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Uniaxial FerromagnetsAbstratWe disuss properties of uniaxially magneti materials in the energetially optimal state. We work withthe well-established miromagneti Landau-Lifshitz model. Our goal is to better understand experimentalobservations using rigorous mathematial analysis of the model.For our purposes, i.e. magnetostatis without applied �eld, a state is haraterized by the magnetization
m of unit length in some sample in a domain Ω ⊂ R

3. As an auxiliary funtion we onsider the magneti�eld h indued by the magnetization, also alled the stray �eld. It is determined by the magnetizationvia Maxwell's equations to be the Helmholtz projetion of the magnetization onto the spae of url-freevetor �elds. We onsider a sample domain Ω = R
2 × (−t, t) of in�nite extension in two diretions and�nite thikness 2t in the third. Our materials exhibit a rystalline anisotropy ausing the energy tostrongly favor the magnetization to point in the third diretion alled the easy axis.The Landau-Lifshitz energy is the sum of three terms: The exhange energy penalizes spatial variation of

m. The strength of the term is ontrolled by the exhange length d, a material parameter of typially afew hundred �Angstr�om. The anisotropy term enfores a preferene for the diretion of the magnetization.The strength of the anisotropy is measured by a non-dimensional parameter alled the quality fator
Q. Finally, the magnetostati or stray �eld energy is the integral of the squared strength of the �eldindued by the magnetization. Note that the stray �eld depends nonloally on the magnetization. Thusthe model is desribed by the sample thikness and the two material parameters, the exhange lengthand the quality fator.In experiments with suh materials, e.g. Kerr mirosopy of neodymium-iron-boron magnets, the mag-netization is observed to form patterns with domains and walls. Domains are regions of almost onstantmagnetization in diretion of the easy axis. These domains are separated by walls, small, almost two-dimensional, areas in whih the magnetization varies sharply.Given these observations, the passage from the universal Landau-Lifshitz model to a redued, sharp-interfae model with magnetization indeed onstant on domains and jumping at lower-dimensional setshas been heuristially justi�ed in the physis literature. Inspired by these heuristis, mathematiianshave been able to rigorously establish properties, notably about the saling behavior of the energy, forthe full model by using the intuition gained from analyzing sharp-interfae models.In this thesis we give a rigorous mathematial justi�ation of the passage to a redued model by estab-lishing a variational (Γ-type) limiting behavior of the energy in a limiting regime desribed by the threemodel parameters (Q → ∞, t/dQ1/2 → ∞, with no assumptions on the ordering of the limits). Weidentify the energy limit to be a three-dimensional generalization of a funtional proposed by Kohn &M�uller and investigated by Conti. In the proess we need and establish an enhanement of the well-known
Γ-onvergene result of Modia & Mortola.We proeed to use our onvergene result to rigorously establish a notion of minimal energy per area(w.r.t. the �rst two axes) for both the redued and the full model by onsidering on�gurations where thisarea is �nite but tends to in�nity. As in the onvergene result we do not need to make assumptions aboutthe ordering of the limits. We obtain an asymptoti equality that enhanes previous results providingonly the saling behavior up to onstants and is novel in the �exibility w.r.t. the parameter limit.We then turn our attention from the global behavior of the energy to the loal energy distribution in aminimizer of the sharp interfae model. This provides insight into the domain struture of the minimizer.We show that the energy in a uboid near the boundary with su�iently good aspet ratio (betweenuboid width and height) sales as if minimizers were self-similar. Indeed, this energy saling assuresthat the magnetization m in blow-up sequenes onverges loally in L1.
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We disuss properties of uniaxially magneti materials. Our interest is in the energetially optimal state.In this sense we fous on the raw material before it is proessed into the ubiquitous modern permanentmagnets. We investigate how to onnet the well-established miromagneti Landau-Lifshitz model toexperimental observations using rigorous mathematial analysis.1 Introdution1.1 Landau-Lifshitz � a universal model for miromagnetismA striking feature of the very rih world of miromagnetis is the existene of a widely-aepted universalmodel enompassing all sorts of e�ets in a vast range of materials and on�gurations, the Landau-Lifshitzmodel.To start we onsider a three-dimensional sample embedded in Eulidean spae and denote by Ω thedomain of the sample. We onsider a stati state. In our semi-lassial model the magnetization m is aunit vetor �eld on the sample. For onveniene, we extend it by 0 outside Ω and so onsiderm : R3 → R3with
|m|2 =

{

1 in Ω,

0 elsewhere.The magnetization indues a stray �eld h : R3 → R3. It is determined by the Maxwell equations, greatlysimpli�ed by the stati nature of our setup to
∇ · (h+m) = 0, (1)

∇× h = 0. (2)Both m and h are onsidered to be Lebesgue-measurable vetor �elds and we identify funtions onlydi�ering on negligible sets. The di�erential equations are understood in the sense of distributions on R3.For notes on the derivation, see e.g. [DKMO05℄.At the very heart of the physial model is an energy funtional. In absene of an exterior magneti �eld,the Lifshitz-Landau energy funtional is (after some initial nondimensionalization)
E(m) = d2

∫

Ω

|∇m|2dx+

∫

Ω

ϕ(m)dx +

∫

R3

|h|2dx.The �rst term in the sum is alled the exhange, the seond the anisotropy, and the third the stray �eldterm. Let us give a na��ve desription of the three terms and introdue d and ϕ on the way.
• The exhange term penalizes spaial variation of m. The strength of the term is ontrolled by theexhange length d, a material parameter of typially a few hundred �Angstr�om.1



• The anisotropy term enfores a preferene for the diretion of the magnetization. The funtion
ϕ : S2 → R is a positive funtion desribing the type and strength of the anisotropy indued bythe rystal struture of the material. We shall be interested in ϕ(m) = Q(m2

1 +m2
2), making ±e3the one easy axis and the material uniaxial. The dimensionless material parameter Q is alled thequality fator.

• Finally, the magnetostati or stray �eld energy is the integral of the squared strength of the �eldindued by the magnetization. Note that the dependene of the �eld on the magnetization is not aloal one. Thus the �eld extends beyond the sample Ω and so the domain of integration is R3 inthis term.With m, h, Q, and ϕ dimensionless and x and d having units of length the units of all three terms of theenergy math up as (length)3. The non-loality of the �eld energy with respet to magnetization hangesan be a hassle. We are fortunate enough to be able to trade equation (2) against minimizing h subjetto (1). For full detail about the magneti �eld we refer the reader to the appendix.This model when varied with di�erent anisotropy and possibly an additional term representing the in�u-ene of an externally applied �eld explains a vast range of phenomena. In addition many di�erent types ofsample geometries an be investigated. Thin �lms, for example, when Ω beomes almost two-dimensionalhave been investigated and simpli�ed two-dimensional models have been established heuristially andthrough rigorous analysis.Most appealing to the eye are perhaps the di�erent types of magnetization patterns when made visibleby e.g. Kerr mirosopy as desribed in [HS00℄. These patterns stem from energy minimization with thenononvex onstraint that the magnetization be of unit length. In the next subsetion we speialize toone regime and want to shed some light on the physial e�ets behind the experimental observations.Miromagnetis and related phenomena have been extensively studied. On the experimental physis side[HS00℄ provides an enylopedi overview of miromagneti pattern formation phenomena. The survey[DKMO05℄ ompares experimental observations to insights of the mathematial analysis and presents thestate of the art (of 2005) in �nding mathematially rigorous explanations. The paramount resoures forthe spei� regime under onsideration are [CK98℄ and [CKO99℄ mentioned above.1.2 Strongly uniaxial ferromagnetsLet us now turn to the spei� parameter regime within the Landau-Lifshitz theory that we are interestedin, the bulk regime for uniaxial ferromagnets. The push for a good mathematial understanding of thissetup and in partiular the branhing patterns known from physial observation started with [CK98℄ and[CKO99℄. A onise overview of the physial observations, the heuristi explanation for the branhingbehavior and the energy saling as well as a short elementary rigorous proof of the lower bound for thesaling an be found in [DKMO05, Chapter 6.8℄.As indiated above, we speialize the anisotropy energy ontribution to
Q

∫

Ω

|m′|2dxwherem′ = ( m1
m2

) is the vetor with the �rst two omponents ofm. Our interest lies with strongly uniaxialferromagnets, i.e. we onsider very large quality fators
Q≫ 1 (large anisotropy).2



The experimental piture in Figure 1 (more illustrations an be found in [HS00℄) shows the domainbranhing of a neodymium-iron-boron magnet with Q approximately 4. We also onsider an idealizedsample geometry. To elipse boundary e�ets we would like to hoose Ω = R2× (−t, t). In order to mean-ingfully talk about energy minimizers in this unbounded sample we introdue some arti�ial periodiityin the �rst two oordinates. We thus onsider on�gurations periodi in the �rst two omponents x′ withfundamental ell (−l, l) for some very large l and then onsider the limit l ↑ ∞. Thus we assume thatthe sample domain is (−l, l)2 × (−t, t). The energy then is
Ed,Q,l,t(m) := d2

∫

(−l,l)2×(−t,t)

|∇m|2dx+Q

∫

(−l,l)2×(−t,t)

|m′|2dx+

∫

(−l,l)×R

|h|2dx,where h now is a (−l, l)2-periodi solution to the Maxwell equations (1) and (2). Our analysis demon-strates that the energy per ross-setion area
e(m) :=

1

4l
E(m)onverges as l → ∞. This and the fat that the di�erene between minimal energy with periodi andthat with free boundary onditions vanishes in this limit also validate the approah of introduing thearti�ial periodiity.It also turns out that the pattern we wish to better understand only forms when t is not too small. Wethus onsider the regime

t≫ dQ1/2 (bulk sample).

Figure 1: Neodymium-iron-boron magnetswith magnetization domains made visible byKerr mirosopyreprodued from [HS00℄ with kind permission

The heuristi disussion of Setion 2.2 exposes why mag-netization patterns with branhed domains do indeedahieve low energy and why the ross-over into the bulkregime happens at t ∼ dQ1/2.Let us brie�y desribe the nature of the physial stru-tures: The energy appears to favor the formation of twophases of almost uniform magnetization alled domains,see Figure 2. These are separated by fairly sharp walls,almost lower-dimensional transition regions of a ertainwall width. In the regime that we are going to study, thedomains themselves exhibit a pattern featuring a typialdomain width when we take a slie parallel to the x1x2-plane. This domain width is a funtion of the third o-ordinate and dereases as the translated planes approahthe boundary of the sample and the domains re�ne bybranhing. Of partiular interest are the limiting do-main widths, the bulk domain width in the interior andthe surfae domain width at the boundary.We analyze the magneti ground state, i.e. the minimizerof E among all m : R3 → R3 suh that m has unit lengthinside Ω and vanishes elsewhere.
3



{surfae domain width {bulk domain width
sample boundaryBloh wallmagneti harges and stray �eldmagnetization
≈ ±e3 in blak/white domains

x3

x1 Figure 2: The mirostruture in a nutshell
1.3 ResultsWe approah the model with the desire to rigorously establish qualitative properties of ground states suhas the formation of domains and the strutural re�nement of domains. We also want to make quantitativeestimates for properties suh as the energy, and by proxy of the energy, the domain width in the bulk.We improve on the upper and lower energy bounds established in [CK98℄ and [CKO99℄. Where thepreviously known bounds just math in saling in the two non-dimensional parameters, the quality fator Qand the quotient of the thikness of the sample by the exhange length t/d, we show that the appropriatelynormalized minimal energy per area in (x1, x2) onverges to a �nite universal limit in the parameter regime
t≫ Q1/2d. This analysis essentially onsists of two parts of independent interest.In the �rst part we establish a Γ-onvergene result on a domain whose lateral size l is large but �xed interms of the (expeted) intrinsi lengthsale of the mirostruture, the domain width in the bulk. It isbased on an anisotropi resaling of variables (x1 and x2 are resaled by the domain width, x3 is resaledby the thikness t).Interestingly, the Γ-limit turns out to be the 3-d generalization of a funtional proposed by Kohn &M�uller for twin-branhing [KM92, KM94℄ and investigated by Conti [Con00℄. In the resaled variables,it is given by

El,t(m3) := 2

∫

[−l,l)2×(−t,t)

|∇′m3| dx+

∫

(−l,l)2×R

||∇′|−1∂3m3|
2dx (3)where again

|m3|
2 =

{

1 for x3 ∈ (−t, t),

0 otherwise,4



and the negative norm of ∂3m3 is understood in the sense that
∫

(−l,l)2×R

||∇′|−1∂3m3|
2dx :=

∫

(−l,l)2×R

|h′|2dxwhere h′ : (−l, l)2 × R → R2 is the solution to the (redued) Maxwell equations
∇′ · h′ + ∂3m3 = 0,

∂1h2 − ∂2h1 = 0.Theorem 1. After a suitable resaling the redued energy El,t is an upper and lower Γ-type limit of thefull energy Ed,Q,l,t for �xed resaled length l, Q→ ∞, and (dQ1/2/t)1/3 → 0.We shall make the statement more preise as Theorem 4 before proving it. The subtle part is the onstru-tion of a �reovery sequene� in the full parameter regime. It requires a version of the Modia-Mortolaonstrution that is quantitative in the parameter wall widthdomain width ≪ 1, sine only this quanti�ation al-lows us to paste this onstrution into a domain onstrution whih relies on the independently smallparameter domain widthsample thikness ≪ 1.In the seond part we show that a notion of minimal energy per area in the (x1, x2)-plane is well-de�nedin the sense that l−2 minE, where the minimum is taken over m's whih are l-periodi in (x1, x2),onverges to a �nite onstant if the arti�ial �system size� l tends to in�nity with respet to the domainwidth, an intrinsi lengthsale of the mirostruture. This means that we establish an extensive behaviorreminisent of the hydrodynami limits of Ising-type models.Theorem 2. In the regime of bulk sample and strong anisotropy the minimal energy per surfae area
e(Q, d, t, l) = min

{ 1

4l
EQ,d,t,l(m)

∣

∣

∣m : R
3 → R

3 is (−l, l)2-periodi in x′,
|m|2 =

{

1 for x3 ∈ (−t, t),

0 otherwise, }

.is asymptotially proportional to (dQ1/2)2/3t1/3. More preisely, the limit
lim

Q, t

dQ1/2
, l

(dQ1/2)1/3t2/3
↑∞

e(Q, d, t, l)

(dQ1/2)2/3t1/3
∈ (0,∞)exists.In other words, the theorem states that there is a universal onstant e∗ ∈ (0,∞) suh that for anysequene {(dν , Qν, tν)}ν∈N ⊂ R3

+ satisfying
Qν → ∞, dνQν/tν → 0, and (dν(Qν)1/2)1/3(tν)2/3/l → 0the energy per ross setion area behaves as

e(Qν , dν , tν , l)

(dν(Qν)1/2)2/3(tν)1/3
→ e∗.Let us brie�y remark that the energy limit when ombined with an analogue (whih an be shown withthe very same proof) of the energy equipartition result of [KM94, Lemma 2.6℄ to derive an estimate for5



the total wall energy in the enter and thus the typial domain size by onsidering the area divided bywall length in eah slie.In the third part we analyze the energy distribution in minimizing on�gurations of the sharp interfaemodel. This is a step beyond the saling behavior of the energy in the sense that we are atually provingstrutural properties of a given minimizer. Our method is inspired by work of Conti [Con00℄ and Alberti,Choksi, and Otto [ACO06℄ and our result has a form similar to Theorem 2.1 in the former.Theorem 3. There is a universal onstant C suh that any El,1-minimizing on�guration m3, h′ de�nedon (−l, l)2 × (−1, 1) and (−l, l)2-periodi in x′ has the following property: For any x′0 ∈ (−l, l)2, lx3 ≤ 2,and any l ≥ λ ≥ l
2/3
x3 C

