examples
are ramified covers of Veech surfaces and are of genus at least 5. A similar construc-
tion (which originates in Hubert and Schmidt’s paper [HS04]) is used by Cheung,
Hubert and Masur [CHM08] to construct quadratic differentials in higher genus
which satisfy a topological version of the Veech dichotomy (every direction is either
periodic or minimal), but which do not satisfy Veech dichotomy itself. There aren’t
any quadratic differentials with this property in genus 2 ([McM05]).

Independent of the Veech dichotomy, we know more about the dynamical proper-
ties of directional foliations of quadratic differentials. As there are only countably
many saddle connections in any flat metric, there are at most countably many
non-minimal directions for a given flat metric. Even more is true: For every qua-
dratic differential, the set of directions with uniquely ergodic directional foliation
is dense in the unit circle and has full measure (Kerckhoff, Masur and Smillie
[KMS86]). In his paper [Mas92], Masur proved that for every quadratic differential
the Hausdorff dimension of the set of non-ergodic directions is at most 1/2. On the
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other hand, Masur and Smillie proved in their remarkable paper [MS91] the fol-
lowing: Up to a small number of exceptional strata over moduli space, for almost
every quadratic differential in a fixed connected component8 of the stratum, the
Hausdorff dimension of the set of non-ergodic directions is bounded from below.
The non-ergodicity criterion established by Masur and Smillie was used by Cheung
and Masur [CM06] to prove that for every orientable genus-2 quadratic differential
which is not a Veech surface, there are uncountably many minimal non-ergodic
directions. The next step in classifying the dynamics of flat metrics would be to
consider non-orientable quadratic differentials in genus 2. Let q′ ∈ Q(1, 1, 1, 1,−1)
be a non-orientable quadratic differential in the principal stratum in genus 2 and let
Q∗ be the stratum of meromorphic quadratic differentials on CP1 with exactly two
simple zeros and six simple poles. By a two-sheeted covering-construction over the
Riemann sphere, ramified exactly at the simple poles of a meromorphic quadratic
differential in Q∗ (this is not the orientation double cover, as there are still sim-
ple zeros left) we get a GL(2, R)-equivariant isomorphism between Q(1, 1, 1, 1,−1)
and Q∗ which respects the dynamics on the flat metrics (c.f. Section 1.3 and Lan-
neau [Lan04]). This isomorphism maps q′ to a meromorphic quadratic differential
q∗ ∈ Q∗ with the same dynamical properties as q′. Denote the vertical foliation
of q∗ by F . Now consider the orientation double cover with respect to F . This is
a two-sheeted cover ramified exactly at the poles and the zeros. The same argu-
ments as above apply. The lift q = covF (q∗) is an element of Q(4, 4, +1) with the
same dynamical properties as q∗, hence with the same dynamical properties as q′.
The hyperelliptic involution is an element of the Veech group SL(q) and fixes the
two zeros of q by construction. The hyperelliptic locus L of the non-hyperelliptic
component Q(4, 4, +1)odd ⊂ Q(4, 4, +1) (which is the set of all orientable genus-3
quadratic differentials with two zeroes of order four and with odd spin structure9) is
the subset of all quadratic differentials q ∈ Q(4, 4, +1)odd such that the underlying
Riemann surface is a branched cover of the Riemann sphere and the hyperelliptic
involution is an element of the Veech group SL(q). The hyperelliptic locus L is the
GL(2, R)-equivariantly isomorphic preimage in Q(4, 4, +1) of Q∗ under the double
covering construction. Thus classifying the dynamics of quadratic differentials in
Q(1, 1, 1, 1,−1) can be done by classifying the dynamics of quadratic differentials
in L .

In Chapter 3 we prove

Theorem 1.11. If the vertical foliation of an orientable quadratic differential in L

decomposes as in Figure 8 into two minimal components and two periodic cylinders
and if the cylinders are interchanged by the hyperelliptic involution, then there are
uncountably many minimal non-ergodic directions.

8More on connected components of strata is in Kontsevich’s and Zorich’s paper [KZ03] and in

Lanneau’s paper [Lan04], to mention just two sources.
9We do not need properties of the spin structure explicitly. A definition can be found in [KZ03],

for example.
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2. Exponentially attractive Teichmüller rays

Throughout this chapter we assume the underlying topological surfaces to be
compact without boundaries and without any punctures. Unless otherwise stated,
all measured foliations are assumed to be minimal and realized without any saddle
connection. As mentioned earlier, in this chapter we will prove that the distance
along asymptotic pairs decreases like an exponential function. In Section 1.2.3 we
formulated this results as

Theorem 2.1. For almost all10 pairs ρ1 and ρ2 of Teichmüller rays with common
uniquely ergodic vertical foliation there are unit speed parametrizations of the rays
with

log dT (ρ1(t), ρ2(t))
.≺ −t

for large t > 0. On the other hand there are examples of pairs of Teichmüller
geodesics with common uniquely ergodic vertical foliation and slow asymptotics,
such that the above conclusion fails.

A precise version of the first part is Theorem 2.24 in Section 2.7. This generic
result is the best one can hope for: There are asymptotic pairs of Teichmüller
geodesics with common uniquely ergodic vertical foliation and arbitrarily slow
asymptotics (Section 2.8).

To give an overview of how this chapter is organized we shortly summarize its
sections:

• Basic results on zippered rectangles are recalled in Section 2.1. We establish
a compactness condition on the widths of the zippered rectangles whether
they define the initial point of short complete paths in the Rauzy-Veech-
diagram.

• Given two zippered rectangles, in Section 2.2 we explicitly give a quasi-
conformal map between the two underlying Riemann surfaces.

• Section 2.3 reviews the action of an RV-step on the heights of zippered
rectangles. The results are the basic ingredients to compute the behavior
of the upper bound on Teichmüller distance along pairs of Teichmüller rays.

• Within Section 2.4 we relate the results from Section 2.3 to Teichmüller dis-
tance and see that Teichmüller distance decreases by a certain factor along
every complete RV-path if the zippered rectangle fulfill some compactness
condition on the heights data.

• We give examples to illustrate what may happen if zippered rectangles do
not fulfill the compactness conditions. The examples suggest under which
circumstances we can hope to find nice zippered rectangles. These examples
are given in Section 2.5.

• Section 2.6 is devoted to show that zippered rectangles fulfill the compact-
ness conditions as soon as the corresponding Teichmüller rays stay in the
thick part of the stratum uninterrupted for a long time: For zippered rect-
angles not meeting the compactness conditions on the heights and widths
we construct saddle connections which force the Teichmüller rays to leave
the thick part of the stratum.

• All these results are put together in Section 2.7. This leads to a rate
Teichmüller distance decreases with depending on the amount of time the

10This holds for an uncountable family of measures.
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Teichmüller rays spend in the thick part of the stratum. Using Birkhoff’s
ergodic theorem we prove Theorem 2.1.

• In Section 2.8 we give an example of a Teichmüller ray illustrating why the
Teichmüller rays have to spend time in the thick part uninterrupted before
one can be sure that the Teichmüller distance has decreased.

2.1. Interval exchange transformations and zippered rectangles. The con-
cept of zippered rectangles is important in our proof of Theorem 2.1. Zippered
rectangles, due to Veech, are a way to describe flat surfaces using the theory of
interval exchange maps. We introduce notations in this section and establish first
results. For a more detailed treatment on these concepts we refer the reader to
Viana [Via06] or Zorich [Zor06], for instance, and to Veech’s original paper [Vee82].

Let F be an oriented minimal measured foliation on S, realized without saddle
connections. Let I be any transverse interval whose left endpoint is a singularity of
F and which avoids any singularity elsewhere. The first return map to I along leaves
of F gives rise to an interval exchange transformation on I which we describe by a
pair (π, w). Here w = (wj)j∈A ∈ RA is the vector of the lengths of the subintervals
Ij , j ∈ A, A a finite alphabet with |A| = n letters, and π = (π0, π1) describes
the combinatorics : the bijections πi : A → {1, . . . , n} give the ordering of the
subintervals before and after the first return map is applied. The permutation of
an interval exchange transformation is the permutation π1 ◦ (π0)−1 on the numbers
1, . . . , n. By eventually shortening I we may and do assume that n is smallest
possible. This minimal number depends on the equivalence class of F and is

|A| = n = 2g − 1 + (number of singularities of F) ≥ 4.

Note that we assume F to be without saddle connections.
The winner of a Rauzy-Veech step is the longer one of the two subintervals

I(π0)−1(n) (on the right of I before the first return map is applied) and I(π1)−1(n)

(on the right of I after the first return map is applied). The loser is the shorter

one. We use the label winner = winner(i) ∈ A to name the winner and the label
loser = loser(i) ∈ A to name the loser after i Rauzy-Veech-steps. A Rauzy-Veech-
step (RV-step for short) shortens the base interval from the right by the length of
the loser. The new combinatorics are defined by the new first return map and the
following rule: If the winner is I(π0)−1(n), the bijection π0 stays unchanged, if the

winner is I(π1)−1(n), the bijection π1 stays unchanged. As a consequence, all lengths
of subintervals remain unchanged but the length of the winner. Use upper indices
on the lengths to indicate the number of RV-steps performed. Hence the action of
an RV-step on the vector of lengths is just

w
(i+1)

winner(i)
= w

(i)

winner(i)
− w

(i)

loser(i)
.

As the bijection of the combinatorics which gives the winner-label stays unchanged,
we have the following:

Corollary 2.2. Let (k, l) = (winner(i), loser(i)) be the pair of the winner- and

the loser-label at the i-th RV-step and let (k′, l′) = (winner(i+1), loser(i+1)) be the
corresponding pair at the (i + 1)-st RV-step. Then k ∈ {k′, l′}.

Recall that for any X ∈ T (S) the Hubbard-Masur Theorem 1.1 defines a qua-
dratic differential q = q(X,F) and hence a flat metric. Suppose that the vertical
foliation of q is orientable and without saddle connections. For short intervals I
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there is a homotopy along vertical leaves bringing I into horizontal position. This
is always possible if the length of I is less than the length of the shortest saddle
connection of q, for instance. Starting from a horizontal interval I and following the
vertical leaves in the flat metric in upward direction leads to a zippered rectangle
zr(X,F , I) based on the interval exchange map given by the first return map. The
zippered rectangle covers the whole surface11. The rectangle of zr(X,F , I) which
has Ij as lower horizontal side is denoted Rj , its height is denoted hj and its width
is exactly wj , j ∈ A. Let h = (hj)j∈A be the vector of the heights.

There is a piecewise isometric self-map s : B → B defined on the union B of the
rectangle sides such that we get back to the flat metric by identifying boundary
points p ∈ B and s(p) ∈ B. Geometrically we glue the zippered rectangle sides by
translations in a similar way as we did with polygons in Section 1.4.1.

Definition. The vertical sides of the rectangles are divided into subarcs which are
maximal subsegments of the vertical sides with respect to the condition that the
self-map s restricted to the segment is an isometry. We call these subarcs glueing
parts.

For fixed combinatorics π, the lengths of the glueing parts depend linearly on the
heights h. The triple (π, w, h) completely describes the zippered rectangle. On the
other hand, given the zippered rectangle zr(X,F , I) we can not recover (X,F) from
(π, w, h) as the zippered rectangle does not give any information on the marking
f : S → X .

The action of an RV-step on zr(X,F , I) is as follows: The rightmost part of width
wl of the rightmost rectangle is cut off and put on top of some other rectangle. The
combinatorics changes such that all heights stay unchanged but the height of the
loser. We use upper indices on the heights to indicate the number of RV-steps
performed. With this convention we have:

h
(i+1)

loser(i)
= h

(i)

loser(i)
+ h

(i)

winner(i)
.

This action can be expressed by matrix multiplication: h(i+1) = V (i)h(i), where

V (i) = 1 + Eloser,winner

is the identity matrix with an additional 1 in position (loser, winner). Let

B(k) = V (k) · · ·V (1)

be the product of the first k matrices, hence h(k) = B(k)h(0). Note that, if I(i) is
horizontal, I(i+1) will still be horizontal.

Definition. For a given δ > 0 we will say that I is of admissible length if the length
of I is between δ and δ/2, when realized horizontally.

Given X , F and I as above we can follow the Teichmüller geodesic ρX,F . This
results in increasing length of I. At some point the length of I will exceed δ.
In order to get back to intervals of admissible length we apply an RV-step. The
Teichmüller time between RV-step i and RV-step i + 1 depends only on the length

of the loser in step i: after time 2 log(δ/(δ − w
(i)
loser)) we are back to intervals of

length δ. Note that w
(i)
loser < δ/2.

11Interval exchange maps and zippered rectangles are defined for non-minimal foliations, too.
In this case the cardinality of the alphabet A may be smaller, even equal to one, and the zippered
rectangle maybe does not cover the whole surface.



19

An RV-diagram is an oriented graph defined in terms of interval exchange trans-
formations and RV-steps. The vertices of an RV-diagram are the elements of a given
equivalence class of permutations, where two permutations π1 and π2 belong to the
same class if there exists an interval exchange transformation with permutation π1

and a sequence of RV-steps leading to an interval exchange transformation with
permutation π2. There is an oriented edge from π1 to π2 if there is a single RV-step
from π1 to π2. For every vertex there are two incoming and two outgoing edges,
one for the case that the winner is on the top side of I and the second one for the
case that the winner is on the bottom side. The choice of which side is the top
side and which one the bottom side is given by the convention that we follow the
leaves of the oriented foliation F in “upward” direction. Every interval exchange
transformation and hence every zippered rectangle gives rise to an infinite sequence
of RV-steps and thus defines a path in an RV-diagram. Let X , F and I be as above.
The Teichmüller ray ρX,F projects to a path η = η(X,F , I) in the RV-diagram via
zr(X,F , I). A finite subpath is semi-complete if every label is winner of at least
one edge in that path. A finite subpath η∗ is complete if the corresponding matrix

Bη∗

is positive, i.e. every entry of Bη∗

is positive: Bη∗

(a,b) > 0 for all a, b ∈ A.

The Teichmüller distance along pairs of Teichmüller rays with common uniquely
ergodic vertical foliation will turn out to decrease every time a complete RV-subpath
is covered. Thus we need a tool to locate Teichmüller geodesic segments which
project to complete RV-paths.

Lemma 2.3. Every finite RV-path η∗ which is the concatenation of 2n − 2 semi-
complete paths is a complete path, where n = |A|.

The proof of the lemma is based on the fact that the product of several non-
negative matrices is a positive matrix if only the non-zero entries of the matrices
are well distributed. This would not be the case if all matrices had the same block
structure. First we exclude this case.

Proposition 2.4. Suppose that η is a finite RV-path such that after the last step
there is a label k ∈ A and a partition A = A1 ⊔ A0 into two disjoint subsets with
Bη

(l1,k) > 0 for every l1 ∈ A1 and Bη
(l0,k) = 0 for every l0 ∈ A0. Let η∗ be the

concatenation of η followed by two semi-complete paths. Then there is at least one

l∗ ∈ A0 with Bη∗

(l∗,k) > 0.

Proof. Within the first semi-complete path following η there will be an RV-step with
a winner-label in A0. Let it be the a-th step. Within the second semi-complete path
there will be an RV-step with winner-label in A1. Let b > a be the smallest integer

larger than a with winner-label in A1, thus winner(b) ∈ A1 and winner(b−1) ∈ A0.
The b-th RV-step is in the first or in the second semi-complete path following η. As

A1 and A0 are disjoint, Corollary 2.2 implies loser(b) = winner(b−1). Let l∗ be this
label, hence V (b) = 1 + El∗,winner(b) . By assumption Bη

(winner(b),k)
is positive, thus

Bη∗

(l∗,k) > 0. �

Lemma 2.3 is an immediate consequence of the proposition.

Proof of Lemma 2.3. Let k ∈ A be arbitrary but fixed. After each RV-step parti-
tion the alphabet A into two disjoint subsets A ∈ A1 ⊔ A0 as in Proposition 2.4
(in our notation we suppress the dependence on k). After two semi-complete paths
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the cardinality of A0 decreases by at least one. As there are only n = |A| labels in
the alphabet, after n − 1 iterations A0 is void. �

We are ready to prove that semi-complete (and hence complete) paths will show
up after a uniformly bounded number of RV-steps if the widths are not too small.