Em3,h′(x′0, lx3 , λ) := 2

∫

[−λ,λ)2×(−1,−1+lx3)

|∇′m3|dx+

∫

(−λ,λ)2×(−1,−1+lx3)

|h′|2dx ∼ l1/3
x3
λ2.The onstants are universal in the sense that they are independent of l, lx3 , x0, and λ.We remark that the bound is not expeted for small horizontal widths: In onstrutions and physialobservation domain walls have a small angle to the x3-axis in the bulk and the intersetion of suh a wallwith a ylinder would ontain interfaial energy of order λ.The theorem implies that blowup sequenes at sample boundary points have loally onvergent (m3strongly in L1) subsequenes.The appliation of the theorem with lx3 = 2 gives a result that is similar in spirit to Theorem 1.1 of[ACO06℄, i.e. that on mesosopi sales the enery is almost uniformly distributed w.r.t. x′. The signi�aneof this result beomes apparent when omparing to energy distributions in other models. For minimizersof e.g. the Ginzburg-Landau model for superondutors, almost all energy is loalized in small regions ofthe domain and there are large areas with very little energy.The key property we use for proving this result is that after loalizing the �eld energy minimizers areloally optimal. This means that energy onentration in a region an only our when the on�gurationhas high energy at the boundary. We an then �integrate� over these boundaries to get a ontraditionwith the global energy bounds.1.4 The mathematial viinity: Patterns and nononvex variational problemsMirostrutures arising in physially motivated energy minimization problems have been prominent inmathematial researh for deades. A partiularly nie early example from elastiity theory is given byBall and James in [BJ87℄ more than twenty years ago. Tellingly, they already have a setion entitled othersimilar phenomena, inluding an aount of re�nement towards the sample boundary to weakly satisfyboundary onditions that annot be strongly aomodated. Advaning into the next deade, M�uller'sleture notes [M�ul99℄ feature an introdution to the subjet of mirostrutures with theory and examples,inluding experimental pitures, as well as some notes on the history. The reent introdutory leture[Koh07℄ given by Kohn at the ICM emphasizes general ideas of pattern formation but also has a tastefor miromagnetism. Speializing on magnetis, we have already mentioned DeSimone, Kohn, M�ullerand Otto's survey [DKMO05℄. When Kohn [Koh07℄ writes �It should be lear by now that our goal isnot to survey the �eld of energy-driven pattern formation. Suh a survey would be extremely di�ult,beause the subjet is vast and ill-de�ned.� it seems that similar onsiderations apply to this thesisintrodution. Following Kohn's example we do not attempt to give a omplete panorama and insteadexpose similarities in the analysis in our problem and a physial model of Cahn and Hilliard for phase6



separation in Setion 3. For the broader overview we leave the reader with above starting points for anexploration of the literature. The author learned most of the material of Setions 2 and 3 by letures ofOtto held at the INDAM in Rome and the presentation is heavily based on the leture notes.2 HeuristisThe goal of this setion is to brie�y review the heuristi alulations that shed some light on patternformation, the nature of walls, and estimate a few of the harateristi quantities. These alulations gobak to [Hub67℄, see [HS00, Chapter 3.7.1℄ for a reent treatment.We brie�y disuss the shape of the domain walls (alled Bloh walls), the width of the domain walls, thesaling of domain widths and minimal energy. We heuristially argue that for minimizersBloh wall width ∼ dQ−1/2,surfae domain width ∼ dQ1/2,bulk domain width ∼ (dQ1/2)1/3t2/3, and
E(Q, d, t, l) ∼ (dQ1/2)2/3t1/3l2.Note that the saling of the domain widths implies (surfae domain width) ≪ (bulk domain width).The heuristis for bulk domain width and energy saling are ehoed by the rigorous results of [CKO99℄.2.1 Bloh wallsObserving the sale separation width of walls ≪ width of domainswe expet domain walls to have a typial pro�le when ut orthogonally to the diretion of the wall. Weexpet the wall pro�le to resemble the one-dimensional equilibrium pro�le.Let us thus onsider magnetizations

m = m(x1) ∈ S
2 suh that m(±∞) =

(

0
0
±1

)

.We estimate (a bit on the formal side) the sum of exhange and anisotropy energy as
∫ ∞

−∞

d2

∣

∣

∣

∣

dm

dx′

∣

∣

∣

∣

2

+Q|m′|2dx1 ≥

∫ ∞

−∞

d2

(

d|m′|

dx1

)2

+ d2

(

dm3

dx1

)2

+Q|m′|2dx1

=

∫ ∞

−∞

d2

(

d|m′|

dx1

)2

+ d2

(

dm3

dx1

)2

+Q(1 −m2
3)dx1

=

∫ ∞

−∞

d2 m2
3

1 −m2
3

(

dm3

dx1

)2

+ d2

(

dm3

dx1

)2

+Q(1 −m2
3)dx1

=

∫ ∞

−∞

d2 1

1 −m2
3

(

dm3

dx1

)2

+Q(1 −m2
3)dx1

≥ 2dQ1/2

∫ ∞

−∞

dm3

dx1
dx1 = 2dQ1/2.7



x3

x2

x1

Figure 3: 1-dimensional Bloh wall pro�le, the unit vetor m(x1) rotates in the x2x3-planeThe �rst inequality turns into an equation if and only if dm′

dx1
is parallel tom′. But then, the magnetization(loally) assumes values only in one axis of the m′-plane and we an avoid magneti harges (and thus�eld energy) entirely by setting m1 ≡ 0. Equality in the Cauhy-Shwarz-inequality of the last line isahieved if and only if the two summands are equal, i.e.

dm3

dx1
=
Q1/2

d
(1 −m2

3).It is no seret that the (unique up to translation in x1) solution to this ODE with above boundaryonditions is
m3(x1) = tanh

(Q1/2

d
x1

)

.We omplement this m3 with m′ pointing in, say, the x2 diretion and length suh that |m|2 = 1, seeFigure 3. This type of domain wall is alled a Bloh wall. Note that this funtion has the fairly steepslope d−1Q1/2 at the origin and then approahes ±1 quikly with the distane to the origin measured inunits of dQ−1/2. While it is of limited use to speak about an exat wall width this behavior ertainlyjusti�es the saling relation Bloh wall width ∼ dQ−1/2.In terms of energy we expet Bloh wall energywall area ≈ 2dQ1/2.2.2 The energeti advantage of domain branhingTo get some taste for why domains form branhed patterns we investigate three types of possible magne-tization patterns, uniform magnetization, striped, and branhed domains (also see Figure 2). All threemagnetization patterns are onstant in one horizontal diretion, it later turns out that this is su�ientto ahieve the optimal energy saling. More information an be found in [Hub67℄ and [CK98℄.8



Reall that
E(m) = d2

∫

(−l,l)2×(−t,t)

|∇m|2dx+Q

∫

(−l,l)2×(−t,t)

|m′|2dx+

∫

(−l,l)2×R

|h|2dx,where ∇ · (h+m) = 0 and ∇× h = 0.
m h

x3

x1

}tFigure 4: Uniformmagnetization
The �rst, simplest ansatz is to use onstant magnetization in ver-tial orientation m ≡ e3. This has to be ompensated by a �eld
h = −χ(−l,l)2×(−t,t)e3 and so

d2

∫

|∇m|2dx = 0, Q

∫

|m′|2dx = 0,

∫

|h|2dx = 8l2tso that E = 8l2t, i.e. the stray �eld energy is rather large. We annow try to redue the stray �eld energy at the expense of introduingwalls.For the seond ansatz, depited in Figure 5, we thus use a vertial mag-netization that is onstant in strips of width w ≪ t with alternatingorientation between neighboring strips. In this senario we get
d2

∫

|∇m|2dx+Q

∫

|m′|2dx ≈ 2Q1/2d (wall area) ∼ Q1/2d
l2t

w
.The �eld energy neessarily sales like l2w by variable transformation, but the orresponding magneti�eld an also be easily onstruted as the gradient of a potential pieed together from summands of theform

x3

x1

{w

}∼ w
2π

Figure 5: Alternating magnetization
u(k) =

4

π(2k + 1)
sin
(

(2k+1)
2π

w
x1

)

·
w

2π(2k + 1)
e−(2k+1) 2π

w (x3−t)on the upper half-spae outside the sample and similarly belowthe sample. The �eld energy in eah strip on a x2-slie an thenbe omputed as
∫ w

0

∫ ∞

t

|∇
(

∑

k≥0

u(k)
)

|2dx3dx1 ∼ w2(note that ∇u(k) are L2-orthogonal beause their x1-dependentparts are). Note that the deay of the �eld is exponentiallyfast away from the sample boundary with distane measured inunits of w
2π . One way or the other

∫

|h|2dx ∼ l2wso that
E ∼ Q1/2d

l2t

w
+ l2wand with the optimal segment width w = d1/2Q1/4t1/2 the energy is

E ∼ l2d1/2Q1/4t1/2.9



Thus we see that this on�guration is energetially better than uniform magnetization if t≫ dQ1/2.We observe that in the striped pattern magneti harges induing the stray �eld only our at the sampleboundaries. If we an have a smaller width w there without having to add as many walls utting allthe way through the sample, we ould do even better. For our third ansatz we thus onsider branheddomains to redue the stray even more. The philosophy is to let the harateristi width of the domain
w vary with x3, so that lose to the edge, w an be small to minimize the magnetostati energy, and inthe bulk, w an be large to minimize wall energy.
x3

x1

{
w(x3)

{w(x3)

Figure 6: Branhed magnetiza-tion
Shematially, the branhing has the form depited in Figure 6. If weneglet the area inrease of the domain walls aused by the tilt we anestimate
∫ ∆t

0

∫

d2|∇m|2 +Q|m′|2dx′dx3 ≈ 2dQ1/2wall area ∼ dQ1/2∆t
l2

w
.In fat, in the redued model that we derive for large Q the interfaialenergy is proportional to the x3-sliewise wall area and in partiularthe tilt does not play a role. The tilting of the interfaes auses themagnetization to hange in the x3-diretion. This indues magnetiharges and a �eld to aomodate them. The �eld strength is propor-tional to the tilt w/∆t and its support has area ∼ ∆tl2. Thus the �eld energy sales like

∫ ∆t

0

∫

|h|2dx′dx3 ∼ ∆tl2
( w

∆t

)2

.To ompute the total energy, we need to ompose multiple layers. Expeting again the �eld and interfaeenergy to be balaned for low-energy on�gurations (also see e.g. [CKO99, Proposition 4.1℄ for a rigorousresult in this diretion), the natural saling is the one that keeps this balane, i.e.
w ∼

(

dQ1/2
)1/3

∆t2/3. (4)In order to obtain a dyadi re�nement of w we hoose a sequene of ∆t ∼ 2−3k/2 with the onstanthosen so that one set of re�ned layers overs (0, t) and another (−t, 0). With the above alulation ofthe energy for one iteration of the branhing we then see that the total energy sales aording to
E ∼

∑

∆t

(

dQ1/2∆t
l2

w
+ ∆tl2

( w

∆t

)2
)(4)

∼
∑

∆t

l2(∆t)1/3(dQ1/2)2/3

∼ t1/3l2(dQ1/2),muh better (in the regime t ≫ dQ1/2) than the simple striped pattern. Note that in the enter (andmore generally away from the boundary), the typial domain width is w ∼ (dQ1/2)1/3t2/3.To sum up, we see a rossover at t ∼ dQ1/2 in the sense that of the three on�guration investigated here,the branhed is best for t ≫ dQ1/2 while the uniform magnetization is best for t ≪ dQ1/2. The �rstregime is preisely what we all the bulk regime. It an be shown that these are the optimal salings. Forthe bulk regime this is done in Lemma 5. 10



2.3 Domain width at the surfaeLet us brie�y take a look � on the level of heuristial alulation � at the surfae domain width.Starting from the energy
E(m) = d2

∫

(−l,l)2×(−t,t)

|∇m|2dx+Q

∫

(−l,l)2×(−t,t)

|m′|2dx+

∫

(−l,l)2×R

|h|2dxwe an heuristially express it in terms of the domain width w(x3) by splitting the stray �eld into bulkand surfae e�ets and doing Modia-Mortola-style ontration of the �rst two terms
E ∼ dQ1/2

∫

[−l,l)2×(−t,t)

|∇′m3|dx

+

∫

(−l,l)×(−t,t)

||∇′|−1∂3m3|
2dx+

∑

x3=±t

∫

(−l,l)2
||∇′|−1/2m3|

2dx′

∼ dQ1/2

∫ t

−t

1

w
dx3 +

∫ t

−t

(∂3w)2dx3 + w(t) + w(−t).Computing the �rst variation we �nd the Euler-Lagrange-Equation
−
dQ1/2

w2
− 2∂2

3w = 0 (5)with boundary onditioons
2∂3w(±t) ± 1 = 0.The �rst integral of (5) is found by multiplying with ∂3w3 and rewriting as

∂3

(dQ1/2

w
− (∂3w)2

)

= 0whene
(∂3w)2 =

dQ1/2

w
−
dQ1/2

w(0)
.The integration onstant has been determined using ∂3w = 0 grae �a the symmetry of w. Plugging inthe boundary ondition and our expetation that w(0) is larger than w(t) we see that

1

4
= (∂3w(t))2 =

dQ1/2

w(t)
−
dQ1/2

w(0)
≈
dQ1/2

w(t)
,in other words

w(t) ∼ dQ1/2,is the surfae domain width.We also see that if we are in the regime dQ1/2 ≪ t and resale t to 1, the surfae domain width beomesvery small. In the limiting model the domains ompletely re�ne towards the boundary. For large but�nite ratios, the re�nement stops at very small distanes from the boundary. This is detailed in [HS00,Ch. 3.7.5℄.
11



3 Di�erent physis � similar mathematis: Coarsening in theCahn-Hilliard modelWe brie�y introdue the Cahn-Hilliard model for phase transitions in order to expose the parallels to ourmodel with respet to lower energy bounds. This model, also known as Model B in the physis literature,is used to desribe the evolution of mirostrutures in mixtures, e.g. during the ooling of alloys.The ruial quantity in this model is a salar order parameter u : (0,Λ)d → R. We assume that u isperiodi with fundamental ell (0,Λ)2. While the range of solutions u is not neessarily bounded thephysial interpretation is that u typially takes values in [0, 1] and is the density of one omponent orphase in a two-omponent alloy. Throughout this setion we also use the orresponding sharp interfaeversion, the Mullins-Sekerka model. The simpli�ed, purely interfaial energy is motivated in Setion 3.1.In this model u is mandated to take values in {0, 1}.But �rst let us very brie�y motivate the derivation of the Cahn-Hilliard equation. We introdue theGinzburg-Landau energy
E = −

∫

edx, e =
1

2
|∇u|2 +

1

2
(u(1 − u))2.Here and in the following we use the notation −

∫

· dx = 1
Λd

∫

(0,Λ)d · dx.The relaxation of the energy with onservation of the average Φ := −
∫

udx of the order parameter isrealized by
u̇− ∆

∂e

∂u
= 0,

∂e

∂u
= −∆u+ u(1 − u)(1 − 2u). (6)Indeed,

Φ̇ = −

∫

u̇dx = −

∫

∆
∂e

∂u
dx = 0,

Ė = −

∫

∂e

∂u
u̇dx = −

∫

∂e

∂u
∆
∂e

∂u
dx = −−

∫

|∇
∂e

∂u
|2dx = −−

∫

||∇|−1u̇|2dx,sine ∆ ∂e
∂u = u̇.The Cahn-Hilliard evolution as de�ned by (6) is the gradient �ow of E with respet to the Eulideanstruture given by ‖|∇|−1 · ‖L2 .Mathematially the order parameter u plays a r�ole similar to that of the third omponent m3 of themagnetization. Both the magneti and the Cahn-Hilliard model have an interpolation inequality at theore of the argument for an energy bound: For the magneti problem in Lemma 4 and for Mullins-Sekerkain Lemma 1 and Lemma 2 for the sharp-interfae. For the original Cahn-Hilliard model Propositions 2and 3 are of the same nature even though they do not take the form of a lassial interpolation inequality.These inequalities are given a physial interpretation when we bound the problem-spei� parameter withnononvex onstraint (e.g. m3 ∈ {−1,+1} in magnetis, u ∈ {0, 1} in Mullins-Sekerka) by the norm of

u on the left hand side and then interpret the two terms on the right hand side as interfaial and (e.g.magneti or di�usion) �eld energy, respetively.These interpolation inequalities are then used to derive bounds on the energy. For magnetis this is donein Lemma 5. For Cahn-Hilliard and Mullins-Sekerka we use Proposition 1 from [ORS06℄ whih providesa generi framework for gradient �ows using Otto's formal Riemannian alulus. In the miromagnetiase the interpolation inequality we need is two-dimensional (in x′) and then integrated over the thirdomponent. Similarly, interpolation inequalities in spae lead to a lower bound for the time-integral ofthe energy for the gradient �ow. 12



A lot of pioneering work in the exploration of this onnetion of physial phenomena to inequalities inmathematial analysis has been done by Kohn and Otto, a partiular starting point is [KO02℄.3.1 Interfaial regime, heuristisWe wish to heuristially alulate the energeti behavior of u in the viinity of an interfae. Guided byphysial observations we postulate a separation of sales, namelythikness of interfae layer≪ radius of urvature of interfae layer.Under this assumption, we expet the transition layer to take the shape of a one-dimensional equilibriumpro�le. This an be omputed by onsidering the energy minimization amongst all u suh that u(−∞) = 0and u(+∞) = 1 of
E(u) =

∫ ∞

−∞

1

2

(

du

dx

)2

+
1

2
(u(1 − u))2dx ≥

∫ ∞

−∞

(

du

dx

)

(u(1 − u))dx =

∫ 1

0

u(1 − u)du =
1

6
.Note that equality is attained if and only if du

dx = u(1 − u).As a onsequene we expet the interfaial energy to be roughly
E ≈

1

6

area of interfae layervolume of system . (7)We also see that the one-dimensional ase is speial in that the energy is approximately
E ≈

1

6
number density of kinks.Thus the system is oarsening very slowly beause the interfaial energy is only redued when the numberof kinks dereases. The exat behavior has been investigated by Carr and Pego [CP89℄.3.2 Coarsening for Cahn-Hilliard, Φ ≪ 1, heuristisOur strategy is to exploit that the deay rate of frition is the energy dissipation by evaporation andreondensation, i.e.

Ė = −−

∫

∣

∣|∇|−1u̇
∣

∣

2
dx.To obtain a heuristi ansatz, we observe the following.