Proposition 2.5. Let X, F and I be such that zr(X,F , I) is a zippered rectangle
as above. Suppose that there is a compact interval I = [α, β] ⊂ (0, δ) such that all
widths of rectangles are within I along the Teichmüller ray ρX,F (clearly, α < δ/2).
After a finite number of RV-steps, the subpath η∗ in η(X,F , I) will be complete.
Moreover, the length of the preimage of η∗ on the Teichmüller ray ρX,F is bounded
from above and from below.

Proof. Obviously each width in the zippered rectangle has to be shortened along
the Teichmüller ray after a time span of length at most 2 log(β/α). Widths are
shortened only when the corresponding subinterval is a winner. Hence after a time
span of length 2 log(β/α) we see a semi-complete path in the RV-diagram. Lemma
2.3 gives the statement on the length-bounds for the shortest initial subsegment of
ρX,F projecting to a complete path. In the discussion above we saw that there is a
time-span of at least 2 log(δ/(δ − α)) and at most 2 log(2) between two RV-steps,
which gives the bound on the number of RV-steps. �

Remark. There are two important remarks on this proposition. Let the conditions
of Proposition 2.5 be fulfilled.

The upper bound Tc > 0 for the length of the initial segment of ρX,F which
projects to a complete RV-subpath is independent of the measured foliation. For
fixed δ > 0 it depends only on the compact interval I and on the number n of
subintervals.

Let Tc > 0 be this uniform upper bound. If we imply that for a time-span of at
least Tc the widths of the zippered rectangle are within I, the proposition holds.

Thus we can restate the proposition under weaker assumptions:

Corollary 2.6. For δ > 0, 0 < α < δ/2, α < β < δ and n ∈ N there exists
Tc = Tc(α, β, δ, n) > 0 with the following property:
Let X, F and I be such that zr(X,F , I) is a zippered rectangle as in Proposition 2.5
and with n rectangles. Suppose that all widths of rectangles are within the compact
interval [α, β] ⊂ (0, δ) along the initial segment of length Tc of the Teichmüller ray
ρX,F . This segment projects to a complete path of uniformly bounded length in the
RV-diagram.

2.2. Zippered rectangles and pairs of Teichmüller geodesics. Given two
zippered rectangles one might want to compare them and extract information on
the distance between the underlying Riemann surfaces. For the pairs of zippered
rectangles we will deal with, this turns out to be possible.

Let F be an oriented measured foliation on S and let X and X̃ be two points
in Teichmüller space. Let I be an interval transverse to F and subject to the
condition that it can be realized horizontally on (X,F), starting at a singularity
and avoiding any singularity elsewhere, and of admissible length for some fixed
δ > 0. Suppose that (X,F) and (X̃,F) belong to the same stratum and that the

Teichmüller distance between X and X̃ is small enough. The map q( · ,F) in the
Hubbard-Masur Theorem 1.1 is continuous, which implies that I can be realized
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simultaneously as horizontal intervals on (X,F) and (X̃,F). Hence the induced
interval exchange transformations and RV-paths are the same if F is minimal and
oriented and if the realizations on X and X̃ are without vertical saddle connections.
We emphasize that X and X̃ have to be of small distance. The only datum that
differs for the zippered rectangles zr(X,F , I) and zr(X̃,F , I) is the heights datum,
and this datum can easily be compared. Thus we make the following definition.

Definition. Let F be a minimal measured foliation (not necessarily orientable)

and let X and X̃ be two points in Teichmüller space. Suppose that both quadratic
differentials (X,F) and (X̃,F) are without vertical saddle connections and belong

to the same stratum. The pair of Teichmüller rays determined by (X,F) and (X̃,F)
is called a knorke pair12 in direction F if both quadratic differentials are of unit
norm (note that we assume the vertical measured foliations are exactly the same,
not only being in the same projective class). If there is no confusion to expect

which measured foliation is meant we call (X, X̃) a knorke pair. Each of the two
entries of the pair is called a knorke partner. We use the terms knorke pair and
knorke partner not only for the Teichmüller rays but for the defining quadratic
differentials, too.

Remark. Suppose that F is an uniquely ergodic measured foliation and let (X, X̃)
be a knorke pair. Masur proved that both rays have the same endpoint in the
Thurston boundary, [Mas82b].

Let a knorke pair (X, X̃) in direction of an oriented minimal measured foliation
F be given. Let I be a transversal interval of admissible length, such that the
realizations on (X,F) and (X̃,F) are horizontal, start at a singularity and avoid
any singularity elsewhere. Thus we get two zippered rectangles zr(X,F , I) and

zr(X̃,F , I). For the heights, widths and so on which belong to the zippered rectan-

gle zr(X̃,F , I), we use the old symbols, but with a tilde on top, e.g. h̃ = (h̃j)j∈A is
the vector of the heights of the rectangles. In his 1980 paper [Mas80] Masur com-
puted the quasi-conformality constant of a quasi-conformal map defined in terms
of the zippered rectangles. This homeomorphism is a piecewise affine stretch along
vertical lines of the zippered rectangles; the interior of Rj is mapped homeomor-

phically onto the interior of R̃j , j ∈ A, singularities are mapped to singularities,
glueing parts of vertical sides are mapped linearly to glueing parts of vertical sides,
the vertical line in Rj dividing Rj into two parts of equal size is mapped linearly to

the vertical line in R̃j with the same property, and the map is the identity on I. The
restriction of this map to one rectangle is sketched in Figure 1. Let the coordinates
of the shaded parts be (0, 0), (a, 0), (a, c) and (0, b) for the rectangle R and (0, 0),

(ã, 0), (ã, c̃) and (0, b̃) for the rectangle R̃. The shaded part on R̃ is the image of

the shaded part on R. Note that a = ã = wR/2 and b = c, but not in general b̃ = c̃.

We have b̃/b = h̃R/hR. The partial derivatives of Masur’s quasi-conformal map can
explicitly be computed, see [Mas80]. As an example we give the partial derivatives
for the restriction of the map to the shaded part in Figure 1. Let R be given in the

12‘Knorke’ is a nowadays very seldom used old German expression meaning great, awesome,
fabulous. In the author’s ears this word sounds knorke.
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R̃R

Figure 1. The restriction of Masur’s quasi-conformal map to one rectangle

(x, y)-plane and R̃ in the (u, v)-plane. We get:

ux = 1 vx =
y

a

(

c̃

c
− b̃

b

)

uy = 0 vy =
x

a

(

c̃

c
− b̃

b

)

+
b̃

b
.

Thus the (restriction of the) map is Q
2 +

√

Q2

4 − 1 = K-quasi-conformal, where

Q =
u2

x + u2
y + v2

x + v2
y

uxvy − uyvx
= vy +

1 + v2
x

vy

=

(

x

a

(

c̃

c
− b̃

b

)

+
b̃

b

)

+
1 + y2

a2

(

c̃
c − b̃

b

)2

x
a

(

c̃
c − b̃

b

)

+ b̃
b

≥ 2,

(1)

and hence K is bounded from above by g(w) ·M , where g depends continuously on
the widths and M is the maximum of all quotients of the form length of glueing
part p in zr(X̃,F , I) by length of glueing part p in zr(X,F , I) or length of side s in

zr(X̃,F , I) by length of side s in zr(X,F , I), and their inverses.

Corollary 2.7. If we apply the Teichmüller flow diag(λ, λ−1), λ → ∞, without
applying RV-steps, the value Q given by Formula (1) will tend to vy + 1/vy from
above: Q ց vy + 1/vy > 2. Hence the quasi-conformality constant is decreasing,
but it is bounded from below by a number strictly bigger than 1.

Recall that the lengths of the glueing parts depend linearly on the heights. Sup-
pose that the widths are within a fixed compact interval. Then

DF,I(X, X̃) = max
1≤j≤n

{

log(hj/h̃j), log(h̃j/hj)
}

bounds Teichmüller distance up to some uniform factor: dT (X, X̃)
.≺ DF,I(X, X̃).

(Recall the definition of the Teichmüller distance as in Section 1.1.3.)
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In the above setting the only difference between zr(X,F , I) and zr(X̃,F , I) is in
the heights. Let

τ = h̃ − h

be the vector of difference in heights of the two zippered rectangles zr(X,F , I)

and zr(X̃,F , I). The property of a zippered rectangle zr(X,F , I) having unit area
(which is equivalent to the quadratic differential having unit area) can be expressed
via the Euclidean scalar product:

1 = area(zr(X,F , I)) = 〈w, h〉.
Suppose both quadratic differentials (X,F) and (X̃,F) have unit area. Using the
above formula we get

0 = 〈w, h̃〉 − 〈w, h〉 = 〈w, τ〉,
and see that for τ 6= 0 at least one entry of τ has to be positive and at least one
entry of τ has to be negative. Our next step will be to analyse the behavior of DF ,I

along knorke rays. The vector τ will simplify this analysis.

2.3. Rauzy-Veech steps and the magnitude of height differences. Let the
pair (X, X̃) be a knorke pair in direction of an orientable minimal measured foliation
F and let I be transversal and of admissible length for both knorke partners. We
will examine how the upper bound DF,I(X, X̃) on Teichmüller distance behaves

under RV-steps. As in the previous section, let h and h̃ be the height vectors. Let

q
(i)
j = h̃

(i)
j /h

(i)
j be the quotient of the heights of the rectangles labeled with j after

the i-th RV-step. As mentioned in Section 2.1, only the loser’s value changes in
each RV-step. We compute

q
(i+1)

loser(i)
=

h̃
(i+1)

loser(i)

h
(i+1)

loser(i)

=
h̃

(i)

loser(i)
+ h̃

(i)

winner(i)

h
(i)

loser(i)
+ h

(i)

winner(i)

=
h

(i)

loser(i)

h
(i)

loser(i)
+ h

(i)

winner(i)

h̃
(i)

loser(i)

h
(i)

loser(i)

+
h

(i)

winner(i)

h
(i)

loser(i)
+ h

(i)

winner(i)

h̃
(i)

winner(i)

h
(i)

winner(i)

= µ(i)q
(i)

loser(i)
+ (1 − µ(i))q

(i)

winner(i)

Remark. Note that µ(i) = h
(i)

loser(i)
/(h

(i)

loser(i)
+ h

(i)

winner(i)
) ∈ (0, 1) depends continu-

ously on the data h(i) and does not depend on h̃(i). The new q
(i+1)
j are convex

combinations of the old quotients. Moreover the new quotient q
(i+1)

loser(i)
of the loser

is a strict convex combination. As a consequence, RV-steps will decrease the maxi-
mum of the height quotients. The quotients do not change under Teichmüller flow
as long as no RV-step occurs.

If we look at what happens to the quotients τj/hj = qj−1 instead of the quotients

qj = h̃j/hj, we will see exactly the same convex combinations:

τ
(i+1)

loser(i)

h
(i+1)

loser(i)

= µ(i)
τ

(i)

loser(i)

h
(i)

loser(i)

+ (1 − µ(i))
τ

(i)

winner(i)

h
(i)

winner(i)

.

For us these quotients will have the advantage that we just have to keep track of
the data given by zr(X,F , I) and some additional vector τ ; we can forget about X̃.
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In this sense one should think of τ being some kind of tangential vector to zippered
rectangles.

Definition. The magnitude of the vector τ based at zr(X,F , I) is defined as

‖τ‖∗ = ‖τ‖∗X,F,I = max
j∈A

|τj |
hj

Remark. The magnitude is a good estimate for Teichmüller distance. Let X and
X̃ be two points of small distance in Teichmüller space and let τ be the height
difference between the zippered rectangles zr(X,F , I) and zr(X̃,F , I). Under some
compactness conditions on the zippered rectangles, the magnitude and Teichmüller
distance have bounded quotients: ‖τ‖∗ .≍ dT (X, X̃), c.f. Lemma 2.13.

In fact, the magnitude can be seen as a norm function Rn → R≥0. Indeed,
in the language of linear algebra we have ‖τ‖∗X,F,I = |diag(h1, · · · , hn)−1 · τ |max.

Even if a vector τ ′ ∈ Rn does not arise as a height difference, we can compute its
magnitude ‖τ ′‖∗X,F,I . In particular, consider the following example. Let τ be a

vector of height differences as above. It may happen that the vector τ ′ = −τ does
not lead to a zippered rectangle with heights hj − τj as these values may be non-
positive. But still one can compute the magnitude and get ‖−τ‖∗X,F,I = ‖τ‖∗X,F ,I .
In this spirit, for a vector τ defined as the height difference between two zippered
rectangles zr(X,F , I) and zr(X̃,F , I), both magnitudes ‖τ‖∗X,F ,I and ‖τ‖∗

X̃,F,I
are

meaningful.

Lemma 2.8. The magnitude ‖τ (i)‖∗ decreases along the RV-path η(X,F , I) de-
termined by X, F and I. Moreover, the factor by which the magnitude is scaled
along a finite subpath depends continuously on the heights h of the zippered rectangle
zr(X,F , I) and the vector τ , and depends on the finite path in the RV-diagram. If
the subpath is complete, the factor will be strictly less than 1.

Proof. All but the last statement follow immediately from the definition of τ and
the behavior of the qj . To see the last statement, let A ∈ A be the index giving
the maximum in ‖τstart‖∗ and let B 6= A be such that τstart

A · τstart
B < 0. At least

one label B ∈ A has this property: w is a positive vector and 〈w, τ〉 = 0. As the
path is complete, the (A, B)-entry of the RV-matrix is positive, thus after following
the complete RV-path, τend

A /hend
A will be a strict convex combination involving

τstart
A /hstart

A and τstart
B /hstart

B . �

The lemma implies that, given a complete RV-path of bounded length, there is an
uniform upper bound strictly less than one for the scaling factor of the magnitudes
if, first, the heights of the zippered rectangles are bounded from below by a number
greater zero and bounded from above and, second, the entries of the vectors τ (i)

are within a compact interval. We will find conditions under which the zippered
rectangles along a knorke pair are in such a setting.

2.4. The magnitudes and Teichmüller distance. Let (X, X̃) be a knorke pair
in direction of an orientable minimal measured foliation F and let I be a transversal
interval which is of admissible length for both knorke partners. We just established
that under certain conditions we can control how fast the magnitudes decrease.
Our aim is to control the Teichmüller distance along knorke pairs. Thus we want
to relate Teichmüller distance to the magnitude. To this end we would like to
bound DF,I from above by the magnitude and apply the results of Section 2.2.
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Unfortunately the magnitude is not symmetric in X and X̃, whereas DF,I(X, X̃) is
symmetric, so we should not hope that the magnitude bounds this value in general.
If we constrain to height differences with small magnitudes we can control the error.
This result will be strong enough to give a bound on the factor by which Teichmüller
distance decreases along complete paths.

As a first step, we define an upper bound for DF,I(X, X̃) in terms of τ . Later
we show that under certain conditions this bound is roughly ‖τ‖∗X,F ,I .

Definition. For any pair of zippered rectangles zr(X,F , I) and zr(X̃,F , I) with

height difference τ = h̃ − h define n(X, X̃,F , I) = max
{

‖τ‖∗X,F,I , ‖τ‖∗X̃,F,I

}

Note that we can express this value completely in terms of h and τ :

n(X, X̃,F , I) = max
1≤j≤n

{ |τj |
hj

,
|τj |

hj + τj

}

.

Lemma 2.9. This value is an upper bound for Teichmüller distance:

dT (X, X̃)
.≺ log

(

1 + n(X, X̃,F , I)
)

≤ n(X, X̃,F , I),

if the zippered rectangles zr(X,F , I) and zr(X̃,F , I) have uniformly bounded withs.

Proof. The first inequality is due to Masur [Mas80] (compare Section 2.2), as the

value DF,I(X, X̃) = maxj

{

log
(

(hj + τj)/hj

)

, log
(

hj/(hj + τj)
)}

is bounded from

above by log(1 + n(X, X̃,F , I)): Suppose that the maximum in the definition of

DF,I(X, X̃) is achieved by the index j. If τj > 0, we are done by the following:

DF ,I(X, X̃) = log
(hj + τj

hj

)

= log
(

1 +
τj

hj

)

= log
(

1 +
|τj |
hj

)

.

Suppose τj < 0. Then

DF,I(X, X̃) = log
( hj

hj + τj

)

= log
(

1 − τj

hj + τj

)

= log
(

1 +
|τj |

hj + τj

)

,

hence we are done again.
The second inequality comes from the fact that d

dy log(1 + y) ≤ 1 = d
dy y, y > 0,

and that log 1 = 0. �

The next proposition shows that for height differences with small magnitudes,
the values of n and ‖·‖∗ are the same up to some uniform multiplicative error.

Proposition 2.10. Fix 0 < c < 1/2 small. Suppose that the height difference τ is

small, too: ‖τ‖∗X,F,I < c. Then ‖τ‖∗X,F ,I

.≍ n(X, X̃,F , I).

Proof. For ‖τ‖∗X,F ,I < c it holds ‖τ‖∗X,F,I/‖τ‖∗X̃,F,I
∈ (1 − c, 1 + c) as

|τi|/hi

|τi|/(hi + τi)
=

hi + τi

hi
= 1 +

τi

hi
.

�

Corollary 2.11. For zippered rectangles as above and such that the height difference
has small magnitudes, the magnitude bounds Teichmüller distance. To be exact, let
(X, X̃) be a knorke pair in direction F , let I be transversal of admissible length on

both knorke partners and let τ = h̃ − h have a magnitude small enough to apply
Proposition 2.10. Suppose that the widths of the subintervals are within a fixed
compact interval. Then dT (X, X̃)

.≺ ‖τ‖∗X,F,I .
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Now we can prove a lemma that tells us under which condition we can expect that
the Teichmüller distance will decrease exponentially. An informal way to phrase
the lemma is: If all zippered rectangle data are bounded for a long time, the knorke
partners will get closer. The formal statement is in

Lemma 2.12. Let (X, X̃) be a knorke pair in direction F , I a transversal interval

of admissible length on both knorke partners, and let τ = h̃ − h have a magnitude
small enough to apply Proposition 2.10. Furthermore let I = [α, β] ⊂ (0, δ) and
I∗ = [A, B] ⊂ R>0 be compact. Let Tc = Tc(α, β, δ, n) > 0 be as in Corollary 2.6,
where n is determined by the measured foliation F . Suppose that there is a set
K ⊂ N such that the widths of the rectangles defined by zr(X,F , I) via RV-steps
along the Teichmüller ray ρX,F are within I along disjoint segments ρ(k), k ∈ K,
of length Tc on the Teichmüller ray ρX,F , and that the heights are within I∗ along
the same Teichmüller segments.
Then there exists a number 0 < χ < 1, depending on the RV-diagram defined by
the zippered rectangle zr(X,F , I), on I and on I∗, such that the magnitude of τ
decreases at least by a factor of χ along each Teichmüller segment ρ(k). Hence
the Teichmüller distance between ρX,F(t) and ρX̃,F (t) decreases exponentially in

the number of segments ρ(k) which are contained in the initial Teichmüller segment
ρX,F([0, t]).

Proof. By Corollary 2.6, each segment ρ(k), k ∈ K, projects to a complete RV-path.
Lemma 2.8 implies that the magnitude decreases strictly, where the factor depends
continuously on the heights and on τ if we fix the complete RV-path. As the heights
are restricted to the compact interval I∗, there is an upper bound 0 < χ(k) < 1 on
the factor, depending on the RV-path. The lengths of the possible complete RV-
paths are bounded as of Corollary 2.6, hence there are only finitely many RV-paths
which can occur. Thus the upper bound χ(k) ≤ χ on the factor can be chosen to
be uniform, and the magnitude decreases exponentially in the number of times we
follow one of these complete RV-paths. Corollary 2.11 gives the statement on the
Teichmüller distance along the segments ρ(k) on which the zippered rectangles data
are within the compact intervals. For the times in between, we note that, if we do
not apply RV-steps, the quasi-conformality constant of the piecewise affine stretch
defined by Masur is non-increasing along Teichmüller geodesics, c.f. Corollary 2.7.

�

Remark. There are only finitely many possible RV-diagrams for each stratum.
Hence the value χ can be chosen to depend on the stratum and the intervals I
and I∗ only.

We established an upper bound for Teichmüller distance. The remaining part
of this section is to show that the magnitude serves – up to uniform factor – as
a lower bound for Teichmüller distance as well, provided the zippered rectangles
have bounded data. The argument is a simple compactness argument and relies
on Veech’s holonomy coordinates for orientable quadratic differentials. Under the
additional assumption (which we did not need for our proof) that the heights of
the zippered rectangles are within a compact interval, one can prove Corollary 2.11
with this argument, too.

In his paper [Vee90], Veech constructed local complex coordinates for orientable
quadratic differentials with zeros of fixed orders and established that the orientable
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unit area quadratic differentials form a real analytic embedded submanifold. In
fact, Veech’s construction is carried out over Moduli Space, and it can be lifted to
Teichmüller space. These coordinates are by now known as holonomy coordinates
and can be interpreted as a set of complex numbers given by integrating the qua-
dratic differential along a set of saddle connections which jointly cut the surface into
a union of topological discs. Veech originally constructed the holonomy coordinates
in terms of special rectangle decompositions of the flat metric (called a weaver in
his terminology). Zippered rectangles can be seen as weavers, where the so-called
ends are the base interval I and unions of at most two glueing parts on vertical
sides. To give an example, in Figure 2 (Section 2.5) the weaver consists of the bold
polygon and the three vertical dotted lines. Via its ends, a weaver defines a rect-
angular decomposition of the surface. Call maximal regular subsegments of sides
of rectangles in this decomposition edges of the weaver. Let λ be the vector whose
entries are the lengths of the edges. There exists an R-linear map (w, h) 7→ λ. This
map has maximal rank. As the zippered rectangles which we consider have mini-
mal vertical foliation without saddle connections, the real dimension of the stratum
equals two times the number of subintervals of the underlying interval exchange
transformation: dimR(Q) = 2n, where n = |A|. Thus the map (w, h) 7→ λ is a lin-
ear isomorphism, which implies that the widths and heights of zippered rectangles
are real analytic local coordinates for the corresponding stratum. In particular,
for every 0 6= τ ∈ Rn with 〈w, τ〉 = 0, the deformation t 7→ (w, h + tτ) defines a
real analytic path in the stratum with derivative of rank one locally at the origin.
For every zippered rectangle zr(X,F , I), the magnitude ‖τ‖∗X,F,I defines a norm
on Rn. For a fixed τ , this norm only depends on the heights vector, and more-
over, it depends continuously on the heights vector. Recall that the unit sphere in
Rn is compact. Thus for every fixed (w, h) ∈ Rn

>0 × Rn
>0 there exists a constant

c(w, h) > 0 such that for zr(X,F , I) = (π, w, h) and zr(X̃,F , I) = (π, w, h+τ) with

‖τ‖∗X,F,I ≤ 1/2 and 〈w, τ〉 = 0 we have dT (X, X̃) ≥ c(w, h)‖τ‖∗X,F ,I , where c(w, h)

depends continuously on (w, h). Therefore, together with Corollary 2.11, we just
established

Lemma 2.13. Let K ⊂ Rn
>0×Rn

>0 be compact. Suppose zr(X,F , I) = (π, w, h) and

zr(X̃,F , I) = (π, w, h + τ) are unit area zippered rectangles, where (w, h) ∈ K and

‖τ‖∗X,F,I is small enough to apply Proposition 2.10. Then dT (X, X̃)
.≍ ‖τ‖∗X,F,I .

2.5. Compact sets of zippered rectangles. Up to now we established that
the distance along a knorke pair decreases by a uniform factor if the heights and
widths of the corresponding zippered rectangles are within compact intervals for
a certain amount of time. This leads immediately to exponential asymptotics for
knorke pairs whose zippered rectangles along the Teichmüller geodesics have data
inside these compact sets. From a Teichmüller theoretic point of view this is not
satisfactory: A Teichmüller ray does not come with a priori information on the
zippered rectangles along the ray. We would like to compute the distance along
knorke pairs in terms of the amount of time which the two rays spent in the thick
part of Teichmüller space or in the thick part of the stratum. Moreover, at a first
glance it seems reasonable to hope for a direct relation between the thick part of
a stratum and a compact set of zippered rectangle data. Let the permutation π
be fixed. The map (π, w, h) 7→ q(π, w, h) which maps a zippered rectangle to the
underlying quadratic differential by glueing sides is locally continuous in w and h.
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(Note however that this map is not well defined. We have to fix a marking and base
interval for a zippered rectangles (π, w, h) and then we can vary the continuous
data slightly. Doing so we get a locally defined continuous map.) Hence the image
of a compact set of zippered rectangle data is a compact set in the thick part of
the corresponding stratum. But the naive approach to use a classical continuity
and compactness argument to show compactness of the space of zippered rectangles
over the thick part of a given stratum fails.

To illustrate this fact we give a short sketch of how to see this. Fix an orientable
quadratic differential q ∈ Qε. Let p be our favourite singularity – this is a finite
choice – with cone angle lπ. For δ < ε/2 every interval (geodesic segment) of length
δ and starting at p misses every singularity elsewhere and hence gives rise to a
zippered rectangle defined via the directional foliation orthogonal to the interval.
Thus the set of zippered rectangles on q based on intervals of length δ starting at
p can be parametrized by the “direction” θ ∈ [0, lπ]/0∼lπ of the interval. We denote
the interval in direction θ and of length δ by Iθ. It is possible that the direction
perpendicular to θ has a cylinder decomposition into cylinders of circumference
larger than δ. Choose a direction θ with this property. The zippered rectangle
based then on Iθ does not cover all of q, it just covers some part of the cylinder
Iθ points into, and it consists of just one rectangle with area strictly less than one.
But as minimal directions are dense in S1, for arbitrarily small changes of direction
ζ we can find directions θ∗ = θ + ζ with minimal perpendicular foliation. The
corresponding zippered rectangles cover all of q, hence have area one. The area of a
zippered rectangle can be expressed continuously in terms of the widths and heights
(compare the last paragraph of Section 2.2). This shows the existence of underlying
quadratic differentials q and lengths δ of the base interval with the property that the
widths and heights of zippered rectangles do not vary continuously in the direction
θ of the base interval Iθ.

Example 1 : Degeneration of a subinterval
A question to ask is: What does actually happen in the stratum if we let a zippered
rectangle degenerate, say, if we let the width of one subinterval tend to zero? The
answer is somewhat surprising: There are examples where nothing special happens
inside the stratum.

The object that changes is the vertical foliation. A degeneration of a subinterval
may create a vertical saddle connection while all the quadratic differentials defined
by the zippered rectangles still are points in the thick part of the stratum. We give
an example.

Let (π, w(l), h)l∈N be a sequence of zippered rectangles as in Figure 2, where
π and h as well as w(l)j , j ∈ {A, B}, and w(l)C + w(l)D are constant along the
sequence, and w(l)C → 0 for l → ∞. Suppose that the widths of the zippered
rectangles are such that the vertical foliations defined by the zippered rectangles
are without saddle connections. (We will discuss the outcome of different choices of
widths in the next paragraph.) The area of the zippered rectangle decreases with

l → ∞. We blow up the zippered rectangle by diag
(√

〈w(l), h〉−1,
√

〈w(l), h〉−1
)

to get back to unit area. Figure 3 shows a polygonal picture of the quadratic
differential defined by the zippered rectangle (π, w(l), h). The rescaled quadratic
differential q(l) belongs to the stratum Q1 = Q1(4, +1) with one singularity of cone
angle 6π and orientable foliations, and, moreover, it belongs to the thick part Q1

ε(l),
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Figure 2. A zippered rectangle whose third subinterval degener-
ates. The degeneration is indicated by an arrow.

1

3

4

4

3

2

1

2

Figure 3. The flat metric defined by the zippered rectangle from
Figure 2. Arrows indicate what happens when the zippered rec-
tangle degenerates.

where ε(l) is one tenth of the euclidean length of the side labeled 3 (Figure 3). This
length decreases with l → ∞ and is bounded from below by ε(∞) > 0. Thus for all
l we have q(l) ∈ Q1

ε(∞). In the limit we get a quadratic differential q(∞) ∈ Q1
ε(∞)

with the same polygonal pattern as in Figure 3, just the side labeled 3 will be a
vertical saddle connection. The zippered rectangle in the flat metric of q(∞) is
as in Figure 4. The effect of the degeneration of the zippered rectangles is this
vertical saddle connection on the side labeled 3. This can not be seen in terms of
the stratum.
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Figure 4. The zippered rectangle in the flat metric of the limit
quadratic differential

By choosing different sequences w(l) of widths we can control the vertical fo-
liation of q(∞). Let wj(∞), j ∈ {A, B, D}, denote the widths of the zippered
rectangle on q(∞), c.f. Figure 4. If the widths are pairwise rationally dependent,
the vertical foliation of q(∞) decomposes into a union of periodic cylinders. On
the other hand, if the widths are linearly independent over Q, the vertical foliation
is minimal. Moreover, the vertical foliation will be uniquely ergodic since interval
exchange transformations on three subintervals are rotations of the circle. Thus a
degeneration of the zippered rectangles which define a knorke pair can lead to an
asymptotic pair of Teichmüller geodesics.

The example does not prove that it is impossible to find a zippered rectangle with
data inside a fixed compact set for every point in the thick part of the stratum.
What the example shows is that, if this is possible, one has to choose the base
interval carefully: A not-so-long saddle connection causes trouble if it does not
cross the base interval and its horizontal length is small compared to the length
of the base interval. Example 2 shows that saddle connections of this kind can be
problematic.

We have a closer look at the Teichmüller rays ρq(l). The side labeled 3 is a saddle
connection which gets more and more vertical. Let’s call this saddle connection
γ(l). The vertical ℓq(l)-length is bounded from above and below independent of l,

thus if we apply the Teichmüller flow diag(et/2, e−t/2), the minimal length of γ(l)
along ρq(l) tends to zero. For l large enough, the Teichmüller ray leaves Q1

ε(∞)

eventually. We will prove that Teichmüller rays always leave the thick part after a
certain amount of time when the zippered rectangles have data outside a compact
set. The amount of time needed turns out to depend purely on ε(∞), the length
of the base interval and the number of subintervals, and it is independent of the
vertical foliation. Phrased in a positive way, we prove that a zippered rectangle has
uniformly bounded data if the corresponding Teichmüller ray does not leave the
thick part for a certain amount of time. This threshold does not corrupt the main
result since we get in any case a threshold in time (see Corolary 2.6).
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Example 2 : Too many not-so-long nearly vertical saddle connections.
Fix a stratum Q1 of orientable quadratic differentials and a small ε > 0. We give a
sequence of quadratic differentials q(l) ∈ Q1

ε with uniquely ergodic vertical foliation,
such that for every choice of 0 < δ < ε/2 the widths of zippered rectangles on q(l)
leave every compact set K ⊂ (0, δ)n, independent of the horizontal intervals of
admissible length we choose as base intervals.

Let −q0 ∈ Q1
ε be a Strebel differential, i.e. the vertical foliation is just one periodic

cylinder. Multiplication of a quadratic differential by −1 is a rotation of the flat
metric by 90 degree, therefore the horizontal foliation of q0 ∈ Q1

ε is just one periodic
cylinder. The core curve of which shall be of length at most 1/ε. (Choose ε > 0
small enough.) Thus every arc which crosses the cylinder transversally has length
at least ε. Since for each quadratic differential, directions with uniquely ergodic
foliations are dense on the circle, there is a sequence of angles θl ց 0 such that θl is
a uniquely ergodic direction on q0. Thus the vertical foliation of q(l) = ei(π−2θl)q0

is uniquely ergodic and the horizontal lengths of saddle connections in direction
π/2 − θl (which is the direction of the image of the Strebel cylinder) are at most
cos(π/2− θl)/ε = sin(θl)/ε. Horizontal intervals of admissible length can not cross
the cylinder, hence can not cross these saddle connections. Therefore, independent
of the choice of the base interval, the zippered rectangle on q(l) has at least one
rectangle of width at most sin(θl)/ε, where sin(θl)/ε → 0 for l → ∞.