• In the low volume fration regime partiles are almost spherial. Thus, their form is essentiallyontrolled by the average radius R(t).
• The partiles do not move (but an vanish), thus the average distane L between partiles is atypial quantity.Our goal is now to express Φ, E, and −

∫ ∣

∣|∇|−1u̇
∣

∣

2
dx in terms of L, R, and Ṙ to derive an evolution forthose. To this end we notie that

Φ = −

∫

udx = number density × volume of individual partile ∼ L−dRd.13



For the energy we see with our previous onsideration (7) that
E ≈

1

6

area of interfae layervolume of system ≈
1

6
number density of partiles × average surfae of partile

∼ L−dRd−1 ∼ ΦR−1.Finally, we alulate that
−

∫

∣

∣|∇|−1u̇
∣

∣

2
dx = −

∫

|∇v|2dx = −

∫

|J |2dx,where v is the potential of u̇, i.e. −∆v = u̇, and J is the di�usion �ux given by ∇ · J = u̇.Assuming Ṙ > 0, we see that
L

R

Figure 7: Neighborhood of a typ-ial partile
J ≈

~r

rd

hange of volume of partilearea of S
d−1

∼
~r

rd
(Rd)̇,thus

−

∫

|J |2dx ≈ number density ×

∫ L

R

∣

∣

∣

∣

~r

rd
(Rd)̇

∣

∣

∣

∣

2

rd−1dr

∼ L−d
(

(Rd)̇
)2
∫ L

R

r−d+1dr

∼ L−dR2d−2(Ṙ)2

{

R−d+2 if d ≥ 3,

ln L
R if d = 2,

∼ Φ(Ṙ)2

{

1 if d ≥ 3,

ln 1
Φ if d = 2.Hene E ∼ ΦR−1 and Ė = −−

∫ ∣

∣|∇|−1u̇
∣

∣

2
dx an be ombined to yield

−ΦR−2Ṙ = (ΦR−1)̇ ∼ −Φ(Ṙ)2

{

1 if d ≥ 3,

ln 1
Φ if d = 2.Solving for R we �nd

(

R3
)

˙∼ R2Ṙ ∼

{

1 if d ≥ 3,

ln−1 1
Φ if d = 2,and thus

R ∼ t1/3

{

1 if d ≥ 3,

ln−1/3 1
Φ if d = 2and

E ∼ ΦR−1 ∼ t−1/3

{

Φ if d ≥ 3,

Φ ln1/3 1
Φ if d = 2.The question arises if and how the heuristially derived behavior an be proven rigorously.14



• The answer is no for the upper bound on the energy
E . t−1/3

{

Φ if d ≥ 3,

Φ ln1/3 1
Φ if d = 2.Suh a bound annot be obtained unonditionally beause there exist ungeneri solutions that donot oarsen at all or only very slowly.

• The answer is yes for a lower energy bound, at least in a time-averaged sense, as we see in theremainder of this setion.3.3 Abstrat framework for lower boundsThe abstrat framework proposes a philosophy for the gradient �ow where the energy landsape deter-mines the dynamis. The following proposition links the exponent in an estimate desribing the geometryof the energy landsape to the dynami exponent in the lower bound of the energy. The ideas presentedhere are properly developed and disussed in greater depth in the work of Kohn & Otto [KO02℄ and Otto,Rump & Slep�ev [ORS06℄.Proposition 1 ([ORS06℄). Let X be an a�ne spae, u0 ∈ X, E : X → [0,∞], E0 ≥ 0, α ≥ 0, and
E(u) ≥ E0|u− u0|

−α for all u ∈ X with E(u) ≤ E1.Then for any σ ∈ (1, 1 + 2
α ) and any solution of

u̇ = −gradE(u)we have
∫ T

0

E(u(t))σdt ≥ C(0)

∫ T

0

(E
2

2+α t−
α

α+2 )σdt (8)provided T ≥ E−1
0 |u(+∞) − u0|

α+2 and E(u(+∞)) ≤ E1.Remark 1. Estimate (8) is a time-averaged version of
E(u(t)) & E

2
2+α

0 t−
α

α+2 ,and α
α+2 is the geometri exponent alluded to above.The pointwise (in time) estimate does not follow from the assumptions of the proposition, this is disussedin [ORS06, Remark 2℄.Remark 2. To motivate the onnetion between the geometri exponent α and the dynami exponent

α
α+2 , let us onsider the simple example of X = R, u0 = 0, and E(u) = E0|u|−α. To avoid traking thesign we onsider a point where u > 0. Then gradE(u) = −αE0u

−α−1, so that u̇ = − gradE(u) turnsinto u̇ = αE0u
−α−1 or equivalently (uα+2)̇ = α(α + 2)E0. Thus

uα+2 = α(α+ 2)E0t+ u(t = 0)α+2and for t≫ E−1
0 u(t = 0)α+2

E(u) = E0(α(α + 2)E0t+ u(t = 0)α+2)−
α

α+2 ∼ E
2

α+2

0 t−
α

α+2 .15



3.4 Interpolation inequalities and lower energy bounds (d ≥ 3)In this setion we proeed to obtain the �rst set of energy bounds announed at the beginning of Setion 3.To this end we want to apply Proposition 1 to
• The spae X = {u : (0,Λ)d → R periodi, −

∫

u dx = Φ} equipped with the inner produt from
‖ · ‖ =

(

−
∫ ∣

∣|∇|−1(u− Φ)
∣

∣

2
dx
)1/2,

• u0 ≡ Φ, so that |u− u0| ≤ ‖u‖, and
• E(u) = −

∫

1
2 |∇u|

2 + 1
2 (u(1 − u))2dx.We thus need to �nd an optimal α and E0 with optimal saling in Φ suh that

−

∫

1

2
|∇u|2 +

1

2
(u(1 − u))2dx ≥ E0

(

(

−

∫

∣

∣|∇|−1(u− Φ)
∣

∣

2
dx

)1/2
)−α

.For simpliity we resort to the interfaial regime approximation introdued in Setion 3.1 and so replae
E = −

∫

1

2
|∇u|2 +

1

2
(u(1 − u))2dx, u ∈ Rwith

E = −

∫

1

6
|∇u|dx =

1

6

area of ∂{u = 1}volume of system , u ∈ {0, 1},i.e. the energy is the perimeter of the set where u = 1, and our task beomes to �nd α and E0 withoptimal saling in Φ suh that
−

∫

|∇u|dx ≥ E0

(

(

−

∫

∣

∣|∇|−1(u − Φ)
∣

∣

2
dx

)1/2
)−αfor u : (0,Λ)d → R periodi with −

∫

udx = Φ. The bound presented in this setion exhibits optimalityfor d ≥ 3 only. The improvement neessary for optimal saling when d = 2 is aomplished in the nextsetion.Lemma 1. For any d ∈ N there is a C ≤ ∞ suh that for all w : (0,Λ)d → R with −
∫

wdx = 0 we have
‖w‖wL4/3 := sup

s>0
s|{|w| ≥ s}|3/4 ≤ C‖∇w‖

1/2
L1 ‖|∇|−1w‖

1/2
L2 .Before proeeding to the proof, we want to illustrate how to apply Lemma 1 to obtain the geometriontrol required in Proposition 1. For this, we plug in w = u− Φ and s = 1

2 to see that
|{|u− Φ| ≥

1

2
}|3/4 . ‖∇u‖

1/2
L1 ‖|∇|−1(u− Φ)‖

1/2
L2and thus

(

−

∫

|∇u|dx

)1/2(

−

∫

||∇|−1(u− Φ)|2dx

)1/4

& |-{|u− Φ| ≥
1

2
}|3/4 ≥ |-{u ≥

1

2
+ Φ}|3/4

≥ |-{u = 1}|3/4 = Φ3/4,16



where we denote the volume fration of a set by |- . | and use that the volume fration of {u = 1} is Φ ≪ 1.We thus obtain
−

∫

|∇u|dx ≥
1

C
Φ3/2

(

(

−

∫

||∇|−1(u− Φ)|2dx

)1/2
)−1

.For omparison with the heuristis above, we use this estimate in Proposition 1 with α = 1 and E0 = Φ3/2.We obtain in a time-averaged sense
E(u(t)) & (Φ3/2)

2
2+1 t−

1
1+2 = Φt−

1
3 ,whih is the result predited heuristially.Proof of Lemma 1. By saling, we may assume s = 1. Consider the funtion

χ =











1 where 1 ≤ w,

0 where − 1 < w < 1, and
−1 where w ≤ −1,selet a smooth, ompatly supported, symmetri, nonnegative onvolution kernel K1 with ∫ K1dz = 1and de�ne KR(z) = 1

RdK1

(

z
r

).Now
∫

|χ|dx ≤

∫

χwdx =

∫

(w −KR ∗ w)χdx +

∫

(KR ∗ w)χdx

=

∫

(w −KR ∗ w)χdx +

∫

w(KR ∗ χ)dx

≤

∫

|w −Kr ∗ w|dx sup |χ| +

(∫

∣

∣|∇|−1w
∣

∣

2
dx

)1/2(∫

|∇(KR ∗ χ)|2dx

)1/2

.As the terms are bounded by ∫ |w −Kr ∗ w|dx . R
∫

|∇w|dx, sup |χ| ≤ 1, and
∫

|∇(KR ∗ χ)|2dx ≤

(∫

|∇KR|dx

)2 ∫

χ2dx . R−2

∫

|χ|dx,we arrive at
∫

|χ|dx . R

∫

|∇w|dx +

(

1

R2

∫

∣

∣|∇|−1w
∣

∣

2
dx

∫

χdx

)1/2

.Using Young's inequality, we an absorb the (�nite) rightmost integral and get
∫

|χ|dx . R

∫

|∇w|dx +
1

R2

∫

∣

∣|∇|−1w
∣

∣

2
dx,so that with the optimal hoie of R =

(
R

||∇|−1w|2dx)1/3

(
R

|∇w|dx)1/3 ,
|{|w| ≥ 1}| =

∫

|χ|dx .

(∫

|∇w|dx

)2/3(∫
∣

∣|∇|−1w
∣

∣

2
dx

)1/3

.Hene
|{|w| ≥ 1}|3/4 =

∫

|χ|dx .

(∫

|∇w|dx

)1/2(∫
∣

∣|∇|−1w
∣

∣

2
dx

)1/4

,as laimed. 17



With essentially the same tehniques as above we an obtain the analogous result for the full Cahn-Hilliardenergy.Proposition 2. For any d ∈ N there exists a onstant C ≤ ∞ suh that for all Λ > 0 and u : (0,Λ)d → Rwith Φ = −
∫

udx≪ 1 satisfying
E := −

∫

1

2
|∇u|2 +

1

2
(u(1 − u))2dx ≤

1

C
Φ2we have

E ≥
1

C
Φ3/2

(

−

∫

∣

∣|∇|−1(u− Φ)
∣

∣

2
)−1/2

.The assumption E ≪ Φ2 ensures that u has evolved well into the interfaial regime (ompare withassumption E ≤ E1 in the abstrat framework desribed by Proposition 1).
Proof. Compared to Lemma 1, we need the new estimates

−

∫

{ 1
3≤u≤ 2

3}

|∇u|dx . −

∫

|u(1 − u)| |∇u|dx

≤ −

∫

1

2
|∇u|2 +

1

2
(u(1 − u))2dx = E,

−

∫

{u≤−1}∪{u≥2}

|u| . −

∫

1

2
(u(1 − u))2dx ≤ E, and

Φ = −

∫

udx . −

∫

|u(1 − u)|dx+ |-{u ≥
2

3
}|

.

(

−

∫

1

2
(u(1 − u))2dx

)1/2

+ |-{u ≥
2

3
}|

≤ E1/2 + |-{u ≥
2

3
}|. (9)Here and in the following, we write −

∫

:= Λ−d
∫ , using �volume� Λd in the denominator regardless of theintegration domain.We now introdue the ut-o� funtion

χ =











1 2
3 ≤ u,

3u− 1 1
3 ≤ u ≤ 2

3 ,

0 u ≤ 1
3 .18



Similar to the alulation in Lemma 1 we have
−

∫

χdx . −

∫

uχ dx

= −

∫

uKR ∗ χdx+ −

∫

u(χ−KR ∗ χ)dx

= −

∫

(u− Φ)KR ∗ χdx+ Φ−

∫

KR ∗ χdx

+ −

∫

{−1≤u≤2}

u(χ−KR ∗ χ)dx + −

∫

{u<−1}∪{u>2}

u(χ−KR ∗ χ)dx

≤

(

−

∫

||∇|−1(u − Φ)|2dx−

∫

|∇(KR ∗ χ)|2dx

)1/2

+ Φ

∫

KRdx−

∫

χdx

+ 2−

∫

|χ−KR ∗ χ|dx+ −

∫

{u<−1}∪{u>2}

|u|dx sup
x

|χ−KR ∗ χ|.Using
−

∫

|∇(KR ∗ χ)|2dx .
1

R2
−

∫

χdx,

∫

KRdx = 1,

Φ ≪ 1,

−

∫

|χ−KR ∗ χ|dx . R−

∫

|∇χ|dx = 3R

∫

{ 1
3≤u≤ 2

3}

|∇u|dx . RE,

−

∫

{u<−1}∪{u>2}

|u|dx . E, and
sup |χ−KR ∗ χ| ≤ 2 sup |χ| ≤ 2,we see that

−

∫

χdx .
1

R

(

−

∫

||∇|−1(u− Φ)|2dx−

∫

χdx

)1/2

+ E +RE.Absorbing −
∫

χdx on the right hand side after the appliation of Young's inequality yields
−

∫

χdx .
1

R
−

∫

||∇|−1(u− Φ)|2dx + E +RE,whih after optimization in R reads
−

∫

χdx .

(

−

∫

||∇|−1(u− Φ)|2dx

)1/3

E2/3 + E.We an now plug this into estimate (9) and get
Φ ≤ E1/2 + |-{u ≥

2

3
}|

≤ E1/2 + −

∫

χdx

.

(

−

∫

||∇|−1(u− Φ)|2dx

)1/3

E2/3 + E1/2 + E.19



Hene for E ≪ Φ2 ≤ 1

Φ .

(

−

∫

||∇|−1(u− Φ)|2dx

)1/3

E2/3,that is
E & Φ3/2

(

−

∫

||∇|−1(u− Φ)|2dx

)−1/2

,as was laimed.3.5 Interpolation inequalities and lower energy bounds (d = 2)In two dimensions, the saling of above estimates in Φ does not math the heuristi preditions ofSetion 3.2. Following Conti, Niethammer & Otto [CNO05℄ we an improve the interpolation lemma toahieve optimal saling.Lemma 2. There is a onstant C ≤ ∞ suh that for all u : (0,Λ)2 → R, periodi with −
∫

u dx = Φ andall s ≥ 2Φ we have
ln1/4 s

Φ
s|{|u| ≥ s}|3/4 ≤ C‖∇u‖

1/2
L1 ‖|∇|−1(u − Φ)‖

1/2
L2 .Applying Lemma 2 to our u for s = 1, we get

ln1/4 1

Φ
|{|u| ≥ 1}|3/4 ≤ C

(∫

|∇u|dx

)1/2(∫
∣

∣|∇|−1(u − Φ)
∣

∣

2
)1/4

,that is
Φ3/4 ln1/4 1

Φ
= ln1/4 1

Φ
|-{|u| ≥ 1}|3/4 ≤ C

(

−

∫

|∇u|dx

)1/2(

−

∫

∣

∣|∇|−1(u− Φ)
∣

∣

2
)1/4

.Hene
−

∫

|∇u|dx ≥
1

C
Φ3/2 ln1/2 1

Φ

(

−

∫

∣

∣|∇|−1(u− Φ)
∣

∣

2
)−1/2

.Now Proposition 1 with α = 1 and E0 = Φ3/2 ln1/2 1
Φ gives

E &

(

Φ3/2 ln1/2 1

Φ

)
2

1+2

t−
1

1+2 = Φ ln1/3 1

Φ
t−1/3.This saling mathes the heuristis and thus is optimal.Proof of Lemma 2. The strategy of the proof is similar to the one in higher dimension, but we need amore areful hoie of onvolution kernels.We introdue for L > R > 0 two families of kernels

KR(z) =

{

1
πR2 if |z| ≤ R,

0 if |z| > R20



and
KR,L(z) =















1
πR2 if |z| ≤ R,

1
πR2

ln L
|z|

ln L
R

if R < |z| ≤ L,

0 if |z| > L.Note that 0 ≤ KR ≤ KR,L and ∫ KR = 1.Consider
χ =

{

1 where u ≥ s,

0 otherwise.We have
s

∫

χdx ≤

∫

uχ dx =

∫

umin{KR,L ∗ χ, 1}dx+

∫

u(χ− min{KR,L ∗ χ, 1})dx.As u ≥ 0, KR,L ≥ KR, χ ≥ 0, this an be estimated by
≤

∫

umin{KR,L ∗ χ, 1}dx+

∫

u(χ− min{KR ∗ χ, 1})dx,and sine KR ∗ χ ≤ 1 this is
=

∫

umin{KR,L ∗ χ, 1}dx+

∫

u(χ−KR ∗ χ)dx.Splitting the �rst term and moving the onvolution in the seond we get
s

∫

χdx ≤ Φ

∫

min{KR,L ∗ χ, 1}dx+

∫

(u− Φ)min{KR,L ∗ χ, 1}dx+

∫

χ(u−KR ∗ u)dx.Enlarging by dropping the �rst minimum and using χ ∈ [0, 1], this an be bounded by
≤ Φ

∫

KR,Ldx

∫

χdx+

(∫

∣

∣|∇|−1(u− Φ)
∣

∣

2
dx

∫

|∇min{KR,L ∗ χ, 1}|2dx

)1/2

+

∫

|u−KR ∗ u|dxWe onsider the terms individually and see that
∫

KR,Ldx ≤
1

πR2
|BL| =

(

L

R

)2

,

∫

|u−KR ∗ u|dx . R

∫

|∇u|dx,21



and
∫

|∇min{KR,L ∗ χ, 1}|2dx = ∇(KR,L ∗ χ) · ∇min{KR,L ∗ χ, 1}dx

=

∫

(−∆KR,L) ∗ χmin{KR,L ∗ χ, 1}dx

≤

∫

(−∆KR,L)+ ∗ χdx

=

∫

(−∆KR,L)+dx

∫

χdx

=
2

R2

1

ln L
R

∫

χdx.Hene
s

∫

χdx ≤ Φ

(

L

R

)2 ∫

χdx+

(

∫

∣

∣|∇|−1(u− Φ)
∣

∣

2
dx

2

R2

1

ln L
R

∫

χdx

)1/2

+R

∫

|∇u|dx.We hoose L
R suh that

Φ

(

L

R

)2

=
1

2
s, i.e. L

R
=

(

1

2

s

Φ

)1/2

≫ 1to get
s

∫

χdx .

(
∫

∣

∣|∇|−1(u− Φ)
∣

∣

2
dx

1

R2

1

ln s
Φ

∫

χdx

)1/2

+R

∫

|∇u|dx,and absorbing s ∫ χdx with Young's inequality
s

∫

χdx .
1

R2

1

s ln s
Φ

∫

∣

∣|∇|−1(u− Φ)
∣

∣

2
dx+R

∫

|∇u|dx.Finally we optimize in R and obtain
s

∫

χdx .

(∫

|∇u|dx

)2/3(
1

s ln s
Φ

∫

∣

∣|∇|−1(u − Φ)
∣

∣

2
dx

)1/3

,that is
s4/3 ln1/3 s

Φ

∫

χdx .

(
∫

|∇u|dx

)2/3(∫
∣

∣|∇|−1(u − Φ)
∣

∣

2
dx

)1/3

,whih is the desired estimate
s ln1/4 s

Φ

(∫

χdx

)3/4

.

(∫

|∇u|dx

)1/2(∫
∣

∣|∇|−1(u − Φ)
∣

∣

2
dx

)1/4

.With the same strategy as in the ase of higher dimensions, we an adapt our alulation to the atualCahn-Hilliard energy. 22



Proposition 3. There exists a onstant C ≤ ∞ suh that for all Λ > 0 and u : (0,Λ)2 → R with
Φ = −

∫

udx≪ 1 satisfying
E := −

∫

1

2
|∇u|2 +

1

2
(u(1 − u))2dx ≤

1

C
Φ2we have

E ≥
1

C
Φ3/2 ln1/2 1

Φ

(

−

∫

∣

∣|∇|−1(u− Φ)
∣

∣

2
)−1/2

.Proof. We again use for L > R > 0 the kernel families KR and KR,L of Lemma 2.Consider as before
χ =











1 2
3 ≤ u,

3u− 1 1
3 ≤ u ≤ 2

3 ,

0 u ≤ 1
3 .We proeed in a fashion similar to the proofs of Lemma 2 and Proposition 2, the only di�erene is thatwe annot pass from KR,L to KR where u < 0. We estimate

−

∫

χdx . −

∫

uχ dx = −

∫

umin{KR,L ∗ χ, 1}dx+

∫

u(χ− min{KR,L ∗ χ, 1})dx

≤ −

∫

Φ min{KR,L ∗ χ, 1}dx+ −

∫

(u− Φ)min{KR,L ∗ χ, 1}dx

+ 2−

∫

{u≤−1}∪{u≥2}

|u|dx+ −

∫

{0≤u≤2}

u(χ−KR ∗ χ)dx

+ −

∫

{−1≤u≤0}

u(χ− min{KR,L ∗ χ, 1})dx.Reall that we write −
∫ to denote Λ−2

∫ (regardless of volume of the integration domain).Our previous estimates in Proposition 2 and Lemma 2 readily apply to all but the last term. Noting
χ = 0 where u ≤ 0, assuming E ≤ Φ2 and with

−

∫

{−1≤u≤0}

−umin{KR,L ∗ χ, 1}dx .

(

−

∫

−1≤u≤0

u2dx

)1/2(∫

KR,Ldx−

∫

χdx

)1/2

. E1/2 L

R

(

−

∫

χdx

)1/2

. E1/2 + Φ

(

L

R

)2

−

∫

χdxwe see that
−

∫

χdx . Φ

(

L

R

)2

−

∫

χdx+

(

−

∫

∣

∣|∇|−1(u− Φ)
∣

∣

2
dx

1

R2

1

ln L
R

−

∫

χdx

)1/2

+ E +RE + E1/2.As before we hoose L = C−1Φ−1/2R and use Young's inequality to absorb all ourrenes of −
∫

χdx onthe right hand side. After optimization in R we get
−

∫

χdx . ln−1/3 1

Φ

(

−

∫

∣

∣|∇|−1(u− Φ)
∣

∣

2
dx

)1/3

E2/3 + E + E1/2.23



With this we follow the proof of Proposition 2 to alulate for E ≪ Φ2 ≤ 1

Φ . E1/2 + −

∫

χdx . ln−1/3 1

Φ

(

−

∫

∣

∣|∇|−1(u− Φ)
∣

∣

2
dx

)1/3

E2/3 + E + E1/2

. ln−1/3 1

Φ

(

−

∫

∣

∣|∇|−1(u − Φ)
∣

∣

2
dx

)1/3

E2/3,that is
E & Φ3/2 ln1/2 1

Φ

(

−

∫

∣

∣|∇|−1(u − Φ)
∣

∣

2
dx

)−1/2

,as laimed.4 Energy funtionals and salingIn this setion we prepare the setting for the proofs of Theorems 1 and 2 by rewriting the energy funtionalsand providing the anisotropi resaling of the oordinates.Loalizing the stray �eld. First, we reformulate the magnetostati energy to inlude h in the mini-mization in order to make the problem more loal. Reall that we de�ned the �eld energy as the squared
L2-norm of the (−l, l)2-periodi �eld h : R3 → R3 given by the simpli�ed Maxwell equations

∇ · (h+m) = 0 and
∇× h = 0.As disussed with a bit more ontext in the appendix the energy may equivalently be expressed as theminimization

∫

(−l,l)2×R

|h|2dx = min
{

∫

(−l,l)2×R

|h̃|2dx
∣

∣

∣ h̃ : R
3 → R

3 is (−l, l)2-periodi in x′,
∇ · (h̃+m) = 0

}

.Here and in the following the di�erential equations as in the last ondition are understood in the senseof distributions. We denote by x′ the variables ( x1
x2

) and do similarly for vetor �elds and derivatives.Hene, setting
eQ,d,t,l(m,h) :=

1

4l2

(

d2

∫

(−l,l)2×(−t,t)

|∇m|2dx+Q

∫

(−l,l)2×(−t,t)

|m′|2dx+

∫

(−l,l)2×R

|h|2dx

)we have
e(Q, d, t, l) = min

{

eQ,d,t,l(m,h)
∣

∣

∣m,h : R
3 → R

3 are (−l, l)2-periodi in x′,
|m|2 =

{

1 for x3 ∈ (−t, t),

0 otherwise,
∇ · (h+m) = 0

}

.24



Resaling. We now resale the lengths, �elds and energy to more onvenient units. The horizontallengths are saled so that the width of bulk domains is of order 1, i.e.
x′ = (dQ1/2)1/3t2/3x̂′ and l = (dQ1/2)1/3t2/3 l̂,the vertial length is normalized so that the sample is on the interval (−1, 1) in x̂3-diretion, i.e.

x3 = tx̂3.In order to retain the struture of the magneti �eld, we have to resale the horizontal �eld aording to
h′ =

(dQ1/2)1/3t2/3

t
ĥ′ =

(

dQ1/2

t

)1/3

ĥ′and keep the vertial omponent h3 = ĥ3 to ensure ∇ · h = 1
t ∇̂ · ĥ. For onsisteny we write m = m̂.With these resalings in the oordinates it is onvenient to also resale the energy density as

e = (dQ1/2)2/3t1/3êin order to non-dimensionalize the weights in the energy. We write the energy in the new oordinatesand quantities
e = (dQ1/2)2/3t1/3ê =

t

4l̂2

(

d2

∫

(−l̂,l̂)×(−1,1)

∣

∣

∣

∣

(

1

(dQ1/2)1/3t2/3
∇̂′

1
t

∂
∂x̂3

)

m̂

∣

∣

∣

∣

2

dx̂

+Q

∫

(−l̂,l̂)×(−1,1)

|m̂′|2dx̂ +

∫

(−l̂,l̂)2×R

∣

∣

∣

∣

(

(dQ1/2)1/3t2/3

t ĥ′

ĥ3

)∣

∣

∣

∣

2

dx̂
)

,and thus
ê =

1

4l̂2

(

(

d

tQ

)2/3 ∫

(−l̂,l̂)2×(−1,1)

∣

∣

∣

∣

(

∇̂′
(

dQ1/2

t

)1/3
∂

∂x̂3

)

m̂

∣

∣

∣

∣

2

dx̂

+

(

tQ

d

)2/3 ∫

(−l̂,l̂)×(−1,1)

|m̂′|2dx̂+

∫

(−l̂,l̂)2×R

∣

∣

∣

∣

(

ĥ′
(

t

dQ1/2

)1/3
ĥ3

)∣

∣

∣

∣

2

dx̂

)

=
1

4l̂2

(

δ

∫

(−l̂,l̂)2×(−1,1)

∣

∣

∣

(

∇̂′

ε ∂
∂x̂3

)

m̂
∣

∣

∣

2

dx̂+
1

δ

∫

(−l̂,l̂)×(−1,1)

|m̂′|2dx̂+

∫

(−l̂,l̂)2×R

∣

∣

∣

(

ĥ′

1
ε ĥ3

)∣

∣

∣

2

dx̂

)

=: êδ,ε,l̂(m̂, ĥ)when we set
δ :=

(

d

tQ

)2/3

=
d/Q1/2

(dQ1/2)1/3t2/3
=

Bloh wall widthbulk domain widthand
ε :=

(

dQ1/2

t

)1/3

=
(dQ1/2)1/3t2/3

t
=

bulk domain widthsample thikness .The resaling of h′ now reads h′ = εĥ′ and the onstraints turn into
|m̂|2 =

{

1 for x̂3 ∈ (−1, 1),

0 otherwise25



and
∇̂′ · (ĥ+

1

ε
m̂′) +

∂

∂x̂3
(ĥ3 + m̂3) = 0.Finally, observe that we an now onveniently haraterize the parameter regime of interest beause

Q ≫ 1, dQ1/2 ≪ t, and (dQ1/2)1/3t2/3 ≪ l are equivalent to δ ≪ ε2, ε2 ≪ 1, and 1 ≪ l̂, respetively.Combining, we are interested in
δ ≪ ε2 ≪ 1 ≪ l̂.Hene, we de�ne

ê(δ, ε, l̂) := min
{

êδ,ε,l̂(m̂, ĥ)
∣

∣m̂, ĥ : R
3 → R

3, (−l̂, l̂)2-periodi, |m̂|2 =

{

1 if x̂3 ∈ (−1, 1),

0 otherwise,
∇̂′ · (ĥ′ +

1

ε
m̂′) +

∂

∂x̂3
(ĥ3 + m̂3) = 0

}and to prove Theorem 2 we have to show that
lim

δ/ε2→0,ε→0,l̂→∞
ê(δ, ε, l̂) ∈ (0,∞),i.e. that the limit exists and is a stritly positive real number. Beause we frequently have to takesimultaneous limits we introdue the notation

lim
δ≪ε2≪1≪l̂

ê(δ, ε, l̂) := lim
δ/ε2→0,ε→0,1/l̂→0

ê(δ, ε, l̂),where, as with usual limits of real variables, we say that the limit exists if all sequenes of (positive)parameters satisfying the limiting relations, i.e. suh that all quotients of the left hand side and righthand side of ¿≪ ¾ onverge to 0, have a limit that is independent of the partiular hoie of the sequene.Having adequately reformulated the problem, we proeed from this point using the resaled quantitiesexlusively and drop all ¿̂ ¾.We now disuss the various energy funtionals and minimization problems that are useful in the followinganalysis. Our starting point is the energy
eδ,ε,l(m,h) =

1

4l2

(

δ

∫

(−l,l)2×(−1,1)

∣

∣

(

∇′

ε∂3

)

m
∣

∣

2
dx +

1

δ

∫

(−l,l)2×(−1,1)

|m′|
2
dx +

∫

(−l,l)2×R

∣

∣

∣

(

h′

1
ε h3

)∣

∣

∣

2

dx

)

,and its minimum on the periodi on�gurations
ep(δ, ε, l) = min

{

eδ,ε,l(m,h)
∣

∣

∣m,h : R
3 → R

3, (−l, l)2-periodi, |m|2 =

{

1 if x3 ∈ (−1, 1),

0 otherwise,
∇′ · (h′ +

1

ε
m′) + ∂3(h3 +m3) = 0

}

.We also introdue the renormalized, sharp interfae energy where m′ and h3 have vanished, the exhangeand anisotropy terms have been replaed by a BV -norm, and ∂3m3 has eased to play a role. Therenormalized energy funtional is
el(m3, h

′) =
1

4l2

(

2

∫

[−l,l)2×(−1,1)

|∇′m3|dx +

∫

(−l,l)2×R

|h′|
2
dx

)26



and we onsider the orresponding minimization problem amongst periodi m3, h
′, i.e. we are interestedin

ep(l) = min
{

el(m3, h
′)
∣

∣

∣m3 : R
3 → R, h′ : R

3 → R
2, (−l, l)2-periodi, m2

3 =

{

1 if x3 ∈ (−1, 1),

0 otherwise,
∇′ · h′ + ∂3m3 = 0

}

.The �rst term in the energy is understood in the sense of BV -funtions periodi in x′, i.e.
∫

[−l,l)2×(−1,1)

|∇′m3|dx

= sup
{

∫

(−l,l)2×(−1,1)

m3 ∇
′ · ξ′dx

∣

∣

∣ ξ′ ∈ C∞(R2 × R), (−l, l)2-periodi in x′,
|ξ′| ≤ 1 in (−l, l)2 × (−1, 1)

}

.Although the half-open fundamental ell is not used on the right hand side, we use it to be onsistentwith the interpretation of the integral as the measure |∇′m3| of the domain of integration.We remark that the redued energy enfores that m3 vanishes weakly at the top and bottom sampleboundary beause �niteness of the �eld term exludes jumps of m3 in the x3-diretion. But then the�eld vanishes outside the sample domain. Thus one ould also presribe m3 to vanish weakly at top andbottom as boundary onditions and only take integrals over the sample domain. This insight is ruialto justify Theorem 3 and used in its proof in Setion 8.As m3 ∈ {±1} almost everywhere in (−l, l)2 × (−1, 1) we have an interpretation of the redued BV -gradient as a �sliewise measure� of the interfae that orresponds to the usual geometri interpretationof the total gradient of a harateristi funtion of a set as the perimeter. To be preise,
∫

[−l,l)2×(−1,1)

|∇′m3|dx = 2

∫ 1

−1

H
1(∂{m3( · , x3) = 1})dx3.Note, however, that to make this interpretation rigorous one needs to show that the distribution usedabove to de�ne the left hand side indeed is represented by a measure that is absolutely ontinuous withrespet to the Lebesgue measure dx3. For energy minimizers, the argument in the proof of [KM94,Lemma 2.6℄ is also valid in the present setting. We do not use this interpretation exept in onstrutionswhere the absolute ontinuity is evident.Loosely speaking, one key message of Theorem 2 is the following: As the system size l beomes largew.r.t. the intrinsi length sale of the pattern of Figure 2, boundary onditions beome irrelevant. Thisphenomenon is reminisent of Gibbs states in Ising models below the ritial temperature. In fat, weshall use a similar analysis tool by working with di�erent boundary onditions: Next to the periodiboundary onditions, we shall use free boundary onditions, i.e. onsider

ef (δ, ε, l) = min
{

eδ,ε,l(m,h)
∣

∣

∣m,h : (−l, l)2 × R → R
3, |m|2 =

{

1 if x3 ∈ (−1, 1),

0 otherwise,
∇′ · (h′ +

1

ε
m′) + ∂3(h3 +m3) = 0

}

,27



and
ef(l) = min

{

el(m3, h
′)
∣

∣

∣m3 : (−l, l)2 × R → R, h′ : (−l, l)2 × R → R
2,

m2
3 =

{

1 if x3 ∈ (−1, 1),

0 otherwise, ∇′ · h′ + ∂3m3 = 0
}

.As disussed for the full energy, the role of h or h′ is to allow a loal formulation of the stray �eldenergy. Equivalently, we ould write the orresponding terms as negative norms, haraterized either bya Fourier-multiplier or via solving an auxiliary problem, and the energies as only depending on m or m3.Inspired by these interpretations of h and h′ we introdue the formal notation
∫

(−l,l)2×R

∣

∣|∇′|−1∂3m3

∣

∣

2
dx = min

{

∫

(−l,l)2×R

|h′|2dx
∣

∣

∣h′ : R
2 × R → R

2 is (−l, l)2-periodi in x′,
∇′ · h′ + ∂3m3 = 0 in R

3
}

,and
∫

(−l,l)2×R

∣

∣

∣(|∇′|2 + ε2|∂3|
2)−1/2∂3m3

∣

∣

∣

2

dx

= min
{

∫

(−l,l)2×R

∣

∣

(

h′

1
ε h3

)

∣

∣

2
dx
∣

∣

∣ h : R
2 × R → R

3 is (−l, l)2-periodi in x′,
∇ · h+ ∂3m3 = 0 in R

3
}

. (10)To onlude this setion let us brie�y onsider the saling behavior of the sharp interfae energy. Westart with the energy (not divided by the ross-setion area) on a x′-periodi domain (−l, l)2 × (−t, t)

El,t(m3, h
′) = 2

∫

[−l,l)2×(−t,t)

|∇′m3|dx+

∫

(−l,l)2×R

|h′|2dxfor on�gurations
m3 : (−l, l)2 × R → R, h′ : (−l, l)2 × R → R

2with
m2

3 =

{

1 if x3 ∈ (−1, 1),

0 otherwiseand
∇′ · h′ + ∂3m3 = 0. (11)Saling the oordinate in the magnetization m̃3(sx′x′, sx3x3) = m3(x