We remark that this sequence of quadratic differentials has −q0 as limit, a unit
area quadratic differential whose vertical foliation has a one-cylinder-decomposition.
But any zippered rectangle based at a horizontal interval of admissible length does
not cover all of −q0, and hence all such zippered rectangles have area strictly less
than 1 – a situation as sketched right before Example 1.

Motivated by this observations our strategy is to show that zippered rectangles
have data in a compact set if the initial segment of uniform length on the Teich-
müller ray does not leave the thick part.

2.6. Zippered rectangles and the thick part of the stratum. This section is
devoted to find conditions for unit area quadratic differentials to have representa-
tions by zippered rectangles with bounded widths and heights. Motivated by the
above example we look for saddle connections in the zippered rectangle causing the
corresponding Teichmüller geodesic to leave the thick part of the stratum if the
zippered rectangle data do not belong to a certain compact set. The upshot of this
section is Corollary 2.20, which states that a zippered rectangle has bounded data
if the corresponding Teichmüller geodesic remains in the thick part of the stratum
for at least a uniform amount of time. The main steps to prove this are as follows:

Step 1: We find a uniform lower bound on the heights of the rectangles for zip-
pered rectangles on quadratic differentials in the thick partQ1

ε = Q1
ε(κ1, · · · , κk, +1).

Step 2: We show that rectangles with large heights are glued to rectangles with
large heights.

Step 3: Within rectangles with large heights we find saddle connections which
get very short along the Teichmüller geodesic after a uniform amount of time. This
leads to a uniform upper bound on the heights of zippered rectangles on Teichmüller
geodesics which remain in the thick part of the stratum for a long time.



32

B C D

C

a

b c

d

c

a

d

b

A

ADB

γ

Figure 5. The curve γ crosses exactly one rectangle vertically.

Step 4: Using the upper bound on the heights from step 3 and the same argument
again (applied to another class of saddle connections) we get uniform lower and
upper bounds on the widths.

Remark. In general, step 4 implies step 3. Our argument for step 4 uses step 3.

Throughout this section we assume the vertical measured foliations to be without
saddle connections and all zippered rectangles to have the maximal possible number
of rectangles. This number only depends on the stratum:

n = |A| = 2g − 1 + (number of singularities) ≥ 4.

Recall that the vertical sides of the zippered rectangles are unions of linearly glued
subintervals which we call glueing parts (Section 2.1). One can tell how many
glueing parts are contained in each vertical rectangle side: Exactly one right vertical
side consists of one glueing part, all other right vertical sides consist of two glueing
parts. For the left vertical sides, either the same is true or there is one left vertical
side with three glueing parts, two vertical sides with one glueing part, and all other
consist of two glueing parts. In particular there are in total 2n − 1 glueing parts,
each occurring once on a left side of a rectangle and once on a right side.

2.6.1. Step 1: A lower bound on the heights. Our first step is to find a lower bound
on the heights of zippered rectangles in the thick part of the stratum. Recall that,
for given δ > 0, an interval is of admissible lengths if the length of its horizontal
realization is between δ and δ/2.

Lemma 2.14. Let ε > 0 be given and let 0 < δ = δ(ε) ≤ ε/5 be small compared
to ε. There exists an uniform lower bound for the heights of the zippered rectangle
zr(X,F , I), where (X,F) ∈ Q1

ε and I is a transversal interval of admissible length.

Proof. Let R be the rectangle with the smallest height, denoted by hR. Let γ be
the simple closed curve crossing R vertically and closing up along I, c.f. Figure 5
(In this figure, the rectangle R is the rectangle labeled D). The length of I is at
most δ, hence the ℓq-length of γ is bounded from above by hR + δ. Thus there is a
saddle connection of ℓq-length at most hR + δ. Recall that ℓ∗q-length and ℓq-length
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are the same up to a multiplicative error of at most 2. Therefore hR + δ ≥ ε/2
which gives a lower bound ε/2 − δ ≥ 3ε/10 on the heights of rectangles. �

We just found a uniform lower bound on the heights. The upper bound needs
more work, and we have to require that the Teichmüller ray spends a certain amount
of time in the thick part. Suppose that the zippered rectangle has some rectangles
which are significantly taller than the other rectangles. These tall rectangles are
glued together along their vertical sides. Note that by the area-one condition tall
rectangles have to be very narrow. If there are tall rectangles, we find saddle
connections with small horizontal length and bounded but large vertical length.
These saddle connections shrink for a certain amount of time along the Teichmüller
ray before they reach their very small length minimum. Estimating this time and
the length minimum and assuming that the Teichmüller ray stays in the thick part
of the stratum for a long time, we obtain a contradiction, which in turn guarantees
the existence of upper bounds for the heights of the rectangles.

2.6.2. Step 2: Rectangles with large heights are glued to rectangles with large heights.
The second step is to give a precise definition of “tall” and to show that “tall”
rectangles are glued to “tall” rectangles. To this end we first fix some notation: For
positive numbers m, M and δ we define a smooth increasing function

H̃m,M,δ : R → R, c 7→ 2m cM+1/δ.

The following proposition tells us that, for c large, zippered rectangles with a rec-
tangle of height at least H̃m,M,δ(c) have the above mentioned property that “tall”
rectangles are glued together.

Proposition 2.15. Let ε > 0 and δ > 0 be as above and let Q1 be a stratum of
orientable unit area quadratic differentials. Let (X,F) ∈ Q1 be without vertical
saddle connections and let I be a transversal interval of admissible length. Thus
there are in total M = 2n − 1 glueing parts on zr(X,F , I) and there are at most
m = 3 glueing parts on each vertical rectangle side. Let c > m + 1.
If zr(X,F , I) contains a rectangle of height at least H̃m,M,δ(c), we can find an

H > 0 with 2c/δ ≤ H ≤ H̃m,M,δ(c) such that the length of every glueing part is
either at most H/c or at least H. In other words, there isn’t any glueing part α on
zr(X,F , I) with H/c < ℓ(X,F)(α) < H.

Proof. Let d = 2/δ. As the total area of the zippered rectangle zr(X,F , I) is one,
there is at least one rectangle of height at most d and hence at least one glueing
part of length at most d. The total number of glueing parts is M and there are at
most m glueing parts on each vertical side. Hence, for any c > m + 1, if there is
a rectangle of height at least dmcM+1, the longest glueing part on any side of this
rectangle has length at least dcM+1. As there are at most M glueing parts and
as the ratio of the lengths of the longest and the shortest glueing part is at least
cM+1, by the pigeon hole principle there is a number 2c/δ ≤ H ≤ dmcM+1 such
that every glueing part is either longer than H or shorter than H/c. �

If there were vertical saddle connections, the proposition would still be true. The
proof remains literally the same, one just has to replace M and m by appropriate
constants with the same properties.

Remark. Even for fixed m, δ and c, the threshold H̃m,M,δ(c) heavily depends on
the stratum: It depends exponentially on the number M of glueing parts. This
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number is larger than the number of critical rays of the vertical foliation starting
at a zero of the quadratic differential. By the Gauss-Bonnet-formula, this number
is bounded from below by 2g − 2, where g is the genus of S.

The proposition tells us what the right definition of “tall” should be:

Definition. Choose any c > 4 and let zr(X,F , I) be a zippered rectangle with

a rectangle of height at least H̃(c) = H̃3,2n−1,δ(c) and without vertical saddle
connections. Let H be as in Proposition 2.15. Glueing parts of length at least H
are c-long, whereas glueing parts of length at most H/c are c-short. Rectangles of
height at least H are c-tall, whereas rectangles of height at most 3H/c are c-small.

Remark. We strongly emphasize that H depends on zr(X,F , I), but it is uniformly

bounded by 2c/δ and H̃(c). Thus Proposition 2.15 just guarantees the existence of
a distinction into c-tall and c-small rectangles (Without rectangles of intermediate
height!) if zr(X,F , I) has at least one rectangle of very large height. The proposition
does not give the critical height explicitly.

By Proposition 2.15 and the choice of c > 4, every c-tall rectangle has at least one
c-long glueing part on either side, and c-small rectangles don’t have c-long glueing
parts. Hence, c-tall rectangles are glued to c-tall rectangles. Moreover every glueing
part is either c-long or c-short and thus every rectangle is either c-tall or c-small if
the zippered rectangle has at least one rectangle of height at least H̃(c).

Definition. A maximal subset (maximal with respect to inclusion) of the set of
c-tall rectangles, subject to the condition that they are transitively glued together
along c-long glueing parts that are the lowest glueing parts of the respective sides
– i.e. these c-long glueing parts are adjacent to the top side of I – will be called a
block. A block is allowed to consist of just one c-tall rectangle.

Remark. The condition for a set of c-tall rectangles to form a block can be rephrased
to be a maximal set with the property that there exists an euclidean embedded
rectangle Q in the union of the c-tall rectangles such that the lower side of Q is
contained in the base interval I, the left side of Q is contained in the left side of
the leftmost rectangle in the block and the right side of Q is contained in the right
side of the rightmost rectangle in the block.

Note that every block is a strict subset of the set of all rectangles as there have
to be c-small rectangles if there is a distinction into c-tall and c-small rectangles.

2.6.3. Step 3: An upper bound on the heights. We proceed with Step 3: Supposed
the zippered rectangle has a c-tall rectangle, find a nearly vertical saddle connec-
tion with uniformly bounded length. This saddle connection shrinks along the
corresponding Teichmüller ray and causes the ray to leave the thick part of the
stratum.

Proposition 2.16. Let ε > 0, δ > 0 be as above and let c > 4. Let zr(X,F , I) be
a zippered rectangle as in Proposition 2.15 without vertical saddle connections and
with a rectangle of height at least H̃(c), thus a zippered rectangle whose rectangles
are either c-tall or c-small and whose glueing parts are either c-long or c-short. Then
there is at least one saddle connection γ with hori(γ) ≤ n/H and vert(γ) ≤ 2nH/c,
where n = |A| ≥ 4.
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This proposition is based on the following observation: Suppose there is just
one c-tall rectangle, which therefore has to have a self-glueing along the vertical
sides. By the area condition it has to have small width. Thus, there is a non-
vertical cylinder in the c-tall rectangle such that the core curve has small horizontal
length, and the vertical length is bounded from above by the lengths of the c-short
glueing parts on the vertical sides. If there is a lower bound on the length of saddle
connections, we get a lower bound on the vertical length as well. Thus the cylinder
has small width and is nearly vertical, where the angle to the vertical is bounded
from above in terms of c. The core curve gets short along the Teichmüller geodesic
and the Teichmüller geodesic leaves the thick part of the stratum.

When there is more than one c-tall rectangle the situation becomes more difficult,
but still there are saddle connections with similar properties. Before we prove the
proposition, we give a definition to simplify notations.

Definition. Let α be a glueing part on a vertical side of a zippered rectangle.
Considered as an interval the glueing part α has two endpoints. We call the upper
endpoint (in the orientation of the vertical foliation) the head of α. We call the
lower endpoint the foot of α.

Now we are ready to prove Proposition 2.16.

Proof of Proposition 2.16. The area of each rectangle is at most one, hence c-tall
rectangles have width at most 1/H . For the proof of the proposition we extract
different types of blocks and look carefully at the glueings of the corresponding
rectangles. For either type of block we find a saddle connection with the desired
properties.

First type of blocks: There is a block with the property that the lowest c-long
glueing part on its right side is a glueing part whose foot is a zero of the underlying
orientable quadratic differential (X,F). We define a simple arc connecting two
zeros of the quadratic differential by drawing it on the zippered rectangle. We start
at that foot moving horizontally to the left. On every vertical side, there are at
most three glueing parts, hence below the foot there are at most two glueing parts.
These glueing parts are c-short glueing parts and their lengths are at most H/c
each. Thus the vertical distance between the base interval I and the horizontal
line which we draw is at most 2H/c. We cross all c-tall rectangles of the block and
eventually we will hit the left end of the block. Two cases may arise:
Either the lowest c-long glueing part on the left side of the block has a foot which
is a zero. (Note that the lowest glueing part of the leftmost rectangle of zr(X,F , I)
has a zero as its foot: the left endpoint of I.) Again, below the lowest c-long glueing
part there are at most two c-short glueing parts on the vertical side and each c-
short glueing part is of length at most H/c. Thus we can complete a simple arc
connecting two zeros by moving vertically up or down for at most 2H/c, see Figure
6.
Otherwise at the left end of that block the lowest c-long glueing part α has a foot
which is a regular point. The only regular point which can be the foot of a glueing
part which is not the lowest glueing part of a side is the copy of the right endpoint
of I. (In Figure 5 this point is indicated by the circle on the leftmost vertical side.)
Hence the c-long glueing part α is glued to the lowest glueing part (which has to be
c-long) on the right side of a block which ends at the right endpoint of I. Move up
or down for at most 2H/c at the left end of the initial block and cross the c-long
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c-small
c-small

block of c-tall rectangles

Figure 6. A simple arc connecting two zeros and staying close to
the base interval.

glueing part with a regular point at the bottom to enter that new block at the far
right of I. From there on we continue moving horizontally to the left as above.
The lowest c-long glueing part on the left side of this block is a c-long glueing part
which foot is a zero. Connect this zero as above.
Either way, we get a simple arc which connects two zeros, horizontally crosses every
rectangle at most once and has a vertical length which is bounded from above.
Pulling tight in the flat metric13 we obtain a saddle connection γ. This saddle
connection has bounded horizontal and vertical length:

hori(γ) ≤ n/H and vert(γ) ≤ 4H/c.

Second type of blocks: The remaining case, i.e. the foot of every lowest right-
most c-long part of every block is a regular point for the quadratic differential.
This occurs precisely when there aren’t any rectangles of zr(X,F , I) at the right
of any block and the lowest glueing part on the right side is a c-long glueing part.
Thus there is just one block, and this block is as far right on I as possible. By
definition there aren’t any c-tall rectangles outside that block. At first we show by
contradiction that there has to be a c-tall rectangle which upper right glueing part
is c-short and has a zero as foot.
Label the rectangles by {1, . . . , n} according to their position from left to right,
i.e. π0 = id. Let π1 : {1, . . . , n} → {1, . . . , n} be the permutation on the subinter-
vals, let {l, . . . , n} be the indices of the rectangles in the block and let r = (π1)−1(n).
Suppose that the upper glueing part on the right side of every rectangle in the block
is c-long. As the upper c-long right glueing parts are glued to c-long left glueing
parts, which only occur on the sides of c-tall rectangles, and as there is only one
block, every rectangle Rj , j ∈ {l, . . . , n}, j 6= r, is glued along the upper glueing
part on the right side to a c-long glueing part on the left side of a rectangle of that

13This is done with respect to the euclidean length function ℓ∗
(X,F)

.
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a

R
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c-small

block of c-tall rectangles

Figure 7. A simple arc connecting two zeros, following the upper
part of the c-tall rectangles. The horizontal glueing is a to a.

block. Hence the rectangle Rr glued to I from below in the rightmost position has
to be c-long: l ≤ r ≤ n. On the lower side of I stepping from Rr to the left rectan-
gle by rectangle we meet every c-tall rectangle from the block before any c-small
rectangle shows up. Thus π1 has to fix the two subsets {1, . . . , l−1}⊔{l, . . . , n}, con-
tradicting the assumption that there aren’t any vertical saddle connections. Thus,
in that block there is a c-tall rectangle R such that the upper right glueing part is
c-short.
The foot of this glueing part has to be a zero, as the lowest right glueing part of
the zippered rectangle is c-long in the case which we consider now. Starting from
that zero we move horizontally to the left (c.f. Figure 7). Every time we hit the
left side of a c-tall rectangle we check whether or not the upper left c-long glueing
part has a zero as head. If it is a zero, connect it by moving up or down vertically
at most 2H/c – the above argument on the number of the c-short glueing parts
applies here, too. If the head isn’t a zero, move up or down for at most 2H/c and
cross the upper c-long glueing part on the left side to enter another c-tall rectangle
R̃ via the upper right c-long glueing part of R̃ and continue moving horizontally to
the left as above. As there are only finitely many c-tall rectangles, at some point
we have to hit a c-long glueing part whose head is a zero. This happens when we
get a combinatorial cycle on the set of the c-long glueing parts, for latest. Ending
in that zero we draw a simple arc connecting two singularities. We pull it tight and
get a saddle connection γ. This saddle connection crosses every c-tall rectangle at
most once from the right to the left and gains vertical length of at most 2H/c every
time a rectangle is crossed:

hori(γ) ≤ n/H and vert(γ) ≤ 2nH/c.
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This finishes the proof. �

The saddle connections we just found will shrink along the initial Teichmüller
segment. We compute a number Th > 0 such that the minimal lengths of the saddle
connections are less than ε along the initial Teichmüller segment of length Th.