′, x3) and the �eld as
h̃′(sx′x′, sx3x3) =

sx′

sx3

h′(x′, x3)preserves (11). Then
Esx′ l,sx3 t(m̃3, h̃

′) = 2s2x′sx3

∫

(−l,l)2×(−t,t)

s−1
x′ |∇′m3|dx + s2x′sx3

∫

(−l,l)2×R

(

sx′

sx3

)2

|h′|2dx.After the equilibrating hoie sx3 = s, sx′ = s2/3 this beomes
Es2/3l,st(m̃3, h̃

′) = s5/3El,t(m3, h
′).28



5 Convergene to the sharp interfae modelThis setion is devoted to the proof of the almost-Γ-limit Theorem 1. We �rst restate it in the resaledoordinates.Theorem 4 (Theorem 1 made preise). For �xed length l, the redued energy is an upper and lower
Γ-type limit of the full energy for

δ/ε2 → 0 and ε2 → 0 (12)in the following sense.1. The energy of any pair (m3, h
′) admissible in ep(l) an be approximated in the regime (12) by theenergy of pairs (m(ε,δ), h(ε,δ)) admissible for ep(ε, δ, l) suh that
lim

δ≪ε2≪1
eδ,ε,l(m

(ε,δ), h(ε,δ)) ≤ el(m3, h
′).2. If δ(ν), ε(ν) onverge as in (12) and (m(ν), h(ν)) is admissible for ef (δ(ν), ε(ν), l) with

m
(ν)
3

w∗
−−⇀m3 in L∞((−l, l)2 × R) and h(ν)′ w

−⇀ h′ in L2((−l, l)2 × R)then (m3, h
′) is admissible for ef (l) and

el(m3, h
′) ≤ lim inf

ν↑∞
eδ(ν),ε(ν),l(m

(ν), h(ν)).Note that the theorem does not provide a Γ-limit result beause the lower bound and the approximationare done in regimes with di�erent boundary onditions and we do not atually verify the approximationproperty of our prospetive reovery sequene. This ould be �xed, but as our main interest is Theorem 2,we omit stating and proving a theorem onerning a proper Γ-limit.We start with the more straightforward lower bound, whih is demonstrated by a ompensated ompat-ness argument that takes into aount the anisotropy. Then we address the upper bound whih requiresa more involved proof.We thus begin with the proof of Theorem 4, part 2. This is also used to show
lim inf
δ≪ε2≪1

ef (δ, ε, l) ≥ ef (l).for the proof of Theorem 2.Proof of Theorem 4, part 2. We �x l and reall that we aim to show the following: Given any sequenes
{δ(ν), ε(ν)} ⊂ (0,∞) let (m(ν), h(ν)) be admissible for ef (δ(ν), ε(ν), l) with

δ(ν) → 0, ε(ν) → 0,
δ(ν)

(ε(ν))2
→ 0,

m
(ν)
3

w∗
−−⇀m3 in L∞((−l, l)2 × R), (13)and

h(ν)′ w
−⇀ h′ in L2((−l, l)2 × R)29



as ν → ∞, then
(m3, h

′) is admissible for ef(l) and
el(m3, h

′) ≤ lim inf
ν↑∞

eδ(ν),ε(ν),l(m
(ν), h(ν)).Without ompromising generality, we may assume that the energy eδ(ν),ε(ν),l(m

(ν), h(ν)) remains bounded.In partiular, this implies that
1

δ(ν)

∫

(−l,l)2×(−1,1)

|m(ν)′|2dx and ∫

(−l,l)2×R

∣

∣

∣

∣

1

ε(ν)
h

(ν)
3

∣

∣

∣

∣

2

dxare bounded and with δ(ν)

(ε(ν))2
→ 0 we see

∫

(−l,l)2×(−1,1)

∣

∣

∣

∣

1

ε(ν)
m(ν)′

∣

∣

∣

∣

2

dx→ 0 as well as ∫

(−l,l)2×R

|h
(ν)
3 |2dx→ 0. (14)Thus, the di�erential equation

∇′ ·
(

h(ν)′ +
1

ε(ν)
m(ν)′

)

+ ∂3(h
(ν)
3 +m

(ν)
3 ) = 0yields

∇′ · h′ + ∂3m3 = 0in the limit as desired.We �rst bound 4l2eδ(ν),ε(ν),l(m
(ν), h(ν)) from below. In the sample the magnetization satis�es the point-wise estimate

δ(ν)
∣

∣

∣

(

∇′

ε(ν)∂3

)

m(ν)
∣

∣

∣

2

+
1

δ(ν)

∣

∣

∣m(ν)′
∣

∣

∣

2

≥ δ(ν)
∣

∣

∣∇′m(ν)
∣

∣

∣

2

+
1

δ(ν)

∣

∣

∣m(ν)′
∣

∣

∣

2

≥ δ(ν)
∣

∣

∣
∇′|m(ν)|

∣

∣

∣

2

+
1

δ(ν)

∣

∣

∣
m(ν)′

∣

∣

∣

2

= δ(ν) (m
(ν)
3 )2

1 − (m
(ν)
3 )2

∣

∣

∣∇′m
(ν)
3

∣

∣

∣

2

+
1

δ(ν)

(

1 − (m
(ν)
3 )2

)

≥ 2
∣

∣

∣∇′m
(ν)
3

∣

∣

∣ .Dropping the third omponent in h we see that the renormalized energy provides a lower bound
4l2eδ(ν),ε(ν),l(m

(ν), h(ν))

= δ(ν)

∫

(−l,l)2×(−1,1)

∣

∣

∣

(

∇′

ε(ν)∂3

)

m(ν)
∣

∣

∣

2

dx+
1

δ(ν)

∫

(−l,l)2×(−1,1)

∣

∣

∣
m(ν)′

∣

∣

∣

2

dx

+

∫

(−l,l)2×R

∣

∣

∣

(

h(ν)′

1
ε h

(ν)
3

)∣

∣

∣

2

dx

≥ 2

∫

(−l,l)2×(−1,1)

∣

∣

∣∇′m
(ν)
3

∣

∣

∣ dx+

∫

(−l,l)2×R

∣

∣

∣h(ν)′
∣

∣

∣

2

dx.30



By the lower semiontinuity of onvex funtionals under weak onvergene this implies
lim inf

ν↑∞
4l2eδ(ν),ε(ν),l(m

(ν), h(ν)) ≥ 2

∫

(−l,l)2×(−1,1)

|∇′m3| dx+

∫

(−l,l)2×R

|h′|
2
dx

= 4l2el(m3, h
′).It remains to show

m2
3 = 1 a.e. in (−l, l)2 × (−1, 1).Sine
|m(ν)|2 = 1 if x3 ∈ (−1, 1),this follows upon establishing

m(ν)′ −→ 0 in L2((−l, l)2 × (−1, 1)),

m
(ν)
3 −→ m3 pointwise a.e. in (−l, l)2 × (−1, 1).In other words, we need ompatness (only) for the nononvex part. The �rst onvergene follows readilyfrom (14). The seond is a onsequene of (13) if we an show ompatness of {m(ν)

3 }ν↑∞ in form of
∫

(−l̃,l̃)2×R

|m
(ν)
3 (x′ + h, x3) −m

(ν)
3 (x′, x3)|dx ≤ C|h| for |h| ≤ l − l̃, (15)

(

∫

(−l̃,l̃)2×R

|m
(ν)
3 (x′, x3 + τ) −m

(ν)
3 (x′, x3)|

2dx

)1/2

≤ C|τ |1/3 + o(1) (16)for |τ | ≤ (l − l̃)3/2,for l̃ ≤ l, that is, the modulus of ontinuity w.r.t. x′ and x3 must derease uniformly in L1 and L2,respetively, as ν ↑ ∞. Then, by the usual Lp-ompatness riterion of M. Riesz (see e.g. [Ada75,Theorem 2.21℄) the sequene is preompat in L1. The other two requirements for the appliation ofM. Riesz's riterion, uniform boundedness and that the norm taken on ever thinner boundary layersvanishes uniformly, are evident beause |m
(ν)
3 | ≤ 1 and l is �xed. As we already know the limit ofonverging subsequenes, m(ν)

3 → m3 in L1 and thus pointwise a.e., we are done upon establishing (15)and (16).Inequality (15) is an immediate onsequene of our bound on el(m
(ν)
3 , h(ν)′) beause for |h| ≤ l− l̃

∫

(−l̃,l̃)2×R

|m
(ν)
3 (x′ + h, x3) −m

(ν)
3 (x′, x3)|dx

=

∫

(−l̃,l̃)2×(−1,1)

|m
(ν)
3 (x′ + h, x3) −m

(ν)
3 (x′, x3)|dx

≤ |h|

∫

(−l,l)2×(−1,1)

|∇′m
(ν)
3 |dx ≤ C|h|.For the seond inequality, (16), we use a ompensated ompatness argument in the sense that we anombine the uniform modulus of ontinuity in x′ in a strong norm (f. (15)) with the uniform modulusof ontinuity in x3 in a weak (negative) norm provided by the �eld energy to obtain a uniform modulusof ontinuity in x3 also in a strong norm (f. (16)). We �x a smooth onvolution kernel ϕ : R2 → R suh31



that ϕ ≥ 0, ϕ(x′) = 0 for |x′| ≥ 1, ϕ(−x′) = ϕ(x′), and ∫
R2 ϕdx

′ = 1 and denote by a subsript α theonvolution with 1
α2ϕ( ·

α ). We observe that the equation
∂3(h

(ν)
3 +m

(ν)
3 ) = −∇′ · (h(ν)′ +

1

ε(ν)
m(ν)′)in (−l, l)2 × R implies for α ≤ l − l̃

∂3(h
(ν)
3 +m

(ν)
3 )α = −∇′ · (h(ν)′ +

1

ε(ν)
m(ν)′)αin (−l̃, l̃)2 × R.Hene

(

∫

(−l̃,l̃)2×R

∣

∣

∣∂3(h
(ν)
3 +m

(ν)
3 )α

∣

∣

∣

2

dx

)1/2

=

(

∫

(−l̃,l̃)2×R

∣

∣

∣

∣

∇′ · (h(ν)′ +
1

ε(ν)
m(ν)′)α

∣

∣

∣

∣

2

dx

)1/2

≤

∫

R2

∣

∣

∣

∣

1

α3
∇′ϕ

(

y′

α

)∣

∣

∣

∣

dy′

(

∫

(−l,l)2×R

∣

∣

∣

∣

h(ν)′ +
1

ε(ν)
m(ν)′

∣

∣

∣

∣

2

dx

)1/2

≤ C
1

α





(

∫

(−l,l)2×R

∣

∣

∣h(ν)′
∣

∣

∣

2

dx

)1/2

+
δ(ν)

(ε(ν))2
1

δ(ν)

(

∫

(−l,l)2×R

∣

∣

∣m(ν)′
∣

∣

∣

2

dx

)1/2




≤ C
1

α
· (C + o(1)C) ≤ C

1

α
.As a onsequene,

(

∫

(−l̃,l̃)2×R

|(m
(ν)
3 + h

(ν)
3 )α(x′, x3 + τ) − (m

(ν)
3 + h

(ν)
3 )α(x′, x3)|

2dx

)1/2

= C
|τ |

α
.Finally, we observe that

∫

(−l,l)2×R

|h
(ν)
3 |2dx ≤ (ε(ν))2

∫

(−l,l)2×R

∣

∣

∣

∣

1

ε(ν)
h

(ν)
3

∣

∣

∣

∣

2

dx = o(1).32



Combining these two estimates with inequality (15), we obtain for α ≤ l − l̃

(

∫

(−l̃,l̃)2×R

|m
(ν)
3 (x′, x3 + τ) −m

(ν)
3 (x′, x3)|

2dx

)1/2

≤

(

∫

(−l̃,l̃)2×R

|(m
(ν)
3 + h

(ν)
3 )α(x′, x3 + τ) − (m

(ν)
3 + h

(ν)
3 )α(x′, x3)|

2dx

)1/2

+ 2

(

∫

(−l̃,l̃)2×R

|(h
(ν)
3 )α|

2dx

)1/2

+ 2

(

∫

(−l̃,l̃)2×R

|(m
(ν)
3 )α −m

(ν)
3 |2dx

)1/2

≤ C
|τ |

α
+ 2

(

∫

(−l,l)2×R

|h
(ν)
3 |2dx

)1/2

+ 23/2

(

∫

(−l̃,l̃)2×R

|(m
(ν)
3 )α −m

(ν)
3 |dx

)1/2

≤ C
|τ |

α
+ o(1) + 23/2

(

sup
|k′|≤α

∫

(−l̃,l̃)2×R

|m
(ν)
3 (x′ + k′, x3) −m

(ν)
3 (x′, x3)|dx

)1/2

≤ C
|τ |

α
+ o(1) + Cα1/2.With the hoie of α = |τ |2/3 this is (16), and the above reasoning yields the desired m2

3 = 1 for a.e.
x ∈ (−l, l)2 × (−1, 1).Thus (m3, h

′) is admissible and the proof of our laim is omplete.We now wish to prove Theorem 4, part 1, also needed to obtain
lim sup
δ≪ε2≪1

ep(δ, ε, l) ≤ ep(l)in the proof of Theorem 2.The approximation is done in two steps. In the �rst, given by Lemma 3, we energetially approximate
(m3, h

′) admissible for ep(l) by a pair (m3, h) for whih we allow a small third �eld omponent but requiresome additional regularity of m3 in the third diretion. This an be seen as a ounterpart to taking thelimit of extreme anisotropy. In the seond step we use Proposition 4 to �revert� the Modia-Mortola typepassage from a di�use to a sharp interfae energy. We defer the proof of that proposition to Setion 7.More preisely we introdue an intermediate energy
eε,l(m3, h) = (2l)−2

(

2

∫

[−l,l)2×(−1,1)

∣

∣

(

∇′

ε∂3

)

m3

∣

∣ dx+

∫

(−l,l)2×R

∣

∣

∣

(

h′

1
ε h3

)∣

∣

∣

2

dx

)for pairs (m3, h) satisfying
m3 : R

2 × R → R, h : R
2 × R → R

3 are (−l, l)2-periodi in x′,
m2

3 =

{

1 if x3 ∈ (−1, 1),

0 otherwise, and ∇ · h+ ∂3m3 = 0 in R
3

(17)33



for use in the following approximation lemma. As disussed for the other energies, we an also split theminimization in h and m3, replae the seond term by the expression
∫

(−l,l)2×R

∣

∣

∣(|∇′|2 + ε2|∂3|
2)−1/2∂3m3

∣

∣

∣

2

dx

= min
{

∫

(−l,l)2×R

∣

∣

(

h′

1
ε h3

)

∣

∣

2
dx
∣

∣

∣ h : R
2 × R → R

3 is (−l, l)2-periodi in x′,
∇ · h+ ∂3m3 = 0 in R

3
}and write el,ε(m3) to emphasize that the minimal energy depends only on m3.Lemma 3. Fix m3 and the assoiated h′ in the admissible lass in the minimization problem in for ep(l),i.e.

m3 : R
3 → R, h′ : R

3 → R
2, (−l, l)2-periodi,

m2
3 =

{

1 if x3 ∈ (−1, 1),

0 otherwise, ∇′ · h′ + ∂3m3 = 0.Then there exists a sequene {(m
(ε)
3 , h(ε))}ε↓0 satisfying (17) suh that
lim sup

ε≪1
eε,l(m

(ε)
3 , h(ε)) ≤ el(m3, h

′). (18)We postpone the proof of this lemma and �rst present the path from this approximation to the desiredresult of Theorem 4, part 1.Proof of Theorem 4, part 1. Fix an α ≪ 1. Using Proposition 4 (see Setion 7) with the slight general-ization of Remark 3 we obtain from m
(ε)
3 funtions m(ε,δ)

3 suh that
m

(ε,δ)
3 is (−l, l)2 periodi in x′ and (m

(ε,δ)
3 )2

{

≤ 1 for x3 ∈ (−1, 1),

= 0 otherwisesuh that
δ

∫

(−l,l)2×(−1,1)

1

1 − (m
(ε,δ)
3 )2

∣

∣

∣

(

∇′

ε∂3

)

m
(ε,δ)
3

∣

∣

∣

2

dx+
1

δ

∫

(−l,l)2×(−1,1)

1 − (m
(ε,δ)
3 )2 dx

≤ (1 + α)2

∫

[−l,l)2×(−1,1)

∣

∣

∣

(

∇′

ε∂3

)

m
(ε)
3

∣

∣

∣ dx (19)and
∫

(−l,l)2×(−1,1)

(m
(ε,δ)
3 −m

(ε)
3 )2dx ≤ C(α)δ

∫

[−l,l)2×(−1,1)

∣

∣

∣

(

∇′

ε∂3

)

m
(ε)
3

∣

∣

∣
dx. (20)We then set

m
(ε,δ)
1 =

{
√

1 − (m
(ε,δ)
3 )2 for x3 ∈ (−1, 1),

0 otherwise,and
m

(ε,δ)
2 ≡ 034



so that
∣

∣

∣m(ε,δ)
∣

∣

∣

2

=

{

1 for x3 ∈ (−1, 1),

0 otherwise.We also set
h(ε,δ)′ = h(ε)′ −

1

ε
m(ε,δ)′ and h

(ε,δ)
3 = h

(ε)
3 +m

(ε)
3 −m

(ε,δ)
3 ,so that (17) turns into

∇′ · (h(ε,δ)′ +
1

ε
m(ε,δ)′) + ∂3(h

(ε,δ)
3 +m

(ε,δ)
3 ) = 0in R3 and see that (m(ε,δ), h(ε,δ)) is admissible for ep(δ, ε, l). We rewrite the �rst two terms of the energyusing |m|2 = 1 and m2 = 0