Lemma 2.17. Let ε > 0 and let δ > 0 be as in Lemma 2.14. For every stratum
Q1 of orientable unit area quadratic differentials there exist c > 4 and Th > 0 with
the following property:
Let zr(X,F , I) be a zippered rectangle such that (X,F) ∈ Q1

ε is without vertical

saddle connections and such that at least one rectangle is of height at least H̃(c).
Then the initial segment of length Th on the corresponding Teichmüller geodesic
ρX,F leaves the thick part Q1

ε.

Proof. We will make use of the saddle connections mentioned in Proposition 2.16.
These saddle connections turn out to be mostly vertical, hence they will shrink
along ρX,F for a long time before reaching their length minimum. Our goal is to
show that there is a constant Th > 0 such that up to time Th the length of these
saddle connections will be nonincreasing and, moreover, the minimal length along
the initial segment of length Th on the Teichmüller geodesic will be less than ε.

The prerequisites of Proposition 2.16 are fulfilled. Let γ be one of the saddle
connections given by Proposition 2.16. The ℓ(Xt,et/2 F)-length of γ at time t along

the Teichmüller ray determined by zr(X,F , I) is

ℓt(γ) = ℓ(Xt,et/2 F)(γ) = et/2 hori(γ) + e−t/2 vert(γ),

where hori(γ) and vert(γ) are the horizontal and vertical lengths of γ in the flat
metric defined by (X,F). On (X,F) the saddle connections given in the proposition
above have bounded horizontal length hori(γ) ≤ nκ for κ = 1/H ≤ δ/(2c). This

bound tends to zero as c → ∞. Recall from Section 1.1.2 the inequality ℓ∗q′

.≺ ℓq′ ,

independent of the quadratic differential q′. If (X,F) is in the thick part Q1
ε of

the stratum, a lower bound on the vertical length of the saddle connection follows
immediately: vert(γ) ≥ ε − nκ. The quotient of vertical and horizontal length
measures the angle a saddle connection makes with the horizontal direction. This
quotient is bounded from below: vert(γ)/ hori(γ) ≥ (ε− nκ)/(nκ) → ∞ for κ → 0,
hence for c → ∞.

Differentiation with respect to time shows that the minimal ℓt-length is achieved
at time τ(γ) = log(vert(γ)/ hori(γ)) and that ℓτ(γ)(γ) = 2

√

vert(γ) hori(γ). The
minimum is achieved exactly when horizontal and vertical length coincide. This
motivates the name balanced time for the time τ(γ). We see that the balanced time
is independent of the length of γ and only depends on the angle between the hori-
zontal foliation and γ. The more vertical γ is, the larger τ(γ) will be. Hence we can
bound τ(γ) from below by log((ε−nκ)/(nκ)). Note that for two saddle connections
γ and γ̃, where γ is supposed to be more vertical than γ̃ and with ℓ0(γ) = ℓ0(γ̃),
it holds ℓτ(γ̃)(γ) ≤ ℓτ(γ̃)(γ̃), but the balanced times fulfill τ(γ) > τ(γ̃). Clearly the
minimal length depends linearly on the initial length if we fix the direction of the
saddle connection. Therefore, in order to find suitable bounds for minimal length
and balanced time, it suffices to estimate the largest possible minimal length Lh

and smallest possible balanced time Th for saddle connections given by Proposition
2.16. At time Th every saddle connection given by the proposition has length at
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most Lh. We calculate an upper bound for the length

Lh = 2
√

vert(γ) · hori(γ) ≤ 2
√

2nH/c · nκ ≤ 2n

√

2H

cH
= 2n

√

2/c

and an lower bound for the time

Th = log
vert(γ)

hori(γ)
≥ log

ε − nκ

nκ
≥ log

ε − nδ/(2c)

nδ/(2c)
≥ log

2cε − nδ

nδ
> 0.

Hence choosing c = c(ε, n) > 4 large enough, there is a Th = Th(ε, δ, n, c) such that
each Teichmüller ray starting in the thick part of the stratum leaves the thick part
of the stratum not later than at time Th if the corresponding zippered rectangle
has a rectangle of height at least H̃(c). �

Remark. The threshold Th > 0 can be chosen to be a uniform value for a given
thick part Q1

ε, independent of the vertical foliation of a knorke partner inside that
stratum, if we fix δ(ε) small and c = c(ε, n) large. In fact, Th only depends on ε, δ

and the number of subintervals. The same is true for the bound H̃3,2n−1,δ(c(ε, n))
on the heights.

We restate this result as a condition for zippered rectangles to have bounded
heights:

Corollary 2.18. Fix a stratum Q1 of orientable unit area quadratic differentials.
Let ε > 0, δ > 0, c = c(ε, n) > 4 and Th > 0 be as above. Let zr(X,F , I) be
a zippered rectangle such that (X,F) ∈ Q1

ε is without vertical saddle connections.
If the initial segment of length Th on the corresponding Teichmüller geodesic ρX,F

does not leave the thick part Q1
ε, the heights of the rectangles of zr(X,F , I) are at

most H̃(c).

2.6.4. Step 4: Bounds on the widths. Up to now we established conditions for qua-
dratic differentials to have zippered rectangles with bounded heights. The next step
is to find a lower bound on their widths. A lower bound ω on the widths immedi-
ately gives an upper bound δ−(n−1)ω on the widths. Thus, the zippered rectangle
data are restricted to a compact set given that we have established a lower bound
on the widths.

Lemma 2.19. Let ε > 0 and let δ > 0 be as in Proposition 2.14. For every stratum
Q1 of orientable unit area quadratic differentials there exist ω > 0 and Tw > 0 such
that all widths of a zippered rectangle zr(X,F , I) are at least ω if (X,F) is without
vertical saddle connections and if the corresponding Teichmüller geodesic ρX,F stays
in Q1

ε uninterrupted up to time Tw.

Proof. The argument we use is the same one we used to prove Corollary 2.18: If one
rectangle is very narrow, we can find a saddle connection which is nearly vertical
and which has bounded length. This saddle connection causes the Teichmüller ray
to leave the thick part.

Let any ω > 0 be given and let c = c(ε, n) be as above. Assume wj < ω for
some j ∈ A. We know by Corollary 2.18 that for Tw ≥ Th large enough the height
of Rj is at most H̃(c), if zr(X,F , I) fulfills the above conditions. We find an arc
connecting two zeros of the quadratic differential q = (X,F) and with bounded
horizontal and vertical lengths. This arc is the concatenation of the subinterval
Ij and of two segments of the leafs that contain the vertical sides of Rj and have
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lengths bounded from above. We only have to show that the minimal vertical
distance from an endpoint of Ij to a zero of q is bounded from above. There are
three cases.

First case: The vertical side of Rj contains a zero of the quadratic differential

q = (X,F). The lowest part on that side has length at most H̃(c) and connects a
zero of q to the base interval I.

The second case is if there isn’t any zero of q on the right vertical side of Rj . This
only happens for the rightmost rectangle or for the rectangle glued to the rightmost
position, i.e. Ij is the winner or the loser. The other partner in the RV-step, i.e. the
respective loser or winner, must have a zero on the right vertical side. The union of
the right sides of the winner and the loser is an interval contained in one leave of the
vertical foliation. Hence the length of a vertical segment from the right endpoint of
Ij to a zero is at most 2H̃(c).

The third case is if there isn’t any zero on the left vertical side of Rj . This
never happens for the leftmost rectangle – the left endpoint of I is a zero –, hence
there is a rectangle left of Rj . This rectangle has a zero on the right side or it is a
rectangle fitting into case two. Either way, we obtain a vertical segment from the
left endpoint of Ij to a zero of vertical length at most 2H̃(c).

Connect the vertical segments which start from the left respectively from the
right endpoint of Ij by the subinterval Ij and pull tight. We end up with a saddle

connection with horizontal length at most ω and vertical length at most 4H̃(c).
Recall that every saddle connection has length at least ε. Hence we found a saddle
connection γ with ε−ω ≤ vert(γ) ≤ 4H̃(c) and hori(γ) ≤ ω. Therefore we can find
an upper bound for the minimal length

Lw = 2
√

vert(γ) hori(γ) ≤ 4

√

H̃(c)ω → 0

as well as a lower bound on the time at which the above saddle connection is shorter
then Lw:

Tw = log
vert(γ)

hori(γ)
≥ log

ε − ω

ω
→ ∞,

where both limits are for ω → 0. Choosing ω small enough, there is a uniform Tw

such that each Teichmüller ray starting in the thick part of the stratum will leave
it not later then at time Tw if the zippered rectangle at the starting point has a
rectangle of width at most ω. �

Remark. The threshold Tw > 0 can be chosen to be a uniform value for a given
thick part Q1

ε, independent of the vertical foliation of a knorke partner inside that

stratum, if we fix ω = ω
(

H̃(c(ε, n)), ε
)

small enough. Recall that H̃(c(ε, n)) =

H̃3,2n−1,δ(c(ε, n)) only depends on ε, δ and the number of subintervals, hence so
does the bounds on the widths. Thus Tw can be chosen to be completely determined
by ε, δ and the number of subintervals.

Corollary 2.20. Let ε > 0 and let δ > 0 be as in Proposition 2.14. For ev-
ery stratum Q1 of unit area quadratic differentials there exist a compact set K ⊂
(0, δ)n × Rn

>0 and Tw = Tw(ε, δ, n) > 0 such that the pair (w, h) of the vectors of
widths and heights of a zippered rectangle zr(X,F , I) is contained in K if (X,F) is
a knorke partner and if the corresponding Teichmüller geodesic ρX,F stays in Q1

ε

uninterrupted up to time Tw.
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Definition. Let Qgood(ε, δ,Q1) be the set of all quadratic differentials q in the
thick part Q1

ε of the stratum Q1 subject to the condition that the initial segment
of length T = Tw + Tc on the corresponding Teichmüller ray ρq is contained in Q1

ε,
where Tw = Tw(ε, δ, n) is as in Corollary 2.20, and Tc as in Lemma 2.12 depends
on δ, the compact set K and the number of subintervals n.

2.7. Exponential asymptotics. In the above sections we found an upper bound
for Teichmüller distance in terms of zippered rectangles, examined its behavior
along Teichmüller segments that give rise to zippered rectangles with bounded data,
and established conditions on the quadratic differentials for giving rise to zippered
rectangles with bounded data. We put together these results and get exponential
asymptotics for knorke pairs. For a precise formulation we fix some notation first:

Definition. Let ε > 0 and a stratum Q1 be given. For every quadratic differential
q in the stratum Q1 define

Tε,q(t) = λ{s ∈ [0, t] : ρq(s) ∈ Qgood(ε, ε/10,Q1)}.
Here, λ denotes Lebesgue measure on the reals.

The following lemma is the main consequence of the results we proved above.
Below we will give theorems putting the lemma into context.

Lemma 2.21. Let F be a minimal measured foliation that can be realized without
saddle connections and let ε > 0. There exists a constant ξ > 0 depending on ε
and the stratum Q1 of the realization of F such that for every knorke pair (X, X̃)
in direction F there are constants D > 0 and d > 0 such that, under the additional
assumption that the corresponding magnitudes (as in Section 2.4) will eventually be
small enough along the Teichmüller ray (X,F), the Teichmüller distance along the
knorke pair decreases like an exponential function:

dT

(

ρX,F (t), ρX̃,F (t)
)

≤ D exp
(

−ξ · Tε,(X,F)(t)
)

for t ≥ d.

Proof. If F is non-orientable, we pass to the orientation double cover and work
with the knorke pair (covF (X), covF(X̃)) in direction covF(F) (compare Theorem
1.9 and the remark after that theorem). At the end of this proof we will get in-
formation on the distance of the orientation double covers, but this information
projects down to information on the Teichmüller distance along the knorke pair
(X, X̃), c.f. Lemma 1.7, Corollary 1.8 and Proposition 1.10. Thus, without loss of
generality we can assume F to be orientable.
If we can find long segments on the Teichmüller rays such that the widths and
heights of the zippered rectangles are bounded from above and below, and that
the magnitude of the height differences is small, Lemma 2.12 will give the desired
decreasing behavior of Teichmüller distance. The constant ξ depends on the con-
stants in Lemma 2.12. We assume that the magnitudes of the height differences
(compare Section 2.4) will eventually start being small enough along the Teich-
müller ray ρX,F . The constant d in the theorem takes care of this threshold in
time. Hence we are done if we can control the heights and widths of the zippered
rectangles. Let δ = ε/10. Note that δ is as in Lemma 2.14 a bound for admissible
length in the ε-thick part Q1

ε of the stratum. Let I be a transversal interval of

admissible length on (X,F) and (X̃,F), and let Tc be as in Lemma 2.12. Corollary



42

2.20 tells us that along the Teichmüller segment ρX,F ([t, t + Tc]) the zippered rect-
angles based on intervals of admissible length have bounded widths and heights as
long as (Xt,F t) belongs to Qgood(ε, δ,Q1). But we may not just measure how long
the knorke partner (X,F) stays in Qgood(ε, δ,Q1), as Lemma 2.12 guarantees the
uniform decreasing factor only along disjoint Teichmüller segments of length Tc.
Hence we have to count how many disjoint segments we can find. In other words,
we may count a 1 every time (Xt,F t) enters Qgood(ε, δ,Q1), and we may add an
additional 1 if the knorke partner spends a time span of length Tc in Qgood(ε, δ,Q1)
uninterrupted. This sum is bounded from below by Tε,(X,F)(t)/Tc (in fact, if the

knorke partner leaves Qgood(ε, δ,Q1) immediately every time it enters this set, that
bound will be a very bad bound). Note that Tc does not depend on the knorke pair
and hence can be put into the constant ξ. The constant D depends on Teichmüller
distance dT (ρX,F (d), ρX̃,F(d)) at time t = d. �

Masur proved that for every uniquely ergodic measured foliation F , knorke pairs
are positively asymptotic ([Mas80] and Section 1.2.3). The prove of Masur’s theo-
rem gives even more: Along the Teichmüller rays the magnitudes will converge to
zero. Keeping Corollary 1.8 in mind we can reformulate the above result.

Theorem 2.22. Let F be a minimal measured foliation and let ε > 0. There exists
a constant ξ > 0 depending on ε and the stratum of the realization of F such that
for every knorke pair (X, X̃) in direction F which returns to the ε-thick part of
the stratum for arbitrarily large times there are constants D > 0 and d > 0 such
that the Teichmüller distance along the knorke pair decreases like an exponential
function:

dT

(

ρX,F (t), ρX̃,F (t)
)

≤ D exp
(

−ξ · Tε,(X,F)(t)
)

for t ≥ d.

One might consider this theorem being sightly unaesthetic: Given a quadratic
differential (X,F) at random choice we don’t have any a priori information on the
amount of time the Teichmüller ray will spend in Qgood. Using ergodicity of the
Teichmüller flow we can prove a result that does not involve Qgood explicitly. To
this end recall Birkhoff’s Ergodic Theorem (see [BM00] for instance).

Theorem 2.23. Let (Y, ν) be any probability space and let φt be a continuous flow
on Y that preserves ν and is ergodic with respect to ν, i.e. any φt-invariant set
A ⊂ Y has measure ν(A) = 0 or ν(Y \A) = 0. For any f ∈ L1(Y, R) and ν-almost
every y ∈ Y time average converge to space average:

lim
t→∞

1

t

∫ t

0

f(φsy)ds =

∫

Y

f(ζ)dν(ζ)

Note that the right hand side equals ν(A) for f = χA the characteristic function
on a Borel set A ⊂ Y .