δ

∫

(−l,l)2×(−1,1)

∣

∣

∣

(

∇′

ε∂3

)

m(ε,δ)
∣

∣

∣

2

dx+
1

δ

∫

(−l,l)2×(−1,1)

|m(ε,δ)′|2dx+

∫

(−l,l)2×R

∣

∣

∣

(

h(ε,δ)′

1
ε h

(ε,δ)
3

)∣

∣

∣

2

dx

= δ

∫

(−l,l)2×(−1,1)

1

1 − (m
(ε,δ)
3 )2

∣

∣

∣

(

∇′

ε∂3

)

m
(ε,δ)
3

∣

∣

∣

2

dx+
1

δ

∫

(−l,l)2×(−1,1)

1 − (m
(ε,δ)
3 )2 dx

+

∫

(−l,l)2×R

∣

∣

∣

(

h(ε,δ)′

1
ε h

(ε,δ)
3

)∣

∣

∣

2

dxand apply Young's inequality in the form (a + b)2 ≤ (1 + α)a2 + (1 + α−1)b2 to split the �eld term andobtain
≤ δ

∫

(−l,l)2×(−1,1)

1

1 − (m
(ε,δ)
3 )2

∣

∣

∣

(

∇′

ε∂3

)

m
(ε,δ)
3

∣

∣

∣

2

dx+
1

δ

∫

(−l,l)2×(−1,1)

1 − (m
(ε,δ)
3 )2 dx

+ (1 + α)

∫

(−l,l)2×R

∣

∣

∣

(

h(ε)′

1
ε h

(ε)
3

)∣

∣

∣

2

dx+
C

α

∫

(−l,l)2×(−1,1)

∣

∣

∣

∣

(

1
ε m(ε,δ)′

1
ε (m

(ε)
3 −m

(ε,δ)
3 )

)∣

∣

∣

∣

2

dx,expanding the last integrand and applying (19) and (20) we estimate
= δ

∫

(−l,l)2×(−1,1)

1

1 − (m
(ε,δ)
3 )2

∣

∣

∣

(

∇′

ε∂3

)

m
(ε,δ)
3

∣

∣

∣

2

dx+
1

δ

∫

(−l,l)2×(−1,1)

1 − (m
(ε,δ)
3 )2 dx

+ (1 + α)

∫

(−l,l)2×R

∣

∣

∣

(

h(ε)′

1
ε h

(ε)
3

)∣

∣

∣

2

dx

+
C(α)

ε2

(

∫

(−l,l)2×(−1,1)

1 − (m
(ε,δ)
3 )2dx+

∫

(−l,l)2×(−1,1)

(m
(ε,δ)
3 −m

(ε)
3 )2dx

)(19),(20)
≤

(

1 + α+ C(α)
δ

ε2

)

(

2

∫

[−l,l)2×(−1,1)

∣

∣

∣

(

∇′

ε∂3

)

m
(ε)
3

∣

∣

∣
dx+

∫

(−l,l)2×R

∣

∣

∣

(

h(ε)′

1
ε h

(ε)
3

)∣

∣

∣

2

dx

)

=

(

1 + α+ C(α)
δ

ε2

)

4l2el,ε(m
(ε)
3 , h(ε)).Combining this estimate in the limit δ ≪ ε2 ≪ 1 with (18) from Lemma 3 we onlude

lim sup
δ≪ε2≪1

ep(δ, ε, l) ≤ lim sup
ε2≪1

(1 + α) el,ε(m
(ε)
3 , h(ε))

(18)
≤ (1 + α)el(m3, h).As 0 < α≪ 1 was arbitrary, we obtain the desired onlusion by using a diagonal sequene for the abovelimit relation and α ↓ 0. 35



Proof of Lemma 3. Before we begin with the proof in full tehnial detail, let us point out the key ideas.In order to approximate m3 with funtions having some regularity in x3-diretion, the �rst thing thatomes to mind is taking a onvolution. This, however, does not play well with the requirement thatthe third omponent of the magnetization has unit length beause the other two omponents vanish.So instead we approximate m3 by pieewise (in x3-diretion) onstant funtions and obtain some BV -regularity also in this diretion in the following way: For a third omponent in the BV -norm, we needto ontrol the L1-norm (with respet to the Hausdor� measure) of the jumps. The �eld term only yieldsa bound in the H−1-norm, so we have to resort to interpolation (using Lemma 4) with the x′-perimeterover whih we have ontrol. The jump norm is small in L2 (and thus also L1) if the weight ε is smallompared to the disretization lengthsale τ .We inur, however, the problem that now the �eld energy measured as ∫ ||∇′|−1∂3m3|2dx is in�nite in thepresene of jumps. We thus need to allow an ε-small third omponent in the �eld term, i.e. introdue a
∂3-term in the inverted operator (f. (10)). As the jumps are essentially a surfae phenomenon, we want,roughly speaking, to ontrol the H−1/2-norm. To that end we need to interpolate again between the
H−1-norm on a slowly hanging omponent and the domain perimeter or, more preisely, the L2-normon the osillations of short wave length (this happens on the level of Fourier series in (28)).We begin with a few preparations in order to be able to de�ne m(ε)

3 . Let us denote by Pλ the projetionon the Fourier modes n′ with πλ|n′

l | ≥ 1, i.e.
F ′(Pλζ)(n

′) =

{

(F ′ζ)(n′) if πλ|n′

l | ≥ 1,

0 otherwise, (21)where F ′(ζ)(n′) is the Fourier oe�ient
F ′(ζ)(n′) =

1

2l

∫

(−l,l)2
exp(−πin′ ·

x′

l
)ζ(x′)dx′.Hene Pλζ only sees the (horizontal) wavelengths smaller than λ.The Fourier spae representation of negative Sobolev norm appearing in the sharp interfae �eld energyis

∫

(−l,l)2×R

|h′|2dx =

∫

(−l,l)2×R

∣

∣|∇′|−1∂3m3

∣

∣

2
dx =

∫

R

∑

n′∈Z2

l2

π2|n′|2
|(F ′∂3m3)(n

′)|2dx3,see also the appendix. We need to make more preise the notion that small lengthsale osillations in themagnetization, for our purposes Pλ∂3m3 with λ small, ontribute little to the �eld energy. Note that anadmissible m3 annot be onstant in x3-diretion. As suh we have
∫

(−l,l)2×R

∣

∣|∇′|−1∂3m3

∣

∣

2
dx > 0,and thus

∫

(−l,l)2×R

∣

∣|∇′|−1Pλ∂3m3

∣

∣

2
dx ≤ (ω(λ))2

∫

(−l,l)2×R

∣

∣|∇′|−1∂3m3

∣

∣

2
dx (22)with some modulus funtion ω > 0 satisfying limλ↓0 ω(λ) = 0 and depending only on m3. We rewrite(22) as

1

ω(λ)

∫

(−l,l)2×R

∣

∣|∇′|−1Pλ∂3m3

∣

∣

2
dx ≤ ω(λ)4l2el(m3).We wish to �nd good layers to introdue the disontinuities in our envisioned x3-pieewise onstantapproximation. This means that we want to limit the �slie� energy in these layers. Still integrating over36



all the domain we note that replaing x3-derivatives by di�erene quotients does not enlarge the normsinvolved, thus
∫ +∞

−∞

(

2

∫

(−l,l)2
|∇′m3| dx

′ +

∫

(−l,l)2

∣

∣

∣

∣

|∇′|−1 1

τ
(m3(x

′, x3 + τ) −m3(x
′, x3))

∣

∣

∣

∣

2

dx′

+
1

ω(λ)

∫

(−l,l)2

∣

∣

∣

∣

|∇′|−1 1

τ
Pλ(m3(x

′, x3 + τ) −m3(x
′, x3))

∣

∣

∣

∣

2

dx′

)

dx3

≤ (1 + ω(λ))4l2el(m3, h
′).We are now able to selet a set of slies that is good for the energy on the left hand side of this inequality.For any �xed N ∈ N we set τ = 1

N . By Fubini's theorem not all slies an be above average and so thereexists a x0
3 ∈ (0, τ) depending only on m3, λ and N suh that

∑

k∈Z

τ

(

2

∫

(−l,l)2

∣

∣

∣∇′m
(k)
3

∣

∣

∣ dx′ +

∫

(−l,l)2

∣

∣

∣

∣

|∇′|−1 1

τ
[m3]

(k)

∣

∣

∣

∣

2

dx′

+
1

ω(λ)

∫

(−l,l)2

∣

∣

∣

∣

|∇′|−1 1

τ
Pλ[m3]

(k)

∣

∣

∣

∣

2

dx′

)

≤
∑

k∈Z

τ−

∫

(0,τ)

(

2

∫

(−l,l)2

∣

∣

∣∇′m
(k)
3

∣

∣

∣ dx′ +

∫

(−l,l)2

∣

∣

∣

∣

|∇′|−1 1

τ
[m3]

(k)

∣

∣

∣

∣

2

dx′

+
1

ω(λ)

∫

(−l,l)2

∣

∣

∣

∣

|∇′|−1 1

τ
Pλ[m3]

(k)

∣

∣

∣

∣

2

dx′

)

dx3

≤ (1 + ω(λ))4l2el(m3). (23)Here we use the abbreviations m(k)
3 (x′) = m3(x

′, kτ + x0
3) and [m3]

(k) = m
(k+1)
3 −m

(k)
3 . To �nally obtaina andidate for m(ε)

3 we take the pieewise onstant (w.r.t. x3) interpolant
m̃3(x

′, x3) = m
(k)
3 (x′) for x3 ∈ [kτ, (k + 1)τ).Note that m̃3 is admissible for the ε-energy eε,l. We want to estimate eε,l(m̃3, h̃) with h̃ minimal forgiven m3. More preisely we are going to use an equivalent representation of the �eld energy. To preparewell, we use the interpolation estimate of Lemma 4 for (−l, l)2-periodi ϕ

(

∫

(−l,l)2
|Pλϕ|

2dx′

)1/2

≤ C

(

∫

[−l,l)2
|∇′ϕ|dx′

)1/3(

sup
(−l,l)2

|ϕ|

)1/3(
∫

(−l,l)2

∣

∣|∇′|−1Pλϕ
∣

∣

2
dx′

)1/6and onlude that for λ≪ 1 and small enough suh that ω(λ) ≤ C

∑

k∈Z

∫

(−l,l)2
|Pλ[m3]

(k)|2dx′

≤ C
∑

k∈Z

(

∫

[−l,l)2
|∇′m

(k)
3 |dx′ +

∫

[−l,l)2
|∇′m

(k+1)
3 |dx′

)2/3(
∫

(−l,l)2

∣

∣

∣|∇′|−1Pλ[m3]
(k)
∣

∣

∣

2

dx′

)1/3

≤ C

(

∑

k∈Z

∫

[−l,l)2
|∇′m

(k)
3 |dx′

)2/3(
∑

k∈Z

∫

(−l,l)2

∣

∣

∣|∇′|−1Pλ[m3]
(k)
∣

∣

∣

2

dx′

)1/3(23)
≤ C

(

1

τ
4l2el(m3)

)2/3
(

ω(λ)τ4l2el(m3)
)1/3

= Cω(λ)1/3 1

τ1/3
4l2el(m3). (24)37



Taking into aount that |[m3]
(k)| is either 0 or at least 1 (in fat 0 or 2 exept at the boundary), welikewise have

∑

k∈Z

∫

[−l,l)2
|[m3]

(k)| dx′ ≤
∑

k∈Z

∫

(−l,l)2
|[m3]

(k)|2dx′ ≤ C
1

τ1/3
4l2el(m3). (25)With these preparations we turn to estimate el(m̃3). We �rst bound the surfae term

2

∫

[−l,l)2×R

∣

∣

(

∇′

ε∂3

)

m̃3

∣

∣ dx ≤ 2

∫

[−l,l)2×R

|∇′m̃3|dx+ 2ε

∫

[−l,l)2×R

|∂3m̃3| dx

= 2
∑

k∈Z

τ

∫

[−l,l)2
|∇′m

(k)
3 |dx′ + 2ε

∑

k∈Z

∫

(−l,l)2
|[m3]

(k)|dx′(25)
≤

∑

k∈Z

τ2

∫

[−l,l)2
|∇′m

(k)
3 |dx′ + C

ε

τ1/3
4l2el(m3). (26)To takle the �eld term we take the Fourier series in x′ and the Fourier transform in x3. Writing

Gα(z3) = 1
αG

(

z3

α

) and G(ẑ3) = 1
2 exp(−|ẑ3|), the �eld term is

∫

(−l,l)2×R

∣

∣

∣(|∇′|2 + ε2|∂3|
2)−1/2∂3m̃3

∣

∣

∣

2

dx

=

∫

R

∑

n′∈Z2

1

π2(|n′|2/l2 + 4ε2ξ2)

∣

∣

∣

∣

∫

R

exp(−2πiξx3)∂3F
′(m̃3)(n

′, x3)dx3

∣

∣

∣

∣

2

dξ

=

∫

R

∑

n′∈Z2

1

π2(|n′|2/l2 + 4ε2ξ2)

∫

R

∫

R

exp(−2πiξx3)∂3F
′(m̃3)(n

′, x3)

exp(−2πiξy3)∂3F ′(m̃3)(n′, y3)dx3dy3dξ

=
∑

n′∈Z2

l2

π2|n′|2

∫

R

∫

R

(∫

R

1

1 + 4ε2l2ξ2/|n′|2
exp(−2πiξ(x3 − y3))dξ

)

∂3F
′(m̃3)(n

′, x3)∂3F ′(m̃3)(n′, y3)dx3dy3

=
∑

n′∈Z2

l2

π2|n′|2

∫

R

∫

R

(

π

2εl/|n′|
exp(−2π|x3 − y3||n

′|/2εl)

)

∂3F
′(m̃3)(n

′, x3)∂3F ′(m̃3)(n′, y3)dx3dy3

=
∑

n′∈Z2

l2

π2|n′|2

∫ +∞

−∞

∫ +∞

−∞

G εl
π|n′|

(x3 − y3)∂3(F
′(m̃3))(n

′, x3)∂3(F ′(m̃3))(n′, y3)dx3dy3.The above alulation is valid for smooth m̃3 and by approximation also for our pieewise onstant38



m̃3(x
′, · ). In this ase the two integrals on the right hand side are in fat sums, thus

∫

(−l,l)2×R

∣

∣

∣
(|∇′|2 + ε2|∂3|

2)−1/2∂3m̃3

∣

∣

∣

2

dx

=
∑

n′∈Z2

l2

π2|n′|2

∑

j∈Z

∑

k∈Z

G εl
π|n′|

((j − k)τ)F ′([m3]
(j))(n′)F ′([m3](k))(n′)

=
∑

n′∈Z2

l2

π2|n′|2
1

τ

∑

j∈Z

∑

k∈Z

G εl
πτ|n′|

(j − k)F ′([m3]
(j))(n′)F ′([m3](k))(n′)

≤
∑

n′∈Z2

l2

π2|n′|2
1

τ





∑

j∈Z

G εl
πτ|n′|

(j)





(

∑

k∈Z

|F ′([m3]
(k))(n′)|2

)

.Using the inequality exp(1/α) ≥ 1 + 1/α we observe that
∑

j∈Z

Gα(j) =
1

2α



−1 + 2

∞
∑

j=0

exp

(

−
1

α

)j


 =
1

2α

1 + exp(−1/α)

1 − exp(−1/α)
≤ 1 +

1

2α
,and so

∫

(−l,l)2×R

∣

∣

∣
(|∇′|2 + ε2|∂3|

2)−1/2∂3m̃3

∣

∣

∣

2

dx

≤
1

τ

∑

n′∈Z2

l2

π2|n′|2

∑

k∈Z

|F ′([m3]
(k))(n′)|2 +

1

2ε

∑

n′∈Z2

l

π|n′|

∑

k∈Z

|F ′([m3]
(k))(n′)|2. (27)The seond sum is an H−1/2-norm whih we estimate by interpolating between the H−1-norm and the

L2-norm for high wave numbers. More preisely, we estimate splitting the seond sum
∑

n′∈Z2

l

π|n′|

∑

k∈Z

|F ′([m3]
(k))(n′)|2

=
∑

n′∈Z2

πλ|n′|/l<1

l

π|n′|

∑

k∈Z

|F ′([m3]
(k))(n′)|2 +

∑

n′∈Z2

πλ|n′|/l≥1

l

π|n′|

∑

k∈Z

|F ′([m3]
(k))(n′)|2

≤
1

λ

∑

n′∈Z2

l2

π2|n′|2

∑

k∈Z

|F ′([m3]
(k))(n′)|2 + λ

∑

n′∈Z2

πλ|n′|/l≥1

∑

k∈Z

|F ′([m3]
(k))(n′)|2. (28)Thus using (23) and (24) we obtain for λ small enough suh that ω(λ) ≤ C

∫

(−l,l)2×R

∣

∣

∣(|∇′|2 + ε2|∂3|
2)−1/2∂3m̃3

∣

∣

∣

2

dx(27),(28)
≤

(

1

τ
+

1

2ελ

)

∑

n′∈Z2

l2

π2|n′|2

∑

k∈Z

|F ′([m3]
(k))(n′)|2 +

λ

2ε

∑

n′∈Z2

λπ|n′|/l≥1

∑

k∈Z

|F ′([m3]
(k))(n′)|2

=
(

1 +
τ

2ελ

)