Denote the projection from strata over Teichmüller space into strata over moduli
space by π : Q1 → Q1. Let Qgood(ε, δ, Q

1) = π(Qgood(ε, δ,Q1)) be the set of all
quadratic differentials over moduli space that define geodesics whose initial segment
of length T = Tw + Tc is contained in Q1

ε . For a geodesic in moduli space, defined
by some quadratic differential π(X,F), we set

Tε,π(X,F)(t) = λ{s ∈ [0, t] : π(ρX,F (s)) ∈ Qgood(ε, ε/10, Q1)}.
For every t > 0 it holds Tε,π(X,F)(t) = Tε,(X,F)(t).
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Let Q1 be a stratum of unit area quadratic differentials over Teichmüller space.
Masur [Mas82a] and Veech [Vee82] constructed measures ν̃ on Q1 which are pre-
served by and ergodic with respect to Teichmüller flow. These measures give infinite
volume to the stratum. To get probability measures we can pass to moduli space.
The projection of the measure ν̃ on Q1 to a measure on Q1 is of finite volume, thus
we can rescale it to get a probability measure ν (see [Mas82a, Proposition 5.1] for
instance).

Let ν be a Teichmüller flow-invariant and ergodic probability measure on the
stratum Q1 over moduli space. For all subsets A ⊂ Q1 with measure ν(A) > 0, for
ν-almost all quadratic differentials π(X,F) and for all small 0 < α < 1, Birkhoff’s
theorem implies the existence of a T ∗ > 0 such that for all t > T ∗, we have

(2)

∫ t

0

χA(π(Xs,Fs))ds ≥ (1 − α)ν(A) · t.

We want to apply Birkhoff’s theorem to the function Tε,π(X,F)(t), which is the inte-

gral of the characteristic function on Qgood(ε, ε/10, Q1) composed with Teichmüller
geodesic flow. Hence we want to show that Qgood(ε, ε/10, Q1) has non-trivial mea-
sure. Let π{(Xt,F t) : t ∈ R} be any closed loop in Q1

ε (thus {(Xt,F t) : t ∈ R}
projects to a pseudo-Anosov-axis ρX,F in T (S)). Obviously all tangential qua-
dratic differentials (Xt,F t) along that axis are elements of Q1

ε, thus {(Xt,F t) : t ∈
R} ⊂ Qgood(ε, ε/10,Q1). As Teichmüller flow is continuous there exists a small
open neighborhood N of the axis such that all quadratic differentials in N are el-
ements of Qgood(ε, ε/10,Q1), too. The projection π(N ) of this set is a non-empty
open subset of Qgood(ε, ε/10, Q1) ⊂ Q1 and thus has non-trivial measure for any
measure in Lebesgue measure class for instance (as the above mentioned measures
due to Masur [Mas82a] or Veech [Vee82] are). Hamenstädt established the exis-
tence of an uncountable family of probability measures on the bundle of unit area
quadratic differentials meeting the above properties ([Ham06]).

Theorem 2.24. Let ε > 0. Let ν be any Map-invariant, Teichmüller flow-invariant
and ergodic measure on the stratum Q1 that projects down to a probability measure
on Q1. Assume that ν assigns non-zero measure to any open non-empty set. There
are a constant ξ∗ > 0 and a subset A ⊂ Q1 of co-null measure such that for every
(X,F) ∈ A (where F will turn out to be a uniquely ergodic measured foliation

without saddle connections as its realization on X) and for every X̃ such that

(X, X̃) is a knorke pair in direction F there is a constant D∗ > 0 such that

dT

(

ρX,F (t), ρX̃,F (t)
)

≤ D∗ exp(−ξ∗t)

for t larger than a certain threshold depending on X and X̃.

Proof. By the assumptions on ν and as Qgood(ε, ε/10, Q1) contains an open non-
empty subset π(N ), the measure of Qgood(ε, ε/10, Q1) is not zero. Let (X,F) ∈ Q1

be such that Birkhoff (in the formulation of Formula (2)) is applicable to π(X,F) ∈
Q1 for α = 1/100. Together with Theorem 2.22 – supposed the knorke pair (X, X̃)
meets the conditions of this theorem – we get an upper bound

dT

(

ρX,F (t), ρX̃,F(t)
)

≤ D exp
(

−ξ · Tε,(X,F)(t)
)

= D exp
(

−ξ · Tε,π(X,F)(t)
)

≤ D exp
(

−ξ · (1 − α)ν(Qgood) · t
)

≤ D∗ exp
(

−ξ∗t
)
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for t > max{T ∗, d}. Birkhoff rules out a set of measure zero in Q1. Since Map(S)
is countable, the lift of this exceptional set to Q1 has measure zero, too. Quadratic
differentials outside this exceptional set define Teichmüller rays returning to Q1

ε

after arbitrarily large times and thus have uniquely ergodic measured foliations
as vertical foliation (Corollary 1.8). The condition on uniquely ergodic measured
foliations being realized without saddle connections rules out a closed set without
interior. Hence we are left with a set A ⊂ Q1 of co-null measure. �

2.8. Example: slow asymptotics. We give an example of a knorke pair with
the property that every exponentially decreasing function asymptotically is less
than the distance between the knorke partners. The knorke pair is constructed
inductively. The inductive argument uses the fact that two Teichmüller rays stay
bounded distance apart if the common vertical foliation decomposes into a union
of periodic cylinders ([Mas75], see Section 1.2.3): If the rays are in small distance,
we follow a pair of differentials with common periodic vertical foliation for a long
time. The distance between the two rays then is bounded from below for a long
time and eventually larger than any exponentially decreasing given function. These
differentials are carefully chosen and the concatenations of the so-defined geodesic
segments follow a knorke pair very closely. Hence, for a long time the knorke
partners stay bounded distance apart, too.

Initial step: Let (X,F1) be any Veech surface in any stratum Q1 of unit area

quadratic differentials. Suppose that F1 is uniquely ergodic. Choose (X̃,F) ∈ Q1

not on the Teichmüller disc defined by (X,F1) such that (X, X̃) is a knorke pair
and such that for T1 = 1000 we have

dT

(

ρX,F1(T1), ρX̃,F1
(T1)

)

> 2 exp(−T1/1)
def
= 2E1.

To get the inductive step working, we define T0 = 0 and E0 = dT (X, X̃).
To simplify notation, for any t ∈ R we write

It = [t − E0, t + E0] ⊂ R,

and for a point Y ∈ T and a compact set C ⊂ T we write dT (Y, C) to denote the
minimal distance between Y and C.

Inductive step: Let k > 1 be an integer. Suppose that we already constructed

(1) a sequence of uniquely ergodic directional foliations F l, 0 < l < k, of the
flat metric defined by (X,F1), and

(2) for 0 < l < k an increasing sequence Tl > Tl−1+1 of times and a decreasing
sequence 0 < El = exp(−Tl/l) < El−1/2 of numbers such that the Teich-
müller segments ρX,Fk−1

([Tl−1, Tl]) intersect the thick part of the stratum
and

dT

(

ρX,Fk−1
(Tl), ρX̃,Fk−1

(ITl
)
)

>
(

2 −
k−1
∑

j=l

1/5j
)

El.

We construct Fk, Tk, and Ek extending the above sequences. All directional
foliations that arise are directional foliations for the flat metric defined by (X,F1).
Angles are measured with respect to the horizontal in this metric.
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The foliation Fk−1 is uniquely ergodic. Teichmüller geodesics defined by Veech
surfaces with uniquely ergodic vertical foliation are recurrent. Hence there is a
T̃k > Tk−1 such that ρX,Fk−1

(T̃k) is in the thick part of the stratum.

Let θk−1 ∈ S1 be the direction of Fk−1 in the flat metric defined by (X,F1).
The Teichmüller geodesic flow is continuous. Choose an open and connected neigh-
borhood Uk ⊂ S1 of θk−1 such that for every θ ∈ Uk with directional foliation Fθ

and for all 0 ≤ t ≤ T̃k−1 + E0 it holds

dT

(

ρX,Fθ
(t), ρX,Fk−1

(t)
)

< Ek−1/10k and

dT

(

ρX̃,Fθ
(t), ρX̃,Fk−1

(t)
)

< Ek−1/10k.

Periodic directions for the Veech surface (X,F1) are dense in S1. Thus arbitrarily
close to θk−1 there are periodic directions for the flat metric defined by (X,F1). Let
the measured foliation F∗

k be a directional foliation given by a periodic direction

in Uk. It may happen that (X̃,F∗
k) is not of unit area, but it exists a point X̃k of

distance at most E0 to X̃ along the Teichmüller geodesic, such that (X̃k,F∗
k) is of

unit area. Masur’s result ([Mas75] and Section 1.2.3) implies the existence of an
tk > 1 such that for all t > tk we have

dT

(

ρX,F∗

k
(T̃k−1 + t), ρX̃,F∗

k
(IT̃k−1+t)

)

> 2 exp(−Tk/k) = 2Ek

> 2 exp
(

−(T̃k−1 + t)/k
)

,

where Tk = T̃k−1 + tk and Ek = exp(−Tk/k) < Ek−1/2.
Again we make use of the continuity of the Teichmüller geodesic flow. Let

θk ∈ Uk be such that the foliation Fk in direction θk is uniquely ergodic and
such that the Hausdorff distance between the compact Teichmüller geodesic seg-
ments ρX,Fk

([0, Tk + E0]) and ρX,F∗

k
([0, Tk + E0]) as well as the Hausdorff distance

between ρX̃,Fk
([0, Tk +E0]) and ρX̃,F∗

k
([0, Tk +E0]) is at most Ek/10k. It may hap-

pen that (X̃,Fk) is not of unit area. As above we move X̃ along the Teichmüller
geodesic a distance at most E0 to solve this issue.

For every 0 < l < k + 1 we have

dT

(

ρX,Fk
(Tl), ρX̃,Fk

(ITl
)
)

>
(

2 −
k
∑

j=l

1/5j
)

El.

Constructing the example: In the inductive step we took care that for every com-
pact interval I ⊂ R>0 the Teichmüller geodesic segments ρX,Fk

(I) converge in the
Hausdorff topology. Thus the direction of the foliations converge. Let F∞ be the
foliation in the limiting direction. The geodesic ρX,F∞

is the Hausdorff limit of the
geodesics ρX,Fk

. Thus the geodesic ρX,F∞
inherits recurrence from the geodesics

ρX,Fk
and, by Masur’s criterion (Theorem 1.4), its vertical foliation F∞ is uniquely

ergodic. It may happen that (X̃,F∞) is not of unit area, but it exists a tangen-
tial unit area quadratic differential with vertical foliation F∞ on the Teichmüller
geodesic whose base point is of distance |τ | ≤ E0 to X̃. The pair of Teichmül-

ler geodesics defined by (X,F∞) and (X̃,F∞) is positively asymptotic ([Mas80]
and Section 1.2.3), but the distance decreases more slowly than any exponentially
decreasing function:

dT

(

ρX,F∞
(Tk), ρX̃,F∞

(Tk + τ)
)

→ 0
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for k → 0, and

dT

(

ρX,F∞
(Tk), ρX̃,F∞

(Tk + τ)
)

> 3/4 exp(−Tk/k)

for all k > 0, where Tk > Tk−1 + 1.
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C2

α− β+

C1

T2

β−

T1

α+

Figure 8. A 2T2C-splitting. Glueings are as indicated and by
nearly vertical translations.

3. Minimality and non-ergodicity on a family of flat metrics

Within this chapter we have the standing assumption that all surfaces are com-
pact without boundaries and without punctures, unless they are cylinder or slit
tori. All quadratic differentials are supposed to be orientable and holomorphic. We
consider strata over moduli space only.

3.1. A family of flat metrics in genus 3. Recall that the hyperelliptic locus L ⊂
Q(4, 4, +1)odd and the principal stratum Q(1, 1, 1, 1,−1) in genus 2 are GL(2, R)-
equivariantly isomorphic. The hyperelliptic locus L is studied by Hubert, Lanneau
and Möller in [HLM07] and [HLM08]. A certain class of surfaces turned out to play
a special role in this locus: so called 2T2C-surfaces. A flat metric is a 2T2C-surface
if there is a direction θ such that the foliation in direction θ decomposes into two
tori and two cylinders, i.e. the complement of the saddle connections in direction θ
is a union of two slit tori and two cylinders. Figure 8 shows a picture of a 2T2C-
surface. Let T1 and T2 be the two flat tori (considered as closed surfaces without
the slit) and C1 and C2 be the two flat cylinders in the decomposition.

Many 2T2C-surfaces do not admit a hyperelliptic involution. The condition
for a 2T2C-surface to be an element of the hyperelliptic locus L can be phrased
in the following way: If the two cylinders C1 and C2 represent the same class
in the space of flat metrics modulo isometries preserving the horizontal direction
(marked isometries for short), i.e. if there is an isometry between C1 and C2 which
maps horizontal lines to horizontal lines, then the quadratic differential defining
this flat metric is an element of L (and the hyperelliptic involution fixes the tori
and exchanges the cylinders). The same statement is true if the marked isometry
classes of the two tori T1 and T2 coincide (and the hyperelliptic involution fixes
the cylinders and exchanges the tori). The following definition is borrowed from
[HLM08].

Definition. A flat metric in the hyperelliptic locus L is a 2Tfix2C-surface if it is
a 2T2C-surface and the first condition holds, i.e. the hyperelliptic involution fixes
the two tori and exchanges the two cylinders. We call the according decomposition
a 2Tfix2C-splitting.
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Hubert, Lanneau and Möller call a splitting irrational if the direction of the
splitting is minimal in at least one of the two tori. This is not strong enough for
our needs. We make the following definition:

Definition. Consider a 2Tfix2C-surface. Let α+, α−, β+ and β− be the saddle
connections which give the 2Tfix2C-splitting into tori T1, T2 and cylinders C1, C2

as shown in Figure 8. The orientation of the saddle connections is such that the
geodesics run from bottom to top in the orientation given by the vertical foliation.
The splitting vector w is the common holonomy of these saddle connections. Let C
be the common marked isometry class of C1 and C2. We will denote the splitting
by (T1, T2, C, w) for short.
The splitting is called irrational if it has two minimal components, i.e. the direction
of w (which is the direction of the splitting) is a minimal direction on both tori T1

and T2.

Remark. The hyperelliptic involution interchanges α+ and α− as well as β+ and
β−, see [HLM07]. All four of them are simple closed curves.

Vice versa, given a tupel (T1, T2, C, w) such that on a cylinder in the marked
isometry class C of cylinders the core curve has length and direction equal to the
length and direction of the real two-dimensional vector w and such that curves in
direction of w don’t close up with length less or equal to |w| on the tori T1 and T2, we
can construct an oriented quadratic differential q ∈ Q(4, 4, +1) with the technique
mentioned in Section 1.4.1: Slit the tori T1 and T2 such that the holonomy of each
slit equals w, and take two copies C1 and C2 of a cylinder in C. Glue the cylinders
and slitted tori according to the pattern shown in Figure 8. Let α be the slit on
T1 and let α− be the left side of the slit, α+ the right side. Denote the slit and its
sides on T2 by β, β− and β+.

Recall from Section 1.4.2 that the dynamics on flat metrics given by quadratic
differentials in the hyperelliptic locus L are in correspondence with the dynamics on
flat metrics given by quadratic differentials in the principal stratum Q(1, 1, 1, 1,−1)
in genus 2. The main result of this chapter is

Theorem 3.1. Let q ∈ L be given. If the flat metric defined by q admits an
irrational 2Tfix2C-splitting, then there are uncountably many minimal non-ergodic
directions on q.

The theorem provides us with an explicit criterion to check whether a quadratic
differential has uncountably many minimal non-ergodic directional foliations.

Corollary 3.2. The Arnoux-Yoccoz surface14 in genus 3 admits uncountably many
minimal non-ergodic directions.

Proof. Let q be a quadratic differential defining the genus-3 Arnoux-Yoccoz surface.
Hubert, Lanneau and Möller examined the Teichmüller disc of the Arnoux-Yoccoz
surface in their paper [HLM07]. They proved that the flat metric of q admits a
2Tfix2C-splitting, non-periodic in both tori (this is Lemma 5.4, especially Claim
5.5). Using the above result we conclude that there are uncountably many minimal
non-ergodic directions for q. �

14More on the Arnoux-Yoccoz surface including a definition can be found in the paper [AY81]
by Arnoux and Yoccoz.