∑

k∈Z

τ

∫

(−l,l)2

∣

∣

∣

∣

1

τ
|∇′|−1[m3]

(k)

∣

∣

∣

∣

2

dx′ +
λ

2ε

∑

k∈Z

∫

(−l,l)2

∣

∣

∣Pλ[m3]
(k)
∣

∣

∣

2

dx′(23),(24)
≤

∑

k∈Z

τ

∫

(−l,l)2

∣

∣

∣

∣

1

τ
|∇′|−1[m3]

(k)

∣

∣

∣

∣

2

dx′ + C
τ

ελ
4l2el(m3) + C

λω(λ)1/3

ετ1/3
4l2el(m3). (29)39



Combining (26) with (29) and employing (23) we see that
2

∫

[−l,l)2×R

∣

∣

(

∇′

ε∂3

)

m̃3

∣

∣ dx +

∫

(−l,l)2×R

∣

∣

∣(|∇′|2 + ε2|∂3|
2)−1/2∂3m̃3

∣

∣

∣

2

dx(26),(29)
≤

∑

k∈Z

τ

(

2

∫

(−l,l)2

∣

∣

∣∇′m
(k)
3

∣

∣

∣

2

dx′ +

∫

(−l,l)2

∣

∣

∣

∣

1

τ
|∇′|−1[m3]

(k)

∣

∣

∣

∣

2

dx′

)

+C

(

ε

τ1/3
+

τ

ελ
+
λω(λ)1/3

ετ1/3

)

4l2el(m3)(23)
≤ 4l2el(m3) + C

(

ω(λ) +
ε

τ1/3
+

τ

ελ
+
λω(λ)1/3

ετ1/3

)

4l2el(m3). (30)In the last inequality we have used our hoie of �good slies� again. To �nish the proof, we need toarrange for the seond term to vanish in the limit, so hoosing τ = M3ε3 and λ = M4ε2 we ompute
ω(λ) +

ε

τ1/3
+

τ

ελ
+
λω(λ)1/3

ετ1/3
= ω(M4ε2) +

1

M
+

1

M
+M3ω(M4ε2)1/3.Sine

lim
M↑∞

lim
ε↓0

(

ω(M4ε2) +
1

M
+M3ω(M4ε2)1/3

)

= 0we an selet sequenes {N (ε) = 1
τ (ε) }ε↓0 and {λ(ε)}ε↓0 suh that

lim
ε↓0

(

ω(λ(ε)) +
ε(ε)

(τ (ε))1/3
+

τ (ε)

ελ(ε)
+
λ(ε)ω(λ(ε))1/3

ε(τ (ε))1/3

)

= 0.Appliation of (30) for the orresponding sequene of m̃(ε)
3 yields the assertion of the lemma.We now provide the interpolation inequality used in the proof of Lemma 3. It originally appeared in[CKO99, Lemma 2.3℄, but we wish to present a simpli�ed argument here.Lemma 4. There exists a universal onstant C suh that

(

∫

(−l,l)2
|Pζ|2dx′

)1/2

≤ C

(

sup
(−l,l)2

|ζ|

)1/3(
∫

[−l,l)2
|∇′ζ|dx′

)1/3(
∫

(−l,l)2

∣

∣|∇′|−1Pζ
∣

∣

2
dx′

)1/6for all (−l, l)2-periodi ζ : R2 → R and P either be the identity or the projetion Pλ on the Fourier modesas de�ned in (21).Proof. We �x a smooth onvolution kernel ϕ : R
2 → R with

ϕ ≥ 0, ϕ = 0 for |x′| ≥ 1, ϕ(−x′) = ϕ(x′), and ∫

R2

ϕdx′ = 1and denote by subsript α the onvolution with 1
α2ϕ( ·

α ). Note that P ommutes with onvolution and isindeed a projetion in L2.We observe that for any (−l, l)2-periodi ζ : R2 → R we have
∫

(−l,l)2
|ζ(x′ + h′) − ζ(x′)|2dx′ ≤ sup

x′∈(−l,l)2
|ζ(x′ + h′) − ζ(x′)|

∫

(−l,l)2
|ζ(x′ + h′) − ζ(x′)|dx′

≤ 2

(

sup
(−l,l)2

|ζ|

)

· |h′|

∫

[−l,l)2
|∇′ζ|dx′. (31)40



A standard onvolution argument using Jensen's inequality shows
∫

(−l,l)2
|ζ − ζα|

2dx′ ≤

∫

R2

1

α2
ϕ

(

y′

α

)∫

(−l,l)2
|ζ(x′) − ζ(x′ − y′)|2dx′dy′

≤

∫

R2

1

α2
ϕ

(

y′

α

)

dy′α sup
h′

(

1

|h′|

∫

(−l,l)2
|ζ(x′) − ζ(x′ + h′)|2dx′

)

= α sup
h′

(

1

|h′|

∫

(−l,l)2
|ζ(x′) − ζ(x′ + h′)|2dx′

)(31)
≤ 2α

(

sup
(−l,l)2

|ζ|

)

∫

[−l,l)2
|∇′ζ|dx′. (32)By duality (see (106) in the appendix) the standard estimate

∫

(−l,l)2
|∇′ψα|

2dx′ ≤

∫

R2

1

α3

∣

∣

∣

∣

∇′ϕ

(

x′

α

)∣

∣

∣

∣

dx′
∫

(−l,l)2
|ψ|2 dx′

≤ C
1

α2

∫

(−l,l)2
|ψ|2dx′, (33)valid for all (−l, l)2-periodi ψ : R2 → R, entails

∫

(−l,l)2
|(Pζ)α|

2dx′ =

∫

(−l,l)2
(Pζ)ααPζdx

′(106)
≤

(

∫

(−l,l)2
|∇′(Pζ)αα|

2dx′

)1/2(
∫

(−l,l)2

∣

∣|∇′|−1(Pζ)
∣

∣

2
dx′

)1/2(33)
≤ C

1

α

(

∫

(−l,l)2
|(Pζ)α|

2dx′

)1/2(
∫

(−l,l)2

∣

∣|∇′|−1(Pζ)
∣

∣

2
dx′

)1/2and thus
∫

(−l,l)2
|(Pζ)α|

2dx′ ≤ C
1

α2

∫

(−l,l)2

∣

∣|∇′|−1(Pζ)
∣

∣

2
dx′. (34)Note that onvolution and the projetion P on Fourier modes are (pointwise) multipliations in Fourierspae and thus ommute, in partiular Pζ − (Pζ)α = Pζ −P (ζα) = P (ζ − ζα). Combining (32) and (34)after using the triangle inequality and the projetion property of P we estimate

(

∫

(−l,l)2
|Pζ|2dx′

)1/2

≤

(

∫

(−l,l)2
|(Pζ)α|

2dx′

)1/2

+

(

∫

(−l,l)2
|Pζ − (Pζ)α|

2dx′

)1/2

≤

(

∫

(−l,l)2
|(Pζ)α|

2dx′

)1/2

+

(

∫

(−l,l)2
|ζ − ζα|

2dx′

)1/2(32),(34)
≤ C





1

α

(

∫

(−l,l)2

∣

∣|∇′|−1Pζ
∣

∣

2
dx′

)1/2

+ α1/2

(

sup
(−l,l)2

|ζ|

∫

[−l,l)2
|∇′ζ|dx′

)1/2
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We obtain the assertion of the lemma by hoosing the optimal
α =





∫

(−l,l)2

∣

∣|∇′|−1Pζ
∣

∣

2
dx′

sup(−l,l)2 |ζ|
∫

[−l,l)2
|∇′ζ|dx′





1/3

.6 Asymptoti behavior of the energyIn this setion we prove Theorem 2 by omparing the various energies introdued in Setion 4. Most ofthe results needed in addition to Theorem 4 follow from the energy saling and some elementary re�etionand extension arguments. For the lower bound, we also need the interpolation inequality of Lemma 4,the upper bound is provided by an expliit onstrution. As we shall need to �x a few onstants for laterreferene, we reall that C denotes an arbitrary onstant (universal or depending only on the parametersindiated in parantheses) that an hange between any two ourrenes, while the numbered onstants
C1, C2, et. are �xed within this setion.Lemma 5. The sharp interfae energy per ross-setion area on on�gurations with periodi boundaryonditions is bounded from below, i.e.

lim inf
1≪l

ep(l) > 0.Proof. At the ore of the proof is the interpolation estimate of Lemma 4. Fix an arbitrary l and let
(m3, h

′) be admissible for ep(l). Reall that
4l2ep

l (m3, h
′) = 2

∫

[−l,l)×(−1,1)

|∇′m3|dx+

∫

(−l,l)2×R

|h′|2dx. (35)We estimate the seond term from below by
∫

(−l,l)2×R

|h′|2dx =

∫ +∞

−∞

∫

(−l,l)2
|h′|2dx′dx3

≥

∫ +∞

−∞

∫

(−l,l)2

∣

∣|∇′|−1∂3m3

∣

∣

2
dx′dx3

≥
(π

2

)2
∫ 1

−1

∫

(−l,l)2

∣

∣|∇′|−1m3

∣

∣

2
dx′dx3,where we use the Poinar�e estimate on (−1, 1). For the �rst term in (35) we observe

2

∫

[−l,l)2×(−1,1)

|∇′m3|dx = 2

∫ 1

−1

∫

[−l,l)2
|∇′m3|dx

′dx3

≥ 2

∫ 1

−1

sup
(−l,l)2

|m3|

∫

[−l,l)2
|∇′m3|dx

′dx3,beause |m3| ≤ 1, and hene using Young's inequality and Lemma 4 we an estimate the energy from42



below as
4l2ep

l (m3, h
′) ≥

1

C

∫ 1

−1

(

sup
(−l,l)2

|m3|

∫

[−l,l)2
|∇′m3|dx

′ +

∫

(−l,l)2

∣

∣|∇′|−1m3

∣

∣

2
dx′

)

dx3

≥
1

C

∫ 1

−1

(

sup
(−l,l)2

|m3|

∫

[−l,l)2
|∇′m3|dx

′

)2/3(
∫

(−l,l)2

∣

∣|∇′|−1m3

∣

∣

2
dx′

)1/3

dx3

≥
1

C

∫ 1

−1

∫

(−l,l)2
m2

3dx
′dx3 =

1

C
4l2,that is

ep
l (m3, h

′) ≥
1

C
.Sine (m3, h

′) was an arbitrary admissible pair, ep(l) ≥ 1
C , as laimed.Lemma 6. In the setting of free boundary onditions, deoupling the passage to the limit l → ∞ fromthe limits in δ and ε does not inrease the limiting energy of the minimizers. More preisely

lim inf
δ≪ε2≪1≪l

ef (ε, δ, l) ≥ lim sup
1≪l

lim inf
δ≪ε2≪1

ef (ε, δ, l).Proof. A key ingredient to establish the laim is
ef (ε, δ,Nl0) ≥ ef (ε, δ, l0) for N ∈ N. (36)To establish this inequality, onsider a minimizer (m,h) for ef(ε, δ,Nl0) and deompose the domain

(−Nl0, Nl0)2 into N2 squares {Qn}={0..N−1}2 of edge length 2l0. Denote by (mn, hn) the restrition of
(m,h) onto Qn×R translated bak to (−l0, l0)2×R. As these are admissible in the minimization problemfor ef (ε, δ, l0) and as the energy funtional is translation invariant we onlude with

eε,δ,Nl0(m,h) =
∑

n∈{0,...,N−1}2

eε,δ,Nl0(mn, hn)that
(Nl0)

2ef (ε, δ,Nl0) ≥
∑

n∈{0,...,N−1}2

l20e
f (ε, δ, l0).As a seond item we need that

ef (ε, δ, l) ≥

(

l̃

l

)2

ef (ε, δ, l̃) for l ≥ l̃, (37)whih is evident when onsidering that the restrition of a minimizer (m,h) for ef (ε, δ, l) to (−l̃, l̃) isadmissible for ef (ε, δ, l̃).Now �x l0 and let l ≥ l0 be arbitrary. Write l = Nl0 + r with N ∈ N and r ∈ [0, l0). By above estimates(36) and (37) we have
ef(ε, δ, l) ≥

(

Nl0
l

)2

ef (ε, δ,Nl0) ≥

(

l − l0
l

)2

ef (ε, δ, l0) =

(

1 −
l0
l

)2

ef (ε, δ, l0),thus
lim inf

δ≪ε2≪1≪l
ef (ε, δ, l) ≥ lim inf

δ≪ε2≪1
ef (ε, δ, l0),43



and so as l0 was arbitrary
lim inf

δ≪ε2≪1≪l
ef (ε, δ, l) ≥ lim sup

1≪l
lim inf
δ≪ε2≪1

ef (ε, δ, l).Lemma 7. In the setting of periodi boundary onditions, oupling the passage to the limit l → ∞ withthe limits in δ and ε does not inrease the limiting energy of the minimizers. More preisely
lim sup

δ≪ε2≪1≪l

ep(ε, δ, l) ≤ lim inf
1≪l

lim sup
δ≪ε2≪1

ep(ε, δ, l).Proof. Beause (−l, l)2-periodiity implies (−Nl,Nl)2-periodiity and the resulting inlusion of the ad-missible lasses we have
ep(ε, δ,Nl) ≤ ep(ε, δ, l) for N ∈ N. (38)We laim that

ep(ε, δ, l) ≤

(

2
l

l̃
− 1

)2

ep(ε, δ, l̃) for l ≥ l̃, ε2 ≥ δ. (39)Indeed, let (m̃, h̃) be a minimizer for ep(ε, δ, l̃). We de�ne an admissible (m,h) for ep(ε, δ, l) as follows:Let
m(x′, x3) = m̃

(

l̃

l
x′, x3

)

,

h′(x′, x3) =

(

l

l̃
h̃′ +

(

l

l̃
− 1

)

1

ε
m̃′

)

(

l̃

l
x′, x3

)

, and
h3(x

′, x3) = h̃3

(

l̃

l
x′, x3

)

.Thus h′ is de�ned suh that
(

h′ +
1

ε
m′

)

(x′, x3) =
l

l̃

(

h̃′ +
1

ε
m̃′

)

(

l̃

l
x′, x3

)

,ensuring
(

∇′ ·

(

h′ +
1

ε
m′

))

(x′, x3) =

(

∇′ ·

(

h̃′ +
1

ε
m̃′

))

(

l̃

l
x′, x3

)

,i.e. the admissibility of (m,h).Furthermore using l̃ ≤ l and δ ≤ ε2 we have
1

4l2
δ

∫

(−l,l)2×(−1,1)

∣

∣

(

∇′

ε∂3

)

m
∣

∣

2
dx =

1

4l̃2
δ

∫

(−l̃,l̃)2×(−1,1)

∣

∣

∣

(

l̃
l∇

′

ε∂3

)

m̃
∣

∣

∣

2

dx

≤
1

4l̃2
δ

∫

(−l̃,l̃)2×(−1,1)

∣

∣

(

∇′

ε∂3

)

m̃
∣

∣

2
dx,as well as

1

4l2
1

δ

∫

(−l,l)2×(−1,1)

|m′|
2
dx =

1

4l̃2
1

δ

∫

(−l̃,l̃)2×(−1,1)

|m̃′|
2
dx,44



and
1

4l2

∫

(−l,l)2×R

∣

∣

∣

(

h′

1
ε h3

)∣

∣

∣

2

dx

=
1

4l̃2

∫

(−l̃,l̃)2×R

∣

∣

∣

∣

(

l
l̃

h̃′+( l
l̃
−1) 1

ε m̃′

1
ε h̃3

)∣

∣

∣

∣

2

dx

≤

(

l

l̃

)2
1

4l̃2

∫

(−l̃,l̃)2×R

∣

∣

∣

(

h̃′

1
ε h̃3

)∣

∣

∣

2

dx

+ 2
l

l̃

(

l

l̃
− 1

)

(

1

4l̃2

∫

(−l̃,l̃)2×R

|h̃′|2dx

)1/2(

1

4l̃2
1

ε2

∫

(−l̃,l̃)2×(−1,1)

|m̃′|2dx

)1/2

+

(

l

l̃
− 1

)2
1

4l̃2
1

ε2

∫

(−l̃,l̃)2×(−1,1)

|m̃′|2dx

≤

(

l

l̃

)2
1

4l̃2

∫

(−l̃,l̃)2×R

∣

∣

∣

(

h̃′

1
ε h̃3

)∣

∣

∣

2

dx+

(

2
l

l̃

(

l

l̃
− 1

)

+

(

l

l̃
− 1

)2
)

ep(ε, δ, l̃).Hene
ep(ε, δ, l) ≤

(

(

l

l̃

)2

+ 2
l

l̃

(

l

l̃
− 1

)

+

(

l

l̃
− 1

)2
)

ep(ε, δ, l̃) =

(

2
l

l̃
− 1

)2

ep(ε, δ, l̃),as laimed.With (38) and (39) at our disposal, we are able to proeed as in Lemma 6. Fix l0 and let l ≥ l0. Wewrite
l = Nl0 + r with N ∈ N and r ∈ [0, l0).Then for ε2 ≥ δ we an estimate

ep(ε, δ, l) ≤

(

2
l

Nl0
− 1

)2

ep(ε, δ,Nl0) ≤

(

2
l

l − l0
− 1

)2

ep(ε, δ, l0) =

(

l + l0
l − l0

)2

ep(ε, δ, l0).Hene
lim sup

δ≪ε2≪1≪l

ep(ε, δ, l) ≤ lim inf
δ≪ε2≪1

ep(ε, δ, l0),and again the assertion of the lemma follows beause l0 was arbitrary.Lemma 8. The minimal sharp-interfae energy per ross-setion area amongst admissible on�gurationswith free boundary onditions is bounded, i.e.
lim sup