49

u4

u5

u1

u2

u3

u6

Figure 9. A six-tuple of saddle connections which serve as local coordinates.

A result of Masur and Smillie is that in every stratum of quadratic differentials
the Hausdorff dimension of the set of nonergodic directions generically is positive
([MS91]). This doesn’t give information in our setting: The hyperelliptic locus L is
defined by equations describing the extra symmetry coming from the hyperelliptic
involution. Thus it has positive codimension and measure zero.

The condition on the dynamics in direction of the splitting (i.e. non-periodicity
in the tori T1 and T2) locally rules out a countable union of real codimension-1-
submanifolds in L : Let u1, . . . , u6 be saddle connections as shown in Figure 9.
These saddle connections serve as a set of local coordinates for a neighborhood of a
2Tfix2C-surface in the hyperelliptic locus L . The direction of u1 neither is allowed
to be the direction of any vector in the lattice spanned by u3 and u4 nor in the
lattice spanned by u5 and u6 (see claim in proof of Proposition 3.5). For chosen
u2, . . . , u6, both lattices exclude countably many directions for u1.

The proof of Theorem 3.1 we are presenting is inspired by the proof Cheung and
Masur gave in [CM06] for a similar result in genus 2. First we give an outline of
our proof before actually proving the theorem in the following sections. The main
tool is a non-ergodicity criterion by Masur and Smillie.

Theorem 3.3 ([MS91]). Let (T n
1 , T n

2 , Cn, wn) be a sequence of 2Tfix2C-splittings of
a given flat metric and assume that the directions of the vectors wn converge to some
direction θ∞. Let hn > 0 be the component of wn perpendicular to θ∞ and let an

be the maximum in change of area: an = max
(

area(T n
1 ∆T n+1

1 ), area(T n
2 ∆T n+1

2 )
)

.
If

• ∑∞
n=1 an < ∞,

• there exists c > 0 such that area(T n
1 ) > c, area(T n

2 ) > c for all n ∈ N and
• limn→∞ hn = 0,

then θ∞ is a non-ergodic direction for the flat metric.

Sketch of proof of Theorem 3.1. By an inductive process we construct uncountably
many sequences of 2Tfix2C-splittings meeting the condition of the criterion. Given a
splitting we find a suitable cylinder such that applying powers of Dehn twists in that
cylinder leads to new 2Tfix2C-splittings. The change of area can be bounded from
above by the sum of the areas of suitable parallelograms embedded in the splitting
tori and splitting cylinders, where the cylinder of the Dehn twist is contained in the
union of the parallelograms. The condition on the components of wn perpendicular
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to θ∞ can be formulated in terms of these areas, too. Using a result based on
Ratner’s theorem allows us to make the areas of the parallelograms as small as
necessary. At this point, irrationality of the splitting is crucial. So there are two
issues: First, starting with an irrational splitting, we want to end up with an
irrational splitting again. This holds by a finiteness argument. Second, we have
to make sure that the union of the parallelograms contains a cylinder suitable for
Dehn twist of the splitting. Again, this condition can be formulated in terms of
areas. These can be controlled by Ratner’s theorem. �

Sections 3.2 and 3.3 provide the just mentioned information we need to prove
the theorem in Section 3.4.

3.2. Splittings and twisting a splitting. We collect some pieces of information
on splittings. As mentioned above we have to find cylinders that allow to Dehn twist
a given 2Tfix2C-splitting and such that the twisted splitting inherits irrationality
from the original one. Moreover we need to control the change of area. All this
is done in the present section. Section 3.3 is devoted to the inductive argument,
which in turn will give the desired result in Section 3.4.

Definition. Let det(v, w) be the signed area of the parallelogram spanned by two
vectors v, w ∈ R2: The absolute value of det(v, w) equals the euclidean area of the
parallelogram and the sign is chosen to be positive if the pair (v, w) is positively
oriented, negative otherwise.
Let area(C) be the area of one and, hence, the common area of all representing
cylinders of the marked isometry class C.

Remark. The signed area of two vectors equals the determinant of the 2-by-2 matrix
formed by these vectors as columns.

Let (T1, T2, C, w) be a 2Tfix2C-splitting. Let q ∈ L be a quadratic differential
which gives rise to this 2Tfix2C-surface. Using the notion of signed area we establish
a criterion whether a union of parallelograms in T1, T2, C1 and C2 contains a
cylinder.

Let v1, v2 be the holonomy vectors of simple closed curves in T1 \ α and T2 \ β
which join the initial point of the slit to itself, not intersecting the interior of the
slit, and let vc be the common holonomy of a pair of simple arcs in C1 and C2,
joining the zero of q on one boundary component of the cylinder to the second zero
on the other boundary component when imbedded into the 2Tfix2C-surface. For
instance, in Figure 8 the images in the 2Tfix2C-surface of these curves and arcs may
be the straight segments of the bottom line. If the images of the curves and arcs
with holonomy v1, v2 and vc concatenate to the core curve of a cylinder, they must
have compatible orientations: det(vj , w) > 0 for all j ∈ {1, 2, c} or det(vj , w) < 0
for all j ∈ {1, 2, c}. The interior of the parallelogram spanned by vj and w is
isometrically embedded in the respective torus or cylinder, j ∈ {1, 2, c}, therefore
|det(vi, w)| ≤ area(Ti), i ∈ {1, 2}, and |det(vc, w)| ≤ area(C).

Conversely, suppose that v1, v2, vc are three vectors in the Euclidean plane such
that the just mentioned conditions on area and orientation are satisfied. The area
condition assures that in the image of C1 and C2 there are simple arcs γc1 and
γc2 with holonomy vc, joining the zero of q on one boundary component of the
respective cylinder to the second zero on the other boundary component, and that
in the image of Ti, i ∈ {1, 2}, there is a simple closed curve γi with holonomy
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Q

w−2

v1

vc

vc

v2

w

Figure 10. A splitting vector w and its twist w−2. The horizontal
cylinder Q is not affected.

vi joining the initial/terminal point of the slit to itself. The orientation condition
allows us to concatenate γ1, γc1, γ2 and γc2 to a simple closed curve γ. For given
k ∈ N, we get four new simple closed curves αk

+, αk
−, βk

+ and βk
− with common

holonomy by Dehn twisting α+, α−, β+ and β− along the simple closed curve γ
for k times. If we are lucky, each of the twisted curves can be realized by a single
saddle connection with holonomy wk = w + k(v1 + v2 + 2vc).

Lemma 3.4. Each of the twisted simple closed curves αk
+, αk

−, βk
+ and βk

− is

realized by a single saddle connection if w and wk lie on the same side of v1, v2

and vc, i.e. if all signed areas det(vj , w) and det(vj , w
k), j ∈ {1, 2, c}, are positive

or all are negative.

Proof. Suppose det(vj , w) > 0 for all j ∈ {1, 2, c}. The inequality det(vj , w
k) > 0

for the twisted case will be referred to as (Ij), j ∈ {1, 2, c}. If det(v1, v2 + 2vc) > 0
we consider αk

+, otherwise αk
−. Assume det(v1, v2 + 2vc) > 0.

First, assume k < 0. As the SL(2, R)-action preserves area, we may assume that
w is vertical, pointing upwards, and v1 is horizontal, pointing to the right. The
Inequalities (I1), (I2) and (Ic) tell us that, as in Figure 10, the vector wk (which
is the holonomy of αk) is above the lower boundary, hence the only possibility to
hit the image of a zero of q is by reaching (or by crossing) the upper boundary.
Moreover, if wk crosses the upper boundary once, it will not come back from above.
Let πv(x) denote the vertical component of a vector x. We examine Inequality (I1)
more closely:

0 < det(v1, w
k) = det(v1, w) + k det(v1, v2) + 2k det(v1, vc)

= |v1|πv(w) + k|v1|
(

πv(v2) + 2πv(vc)
)

,

therefore
πv(w) > −kπv(v2 + 2vc).

This implies that wk does not cross the upper boundary and therefore does not hit
the image of a zero of q beside at its endpoints. Hence αk

+ is realized by a single

saddle connection, and so is αk
− as of the action of the hyperelliptic involution.

Now assume k > 0. After applying the SL(2, R)-action we may assume w to be
vertical, pointing upwards, and v2+2vc to be horizontal, pointing to the right. This
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causes πv(v1) to be negative since det(v1, v2 + 2vc) > 0. Again, the Inequalities
(I1), (I2) and (Ic) tell us that wk is above the lower boundary, and, if it crosses the
upper one, it will stay above. The Inequalities (I2) and (Ic) lead to

0 < det(v2 + 2vc, w
k) = det(v2 + 2vc), w) + k det(v2 + 2vc, v1)

= |v2 + 2vc|πv(w) + k|v2 + 2vc|πv(v1),

thus
πv(w) > −kπv(v1).

As above, αk
+ is realized by a single saddle connection, and so is αk

−.
In a similar manner we conclude for det(v1, v2 + 2vc) < 0 and for det(vj , w) < 0

and det(vj , w
k) < 0, j ∈ {1, 2, c}.

The same reasoning applies to β+ and β− instead of α+ and α−. �

Remark. The new splitting is a 2Tfix2C-splitting again: The two cylinders in the
new splitting are isometric as flat surfaces, and the isometry may be chosen to
preserve the horizontal direction.

Up to now we established conditions that allow us to construct new 2Tfix2C-
splittings from old ones by applying Dehn twists along wisely chosen simple closed
curves. The next step is to find conditions for Dehn twists to preserve the property
of irrationality of the 2Tfix2C-splittings. We make a definition first.

Definition. Let (T1, T2, C, w) be a 2Tfix2C-splitting. By Λ1 and Λ2 we will denote
lattices in R2 which define the marked isometry classes of the tori T1 and T2 as
quotients R2/Λi. By Λc we will denote the lattice generated by w and by the holo-
nomy of a simple arc connecting the singularities on the two boundary components
of one cylinder of the 2Tfix2C-splitting.

The following proposition helps us to find Dehn twists preserving irrationality of
2Tfix2C-splittings.

Proposition 3.5. Let (T1, T2, C, w) be a splitting such that the slope of w is ir-
rational in T1, and let v1, v2 and vc be holonomy vectors such that each αk

+,

αk
−, βk

+ and βk
− is realized by one saddle connection and gives a 2Tfix2C-splitting

(

T1(k), T2(k), C(k), wk
)

for at least three different k = k1, k2, k3. Then at least

one of the three splitting vectors wk is irrational in the respective torus T1(k).

Remark. The proposition is symmetric with respect to T1 and T2 in the sense that
one of the three splitting vectors is irrational in T2(k), too. However, this k may
be different from the k that we get for T1.

Proof. Let Q be a maximal cylinder in T1, disjoint from w, whose core curve has
holonomy v1, see Figure 10. Let γ0 be the diagonal from the lower left corner to
the upper right corner in the rectangular image of Q in Figure 10. The simple
straight segment γ0 concatenates with α+ to a simple closed curve in T1. Let v0

be the holonomy of γ0. Then Λ1, the lattice of T1, is generated by the linearly
independent vectors v0 +w and v1. The vectors v0 and v1 are linearly independent,
too.

We claim: The vector w is a scalar multiple of an element in Λ1 (rational for
short) if and only if w is rational in the lattice ∆ generated by v0 and v1.
Indeed, for c ∈ R\{0} and (a, b) ∈ Z×Z\{(0, 0)} we have two equivalent equations
(1 + ac)w = c

(

a(v0 + w) + bv1

)

and w = c(av0 + bv1). This proves the claim.
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Now, T1 and T1(k) share the same cylinder Q. By the same argument, wk is
rational in Λ1(k), the lattice of T1(k), if and only if wk is rational in ∆.

To prove the proposition, suppose that the vector wk were rational in T1(k) for
all k ∈ {k1, k2, k3}. Then the three wk are parallel to elements in ∆. Let ∆∗ be the
lattice generated by w and v1 + v2 + 2vc. As ∆ and ∆∗ share the three directions
wk which are not parallel to each other, ∆ and ∆∗ are isogenous and they share all
possible directions (c.f. [McM05], proof of Theorem 7.3). Thus w is parallel to an
element in ∆ and w is rational in T1, a contradiction. �

Thus a tupel of holonomy vectors gives rise to twisted 2Tfix2C-surfaces if con-
ditions on the signed area of parallelograms spanned by these vectors are fulfilled.
If additionally we can iterate the twist for several times, irrationality will be pre-
served in at least one twisted splitting. We want to single out tupel which meet the
conditions.

Definition. We call the triple (v1, v2, vc) of holonomy vectors good partners (with
respect to w), if

4|det(v1, v2)| <
1

9
min{|det(v1, w)|, |det(v2, w)|},

4|det(v1, vc)| <
1

9
min{|det(v1, w)|, |det(vc, w)|},

4|det(v2, vc)| <
1

9
min{|det(v2, w)|, |det(vc, w)|}

and all signed areas det(vj , w) have the same sign, j ∈ {1, 2, c}.

Remark. An easy computation shows that good partners fulfill the conditions for
Lemma 3.4 with |k| ≤ 9.

Corollary 3.6. If (v1, v2, vc) are good partners with respect to w in an irrational
2Tfix2C-splitting (T1, T2, C, w), then at least one of the nine twists wk (with k ∈
{1, . . . , 9} or k ∈ {−1, . . . ,−9}) leads to another irrational 2Tfix2C-splitting.

Proof. Suppose that the conditions of Corollary 3.6 are satisfied. By the above re-
mark every wk with |k| ≤ 9 is the splitting vector of a 2Tfix2C-splitting. Proposition
3.5 tells us that each of the three triples (w1, w2, w3), (w4, w5, w6) and (w7, w8, w9)
contains a splitting vector which is irrational in the respective torus T1(k). Let
these vectors be wk0 , wk1 and wk2 , where each kl satisfies 3l + 1 ≤ kl ≤ 3l + 3.
Applying Proposition 3.5 in (T1, T2, C, w) again, this time with respect to the triple
(wk0 , wk1 , wk2) and to the torus T2, we get at least one splitting which is irrational
in T2(k), too, k ∈ {k0, k1, k2}. This proves the corollary. �

We established conditions on holonomy vectors to give rise to new irrational
2Tfix2C-splittings if the initial 2Tfix2C-splitting is irrational. This allows us to build
sequences of 2Tfix2C-splittings. Convergence of the splitting directions is easy to
achieve, hence in order to apply the Masur-Smillie criterion we have to control the
change of area between a give 2Tfix2C-splitting and the 2Tfix2C-splitting that we
get by twisting. The following lemma enables us to control the change of area in
terms of the signed area of parallelograms.
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Lemma 3.7. Let (T1, T2, C, w) be a 2Tfix2C-splitting of the flat metric defined by
q ∈ L and let (T ′

1, T
′
2, C

′, w′) be obtained by twisting k times. The change of area
between the two tori indexed by 1 is estimated by

area(T1∆T ′
1) ≤ 2|det(v1, w)| + |k|

(

|det(v1, v2)| + 2|det(v1, vc)|
)

.

For area(T2∆T ′
2) the indices 1 and 2 change positions.

Proof. Let Q be as in the proof of Proposition 3.5. We have Q ⊂ T1 ∩ T ′
1, hence

T1∆T ′
1 ⊂ (T1 \Q)∪ (T ′

1 \Q). The areas on the right hand side are easily computed:
area(T1 \ Q) = |det(v1, w)| and area(T ′

1 \ Q) = |det(v1, w
′)|. Using the formula

w′ = w + k(v1 + v2 + 2vc) the first statement follows. The second statement is
immediate as the construction is symmetric in T1 and T2. �

3.3. The inductive process. In the previous section we constructed new irra-
tional 2Tfix2C-splittings from old ones by Dehn twisting along a simple closed
curve. This curve is the core curve of a flat cylinder inside the union of some par-
allelograms in the flat metric. The parallelograms have to meet conditions on their
signed area. This section is devoted to find such parallelograms, hence to find a
suitable cylinder to apply Dehn twists. Using Ratner’s theorem we are able to make
the area of the parallelograms as small as we want. This together with the results in
Section 3.2 combines to a construction respecting irrationality of 2Tfix2C-splittings.
In Section 3.4 we apply this construction inductively to find non-ergodic directions.
In order to handle the inductive step we need a lemma that gives information about
orbit closures.

The following notations will be helpful: Let G = SL(2, R) and let N be the
unipotent subgroup of upper triangular matrices. We will look at the action of N
on triples of unimodular lattices. This action is given by the diagonal action of N
which we denoted by N∆. For s ∈ R, let Gs = {(g, (ns)

−1gns) : g ∈ G} be the
twisted diagonal of G, where ns =

(

1 s
0 1

)

. Two lattice ΛA ⊂ R2 and ΛB ⊂ R2 are
said to be strongly non-commensurable if there isn’t any s ∈ R such that ΛA and
nsΛB are commensurable.

Proposition 3.8 (Ratner-style theorem). Let ΛC be the unimodular standard lat-
tice. Let ΛA and ΛB be unimodular lattices, neither of them containing a horizontal
vector. If ΛA and ΛB are strongly non-commensurable then N∆(ΛA, ΛB, ΛC) =

(G × G × N)(ΛA, ΛB, ΛC). Otherwise N∆(ΛA, ΛB, ΛC) = (Gs × N)(ΛA, ΛB, ΛC),
where s ∈ R is such that ΛA and nsΛB are commensurable.

Proof. The first case is Corollary 5.3 in [HLM08] which is based on a theorem of
McMullen in [McM07]. This theorem uses Ratner’s theorem ([Rat95]).

The second case can be proved as follows: Ratner’s theorem tells us that we
can write N∆(ΛA, ΛB, ΛC) = H(ΛA, ΛB, ΛC) for some H < G × G × G. By a
theorem of McMullen ([McM07], Theorem 2.6) we know that π1,2(H) = Gs under
the projection π1,2 to the two first factors and π1,3(H) = G×N under the projection
π1,3 to the first and third factor, therefore H < Gs ×N . To see the other inclusion
let (g, (ns)

−1gns, n) ∈ Gs × N . As the image of H under π1,3 equals G × N
and as (g, n) ∈ G × N , we know that (g, g∗, n) ∈ H for some g∗ ∈ G. The
first projection gives π1,2

(

(g, g∗, n)
)

∈ Gs, hence g∗ = (ns)
−1gns and therefore

(g, (ns)
−1gns, n) ∈ H . �
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Now we are ready to establish the inductive step. Recall the definition of the
lattices Λ1, Λ2 and Λc as the lattices defined by a 2Tfix2C-splitting (T1, T2, C, w).
Making use of the N∆-action we can construct new 2Tfix2C-splittings from a given
2Tfix2C-splitting (T1, T2, C, w). We sketch the idea first. If the splitting vector w is
horizontal, it is not affected by the N∆-action. As of the G-factor in the closure of
the N∆-orbit of (Λ1, Λ2, ΛC), in the closure of the N∆-orbit we can find points with
arbitrarily small parallelograms, hence points with arbitrarily small parallelograms
in the N∆-orbit itself. The action of SL(2, R) on flat metrics preserves area, thus
parallelograms of small area can be found in the initial 2Tfix2C-splitting. We make
this precise:

Lemma 3.9. Given an irrational 2Tfix2C-splitting (T1, T2, C, w) and ε > 0, there
exists an irrational 2Tfix2C-splitting (T ′

1, T
′
2, C

′, w′) with small change of direction
|∠(w, w′)| < ε and such that the change of area is smaller than ε.

To prove the lemma we basically look for good partners to get twisted splittings.
The main difficulty is to keep track of small signed areas. Hence the formal proof
is technical.

Proof. Recall from linear algebra |det(u1, u2)| = |sin(∠(u1, u2))|·|u1||u2| for u1, u2 ∈
R2. Rotations preserve angles, lengths and areas. Without loss of generality we
assume w to be horizontal. Note that w is fixed by the N -action. Irrationality
of the 2Tfix2C-splitting implies that neither Λ1 nor Λ2 contains horizontal vectors.
Let ε′ > 0 be small. We consider two cases.

First, let Λ1 and Λ2 be strongly non-commensurable. Proposition 3.8 tells us that
in this case N∆(Λ1, Λ2, Λc) = (G×G×N)(Λ1, Λ2, Λc). Thus the horizontal direction
in Λc is fixed, and any area preserving linear map may be applied to Λ1 and Λ2.
We use this to find good partners. Choose (Λ∗

1, Λ
∗
2, Λ

∗
c) ∈ (G × G × N)(Λ1, Λ2, Λc)

and (v∗1 , v∗2 , v∗c ) ∈ (Λ∗
1, Λ

∗
2, Λ

∗
c) with |det(v∗c , w)| = area(C) and ∠(v∗c , w) = π/2, and

such that ∠(v∗i , w) is arbitrarily close to π/2 for i ∈ {1, 2}. Note that ∠(v∗i , v∗c )
is arbitrarily close to zero, i ∈ {1, 2}. Let |v∗1 | = |v∗2 | = 1. If we change v∗j ,
j ∈ {1, 2, c}, we always mean to make a new choice of the three lattices in the orbit
closure and afterwards to make a new choice of the lattice points.
Look at the areas |det(v∗1 , v∗2)| and |det(v∗i , v∗c )|, i ∈ {1, 2}. The angle condition on
v∗1 and v∗2 guarantees |∠(v∗1 , v∗2)| to be arbitrarily small, hence |det(v∗1 , v∗2)| can be
made arbitrarily close to zero. On the other hand, |det(v∗1 , w)| and |det(v∗2 , w)| are
arbitrarily close to |v∗1 ||w| and |v∗2 ||w|, both greater than zero, hence

(3) |det(v∗1 , v∗2)| < ε′ min
(

|det(v∗1 , w)|, |det(v∗2 , w)|
)

.

In addition, |det(v∗i , v∗c )| = |sin(∠(v∗i , v∗c ))| · |v∗i ||v∗c | = |sin(∠(v∗i , v∗c ))| · |v∗i |area(C)
|w| is

close to zero, too, and |det(v∗c , w)| = area(C). Therefore the inequalities

(4) |det(v∗i , v∗c )| < ε′ min
(

|det(v∗i , w)|, |det(v∗c , w)|
)

hold for i ∈ {1, 2}.
Before we proceed with the next step, we will consider the other case. Let

Λ1 and nsΛ2 be commensurable for some s ∈ R. We want to find (v∗1 , v∗2 , v∗c ) ∈
(Λ∗

1, Λ
∗
2, Λ

∗
c) ∈ (Gs × N)(Λ1, Λ2, Λc) fulfilling Inequalities (3) and (4). Suppose

v∗1 , nsv
∗
2 and v∗c are parallel vectors. We stick to almost horizontal vectors. The

directions of nsv
∗
2 and v∗2 are nearly the same in this case. As a first calculation we
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get

|det(v∗2 , v∗c )| = |sin(∠(v∗2 , v∗c ))| · |v∗2 ||v∗c |

= |sin(∠(v∗2 , v∗c ))| · |v∗2 |
area(C)

|w|
1

|sin(∠(v∗c , w))| and

|det(v∗2 , w)| = |sin(∠(v∗2 , w))| · |v∗2 ||w|.

Let x be the horizontal and y be the vertical coordinate of nsv
∗
2 , thus we can write

v∗2 = (x−sy, y)t. Recall that nsv
∗
2 and v∗c are parallel, that w is horizontal and that

s is fixed and only depends on the lattices Λ1 and Λ2. We compute the quotient
|det(v∗2 , v∗c )|/|det(v∗2 , w)| and write the sines in terms of x and y:

|det(v∗2 , v∗c )|
|det(v∗2 , w)| =

area(C)

|w|2
|sin(∠(v∗2 , v∗c ))|

|sin(∠(v∗2 , w))| · |sin(∠(v∗c , w))|

=
area(C)

|w|2

∣

∣

∣

|y|√
x2−2sxy+(1+s2)y2

− |y|√
x2+y2

∣

∣

∣

|y|√
x2−2sxy+(1+s2)y2

|y|√
x2+y2

=
area(C)

|w|2
∣

∣

∣

∣

(

x2

y2
+ 1

)1/2

−
(

x2

y2
− 2sx

y
+ (1 + s2)

)1/2∣
∣

∣

∣

→ 0

for x/y → ∞. Hence for y < x/K with K = K(s) very large, i.e. for nsv
∗
2 almost

horizontal, we have

|det(v∗2 , v∗c )|
|det(v∗2 , w)| < ε′.

Choose v∗c satisfying |det(v∗c , w)| = area(C) and which makes a small angle to the
horizontal: |tan(∠(v∗c , w))| < K. The (Gs × N)-actions enables us to find a v∗2
such that v∗c and nsv

∗
2 are parallel and the above inequality holds. Shortening v∗2

without changing its direction assures |det(v∗2 , v∗c )| < ε′|det(v∗c , w)|, too. As Λ1 and
nsΛ2 are commensurable, the vectors v∗1 and nsv

∗
2 can be chosen to be parallel,

too, thus v∗1 and v∗c are parallel. This implies |det(v∗1 , v∗c )| = 0, and Inequalities (4)
are fulfilled. Again we use the group action to shorten v∗1 and v∗2 in order to make
|det(v∗1 , v∗2)| ≤ |v∗1 ||v∗2 | small compared to |det(v∗2 , w)| = |sin(∠(v∗2 , w))| · |v∗2 ||w| as
well as small compared to |det(v∗1 , w)| = |sin(∠(v∗1 , w))| · |v∗1 ||w|. Inequality (3)
holds, too.

In both cases – strongly non-commensurable lattices and commensurable up to
N -action – we simultaneously shorten v∗1 and v∗2 to guarantee that |det(v∗i , w)| and
|det(v∗i , v∗c )| are less than ε′, i ∈ {1, 2}. Thus the same holds for |det(v∗1 , v∗2)|.
Approximate (v∗1 , v∗2 , v∗c ) in N∆-orbits of (Λ1, Λ2, Λc) and note that N∆ preserves
area and leaves w invariant. Hence, there is a (v1, v2, vc) ∈ (Λ1, Λ2, Λc) fulfilling
the Inequalities (3) and (4). By the N∆-action we can ensure that all signed areas
det(vj , w) have the same sign, j ∈ {1, 2, c}. For ε′ small enough, these are good
partners and thus give rise to a new irrational 2Tfix2C-splitting.

The lengths of vectors in a given lattice are bounded from below. Using the

equality |sin(∠(u1, u2))| = |det(u1,u2)|
|u1||u2|

and choosing a small value for ε′ we see that

max
(

|∠(v1, w)|, |∠(v1, v2)|, |∠(v1, vc)|
)

is small and therefore we have |∠(w, w′)| < ε.
Furthermore, using Lemma 3.7, area(T1∆T ′

1) < ε and area(T2∆T ′
2) < ε. �
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Remark. In fact, for the proof we constructed triples of good partners to get irra-
tional 2Tfix2C-splittings. Every triple of good partners gives rise to two different
new irrational 2Tfix2C-splittings, one for k < 0 and one for k > 0.

3.4. Uncountably many non-ergodic directions. We collected all the infor-
mation needed to prove Theorem 3.1. This section contains the proof.

We outline the prove first. Let the flat metric defined by q ∈ L have an irrational
2Tfix2C-splitting (T1, T2, C, w). We build a rooted binary tree such that the rooted
geodesics in the tree represent non-ergodic directions on q ∈ L with irrational
2Tfix2C-splittings. The vertices of the tree are directions of irrational 2Tfix2C-
splittings of the flat metric defined by q and we add an oriented edge between
two of them if the second one can be achieved by the first one using Lemma 3.9,
where in each step we impose new conditions on angle and change of area. The
Masur-Smillie criterion then gives the desired result.

Proof of Theorem 3.1. The root of the tree is the direction w of our initial splitting
(T1, T2, C, w). For every direction wn at level n, called parent, construct two differ-
ent subsequent directions w1

n and w2
n, called the children, such that these directions

give rise to 2Tfix2C-splittings with |∠(wn, wk
n)| < εn/4 and area(T1∆T k

1 ) < εn/4,
k ∈ {1, 2}, where εn > 0 is an arbitrary number smaller than all angles between
any pair of parents and children constructed so far. In detail, given wn and εn we
apply Lemma 3.9 with ε < εn/4 to find two different children w1

n and w2
n with the

desired properties. The resulting tree contains 2n directions of irrational splittings
at its n-th level. Given a geodesic in this rooted binary tree, we denote the splitting
corresponding to the point on the geodesic in level n by (T n

1 , T n
2 , Cn, wn).

The geodesics in this tree represent different converging sequences of splitting di-
rections: The angles between two subsequent directions converge to zero. The
series of the changes of area along a geodesic converges to a value smaller then the
limit of the geometric series. To apply the Masur-Smillie criterion (Theorem 3.3)
we have to show that in every geodesic in the tree of irrational 2Tfix2C-splittings
the heights hn perpendicular to the limiting direction of the splitting vectors wn

converge to zero. To establish this, we first note that for large n the inequality
hn+1 ≤ 2|det(wn, wn+1)|/|wn+1| holds. This follows from a basic calculation using
|det(u1, u2)| = |sin(∠(u1, u2))| · |u1||u2| and |∠(wn, θ∞)| ≤ 2|∠(wn, wn+1)| for large
n. Secondly, we note that all wn point into different directions. As on any flat
metric there are only finitely many saddle connection shorter than a given upper
bound, the lengths of the splitting vectors wn tend to infinity. Third ingredient
is |det(wn, wn+1)| ≤ 9

(

area(T n
1 ) + area(T n

2 ) + 2 area(Cn)
)

< A < ∞. The upper
bound A < ∞ is independent of n as the sequence formed by the changes of area is
bounded from above by the geometric series. Combining these three facts, we see
that hn converges to zero.

The Masur-Smillie criterion guarantees that there is a map from the set of infinite
geodesic starting at the vertex corresponding to (T1, T2, C, w) to the set of non-
ergodic directions on q. This map is injective by the sequence of angles we chose in
the construction. Thus there is an uncountable number of non-ergodic directions.
As there are at most countably many saddle connections, hence at most countably
many non-minimal directions, we can find uncountably many minimal and non-
ergodic directions. Theorem 3.1 is proven. �
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Anosov, C. R. Acad. Sci. 292 (1981), no. 4, 75–78.

[BM00] Bachir Bekka and Matthias Mayer, Ergodic theory and topological dynamics of group
actions on homogeneous spaces, Cambridge University Press, New York, 2000 (English).

[Bow06] Brian H. Bowditch, Intersection numbers and the hyperbolicity of the curve complex., J.
Reine Angew. Math. 598 (2006), 105–129 (English).

[Cal04] Kariane Calta, Veech surfaces and complete periodicity in genus two., J. Am. Math. Soc.
17 (2004), no. 4, 871–908 (English).

[CE07a] Yitwah Cheung and Alex Eskin, Slow divergence and unique ergodicity,
arXiv:0711.0240v1, November 2007.

[CE07b] , Unique ergodicity of translation flows., Forni, Giovanni (ed.) et al., Partially
hyperbolic dynamics, laminations, and Teichmüller flow. Selected papers of the work-
shop, Toronto, Ontario, Canada, January 2006. Providence, RI: American Mathematical
Society (AMS); Toronto: The Fields Institute for Research in Mathematical Sciences.
Fields Institute Communications 51, 213-221 (2007)., 2007.

[CHM08] Yitwah Cheung, Pascal Hubert, and Howard Masur, Topological dichotomy and strict
ergodicity for translation surfaces., Ergodic Theory Dyn. Syst. 28 (2008), no. 6, 1729–
1748 (English).

[CM06] Yitwah Cheung and Howard Masur, Minimal nonergodic directions on genus 2 transla-
tion surfaces, Ergodic Theory Dynam. Systems 26 (2006), no. 2, 341–351.

[Ear77] Clifford J. Earle, The Teichmüller distance is differentiable., Duke Math. J. 44 (1977),
389–397 (English).

[FLP79] A. Fathi, F. Laudenbach, and V. Poénaru, Travaux de Thurston sur les surfaces, Aster-
isque 66 (1979), no. 67, 1–284.
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