1≪l
ef (l) <∞.Proof. We use four main estimates for the proof. First, ompletely analogous to (37) we have

ef (l) ≤

(

l̃

l

)2

ef (l̃) for l ≤ l̃, (40)then beause the inlusion of the orresponding admissible lasses we obviously have
ef(l) ≤ ep(l). (41)45



x1

x3

Figure 8: The re�nement (onstant in x2)Thirdly, as in (38) we have
ep(N) ≤ ep(1) for N ∈ N. (42)And as a fourth ingredient we need the estimate

ep(1) <∞. (43)To establish the latter, we have to onstrut m3 : R2 × R → R suh that
m3 is (−1, 1)2-periodi in x′, m2

3 =

{

1 if x3 ∈ (−1, 1),

0 otherwise,with
2

∫

[−1,1)2×(−1,1)

|∇′m3|dx+

∫

(−1,1)2×R

∣

∣|∇′|−1∂3m3

∣

∣

2
dx <∞.By symmetry and translation invariane, it su�es to onstrut m3 : R2 × (0, 1) → R suh that

m3 is (−1, 1)2-periodi in x′, m2
3 = 1, and m3( · , )

x3↑1
−−−⇀ 0 (weakly) in L∞((−1, 1)2)with

2

∫

[−1,1)2×(0,1)

|∇′m3|dx +

∫

(−1,1)2×(0,1)

∣

∣|∇′|−1∂3m3

∣

∣

2
dx <∞.Denote by m0

3 : R
2 → R the (−1, 1)2-periodi funtion given by

m0
3(x1, x2) = signx1.Obviously (see e.g. Figure 8), one an onstrut m01

3 : R2 × (0, 1) → R suh that
m01

3 is (−1, 1)-periodi in x′, (m01
3 )2 = 1,

m01
3 (x′, 0) = m0

3(x
′), and m01

3 (x′, 1) = m0
3(2x

′),46



and
2

∫

[−1,1)2×(0,1)

|∇′m01
3 |dx+

∫

(−1,1)2×(0,1)

∣

∣|∇′|−1∂3m
01
3

∣

∣

2
dx <∞.We now glue resaled versions of m01

3 . Let ∆k = θk(1 − θ) with θ ∈ (0, 1) to be hosen later. Note that
∑∞

k=0 ∆k = 1. Let x(0)
3 = 0 and x(k+1)

3 = x
(k)
3 + ∆k and de�ne

m3(x
′, x3) = m01

3

(

2kx′,
x3 − x

(k)
3

∆k

) for x3 ∈ (x
(k)
3 , x

(k+1)
3 ).By onstrution we have

m3( · , x
(k)
3 −) ≡ m3( · , x

(k)
3 +) and m3( · , x3)

x3↑1
−−−⇀ 0,thus

∫

[−1,1)2×(0,1)

|∇′m3|dx =
∞
∑

k=0

∫

[−1,1)2×(x
(k)
3 ,x

(k+1)
3 )

|∇′m3|dx

=

∞
∑

k=0

∆k2k

∫

[−1,1)2×(0,1)

|∇′m01
3 |dxand

∫

(−1,1)2×(0,1)

∣

∣|∇′|−1∂3m3

∣

∣

2
dx =

∞
∑

k=0

∫

(−1,1)2×(x
(k)
3 ,x

(k+1)
3 )

∣

∣|∇′|−1∂3m3

∣

∣

2
dx

=

∞
∑

k=0

1

∆k

(

1

2k

)2 ∫

(−1,1)2×(0,1)

∣

∣|∇′|−1∂3m
01
3

∣

∣

2
dx.Combining these two, we see that

2

∫

[−1,1)2×(0,1)

|∇′m3|dx+

∫

(−1,1)2×(0,1)

∣

∣|∇′|−1∂3m3

∣

∣

2
dx

≤ max

{

∞
∑

k=0

∆k2k,

∞
∑

k=0

1

∆k

(

1

2k

)2
}(

2

∫

[−1,1)2×(0,1)

|∇′m01
3 |dx+

∫

(−1,1)2×(0,1)

∣

∣|∇′|−1∂3m
01
3

∣

∣

2
dx

)

= max

{

(1 − θ)

∞
∑

k=0

(2θ)k,
1

1 − θ

∞
∑

k=0

(

1

4θ

)k
}

·

(

2

∫

[−1,1)2×(0,1)

|∇′m01
3 |dx+

∫

(−1,1)2×(0,1)

∣

∣|∇′|−1∂3m
01
3

∣

∣

2
dx

)

,to ensure that the bound is �nite, we need to hoose 1
4 < θ < 1

2 . The natural hoie based on the energysaling is θ =
(

1
2

)3/2, but this is not of further interest here. This onstrution entails (43).To �nish the proof of the lemma, �x l ≥ 1 and write
l = N + r with N ∈ N and r ∈ [0, 1).47



By onseutively applying (40), (41), (42), and (43) we see
ef(l) ≤

(

N + 1

l

)2

ef (N + 1) ≤

(

N + 1

N

)2

ep(N + 1)

≤

(

N + 1

N

)2

ep(1) =

(

1 +
1

N

)2

ep(1) <∞and beause l was arbitrary, this entails the assertion of the lemma.Lemma 9. In the limit l → ∞ of the sharp interfae model, the minimal energy among periodi on-�gurations is no larger than that among admissible on�gurations with free boundary onditions, morepreisely
lim sup

1≪l
ep(l) ≤ lim inf

1≪l
ef (l).Proof. The main ingredients for the proof are

ef (Nl0) ≥ ef (l0) for N ∈ N (44)resembling (36),
ef (l) ≥

(

l̃

l

)2

ef(l̃) for l̃ ≤ l (45)analogous to (37), and
ep(2l) ≤ ef (l) +

4

l
. (46)To verify (46), we onsider an admissible pair (m3, h

′) for ef(l). We translate (m3, h
′) suh that thedomain is (0, 2l)2 × R. We aim at the onstrution of an admissible pair (m̃3, h̃

′) for ep(2l). Uniqueextensions (m̃3, h̃
′) of (m3, h

′) to R2 × R exist with the following properties
(m̃3, h̃

′) are (−2l, 2l)2-periodi in x′,
(h̃1, h̃2, m̃3)(−x1, x2, x3) = (h̃1,−h̃2,−m̃3)(x1, x2, x3), and
(h̃1, h̃2, m̃3)(x1,−x2, x3) = (−h̃1, h̃2,−m̃3)(x1, x2, x3).We observe

(

∂3m̃3 + ∂1h̃
′
1 + ∂2h̃

′
2

)

(−x1, x2, x3) = −
(

∂3m̃3 + ∂1h̃
′
1 + ∂2h̃

′
2

)

(x1, x2, x3),
(

∂3m̃3 + ∂1h̃
′
1 + ∂2h̃

′
2

)

(x1,−x2, x3) = −
(

∂3m̃3 + ∂1h̃
′
1 + ∂2h̃

′
2

)

(x1, x2, x3),

h̃′1(0−, x2, x3) = h̃′1(0+, x2, x3),

h̃′2(x1, 0−, x3) = h̃′2(x1, 0+, x3).Hene
∇′ · h′ + ∂3m3 = 0 in (0, 2l)2 × Ryields

∇′ · h̃′ + ∂3m̃3 = 0 in R
3.48



Additionally
m̃2

3 =

{

1 for x3 ∈ (−1, 1),

0 otherwise,so that (m̃2
3, h̃

′) is admissible for ep(2l). We estimate the energy as
(4l)2e2l(m̃3, h̃

′) = 2

∫

[−2l,2l)2×(−1,1)

|∇′m̃3|dx+

∫

(−2l,2l)2×R

|h̃′|2dx

= 4

(

2

∫

(0,2l)2×(−1,1)

|∇′m̃3|dx+

∫

(0,2l)2×R

|h̃′|2dx

)

+ 64l

= 16l2el(m3, h
′) + 64l.We inur an additional term beause m̃3 has a jump of height 2 at the re�etion lines. Dividing by 16l2yields (46).To wrap up the proof, �x l0 ≥ 0 and let l ≥ l0 be arbitrary. Write

l = Nl0 + r with N ∈ N and r ∈ [0, l0).Having prepared our three ingredients we ombine them to ompute
ep(2l)

(44)
≤ ef (l) +

4

l(45)
≤

(

(N + 1)l0
l

)2

ef ((N + 1)l0) +
4

l(46)
≤

(

l + l0
l

)2

ef (l0) +
4

l

=

(

1 +
l0
l

)2

ef (l0) +
4

land thus �nd
lim sup

1≪l
ep(l) = lim sup

1≪l
ep(2l) ≤ ef(l0).Sine l0 > 0 was arbitrary we have

lim sup
1≪l

ep(l) ≤ lim inf
1≪l

ef (l),ompleting the proof.Finally, we an ollet the results on omparing the various energy estimates and dedue Theorem 2.Proof of Theorem 2. Reall from Setion 4 that we have to show
lim

δ≪ε2≪1≪l
ep(δ, ε, l) ∈ (0,∞)i.e. that the limit exists and is a stritly positive real number.49



The lemmas of this setion and Theorem 4 allow us to put the minimal energies for periodi and freeboundary onditions and sharp and di�use interfae versions ep(ε, δ, l), ef (ε, δ, l), ep(l), and ef(l) in thefollowing hain of inequalities.
lim sup

δ≪ε2≪1≪l

ep(δ, ε, l) ≤ lim inf
1≪l

lim sup
δ≪ε2≪1

ep(δ, ε, l) (Lemma 7),
lim sup
δ≪ε2≪1

ep(δ, ε, l) ≤ ep(l) (Theorem 4, part 1),
lim sup

1≪l
ep(l) ≤ lim inf

1≪l
ef (l) (Lemma 9),

ef (l) ≤ lim inf
δ≪ε2≪1

ef(δ, ε, l) (Theorem 4, part 2),
lim sup

1≪l
lim inf
δ≪ε2≪1

ef (δ, ε, l) ≤ lim inf
δ≪ε2≪1≪l

ef (δ, ε, l) (Lemma 6).These ombined with the trivial
ef(δ, ε, l) ≤ ep(δ, ε, l) and ef (l) ≤ ep(l)imply that the limits under onsideration exist and oinide for all energies. Then

lim inf
l→∞

ep(l) > 0 (Lemma 5) and (47)
lim sup

l→∞
ef (l) <∞ (Lemma 8) (48)show that the limit indeed is a �nite positive number. Thus the theorem is established.7 Quanti�ation of the onstrution in a Modia-Mortola prob-lemIn this largely self-ontained setion we provide a quanti�ation of the onstrution used to show the

Γ-onvergene result of Modia and Mortola, [MM77℄ that we use in the proof of part 1 of Theorem 1.Throughout this setion, we work with the half-open ubes Ql(x) = x + (−l
2 ,

l
2 ]n. Our goal is to provethe following proposition:Proposition 4. For all α > 0 a onstant C5(α, n) < ∞ exists suh that for any domain size L > 0, allfuntions χ : QL → {−1, 1} and all δ > 0 there is an approximation u : QL → [−1, 1] suh that

∫

QL

δ

2

1

1 − u2
|∇u|2 +

1

2δ
(1 − u2)dx ≤ (1 + α)

∫

QL

|∇χ|dxand
∫

QL

|χ− u| ≤ C5(α, n)δ

∫

QL

|∇χ|dx.Remark 3. We apply the lemma in a resaled version with n = 3 and x̂3 = 1
εx3 and a size in x3-diretionthat di�ers from that in the other two diretions. This does not a�et the viability of the proposition.First, we onstrut a set of �nitely many harateristi funtions with the property that arbitrary har-ateristi funtions an be approximated by those from the set.50



Lemma 10. For all L ∈ N there is a �nite set F ⊂ BV (QL, {−1, 1}) with ardinality
#F ≤ 2Lnsuh that all χ : QL → {−1, 1} an be approximated by a χ̃ ∈ F in the sense of

∫

QL

|∇χ̃|dx ≤

∫

QL

|∇χ|dx and (49)
∫

QL

|χ− χ̃|dx ≤ C0(n)

∫

QL

|∇χ|dx. (50)The exponent in the ardinality estimate is, of ourse, the volume of QL.Proof. We proeed in two steps. First we approximate χ in L1 by funtions onstant on unit ubeswith an error bound proportional to the total variation, i.e. with a bound resembling (50). We thenreplae these initial approximation funtions by minimizers of the total variation within appropriatelysized losed L1-neighborhoods. This ensures that the approximation satis�es (49) without making the
L1-error larger than twie that of the �rst step.Let us deompose QL into Ln translated unit ubes {Qk

1}k∈{1,...,L}n and denote by F0 the set of allfuntions χ0 : QL → {−1, 1} that are pieewise onstant on eah Qk
1 . Clearly #F0 = 2Ln . We laim thatany χ : QL → {−1, 1} an be approximated by a funtion χ0 ∈ F0 in the sense that

∫

QL

|χ− χ0|dx ≤ C1(n)

∫

QL

|∇χ|dx. (51)Indeed, let χ0 be the pieewise onstant funtion given by
χ0

∣

∣

Qk
1

=

{

1 if ∫Qk
1
χdx ≥ 0,

−1 if ∫Qk
1
χdx < 0for k ∈ {1, . . . , L}n. Sine Qk

1 has unit size, we an use the Poinar�e inequality to estimate the deviationfrom the mean as
∫

Qk
1

∣

∣χ−

∫

Qk
1

χ
∣

∣ ≤ C2(n)

∫

Qk
1

|∇χ|dx. (52)If ∫Qk
1
χdx ≥ 0, this implies

∫

Qk
1

|χ0 − χ|dx =

∫

Qk
1

|1 − χ|dx = 2Ln({x ∈ Qk
1 |χ(x) = −1})

≤ 2

∫

∣

∣

∣χ−

∫

Qk
1

χ
∣

∣

∣dx ≤ 2C2(n)

∫

Qk
1

|∇χ|dx. (53)The same alulation also works if ∫
Qk

1
χdx ≤ 0. Summing over k ∈ {1, . . . , L}n we establish our laim(52) with C1(n) = 2C2(n).We now want to improve our hoie of the approximation funtions to have small total variation. Tothis end, onsider for any χ0 ∈ F0 the smallest L1-neighborhood ontaining a good approximation. Morespei�ally we de�ne

SP (χ0) :=
{

χ : QL → {−1, 1}
∣

∣

∣

∫

QL

|χ− χ0|dx ≤ C1(n)P
}51



and then �nd the minimal radius
P ∗ := P ∗(χ0) := inf

{

P
∣

∣

∣ inf
χ∈SP (χ0)

∫

QL

|∇χ|dx ≤ P
}that is of relevane to our approximation needs. By the standard ompatness and lower semiontinuityproperties of BV -funtions both in�ma are, in fat, minima. We thus �nd χ̃ ∈ SP∗(χ0) that minimizesthe total variation in the L1-losed set SP∗(χ0), i.e.

∫

QL

|∇χ̃|dx = P ∗.We laim that the set
F = {χ̃|χ0 ∈ F0}has the desired approximation properties. Indeed, given any χ : QL → {−1, 1} with total variation

P =
∫

QL
|∇χ|dx, we �nd by the �rst step a χ0 ∈ F0 satisfying (51). In partiular, χ ∈ SP (χ0) and thus

P ≥ P ∗(χ0), whih is (49). By the triangle inequality
S2P (χ̃) ⊇ SP (χ0) ∋ χ,in other words (50) is satis�ed with C0(n) = 2C1(n), ompleting the proof.We now use this approximation by funtions from a �nite set to improve the Modia-Mortola result to auniform version, �rst for bounded and later for arbitrary system sizes.Lemma 11. For any system size bound L0 ∈ N and approximation parameter R ∈ N there is a salingoe�ient 0 < δ0 ≤ 1 suh that for all 0 < δ ≤ δ0, all L ≤ L0, and all funtions χ : QL → {−1, 1} thereis an approximating u : QL → [−1, 1] suh that the di�use interfae energy is bounded by

∫

QL

δ

2

1

1 − u2
|∇u|2 +

1

2δ
(1 − u2)dx ≤

(

1 +
1

R

)

∫

QL

|∇χ|dx (54)and u is lose to χ in the sense that
∫

QL

|χ− u|dx ≤ C(n)

∫

QL

|∇χ|dx. (55)Proof. Reall from [MM77, Theorema 2℄ that for given �xed L ∈ N and δ → 0

Eδ(u) := Eδ(u,QL) :=

∫

QL

δ

2

1

1 − u2
|∇u|2 +

1

2δ
(1 − u2)dx

Γ-onverges with respet to the L1(QL)-topology to
E0(u) :=

{

∫

QL
|∇u|dx if u ∈ {−1,+1} a.e.,

+∞ otherwise.With this in mind, we begin the proof. Fix an arbitrary L0 ∈ N and R ∈ N. Let us assume for themoment that L = L0. 52



Sine the set F of Lemma 10 is �nite, there exists a δ0 > 0 suh that for all 0 < δ < δ0 and all χ̃ ∈ F ,there is a uχ̃ : QL → [−1, 1] satisfying
Eδ(uχ̃) ≤

(

1 +
1

R

)

∫

QL

|∇χ̃|dx (56)and
∫

QL

|χ̃− uχ̃| ≤ C0(n)

∫

QL

|∇χ̃|dx. (57)We do have the hoie of using the onstant in the approximation property of Lemma 10 as C0(n).Now let χ : QL → {−1, 1} be given. Aording to Lemma 10, there exists χ̃ ∈ F with (49) and (50).This allows us to estimate
Eδ(uχ̃)

(56)
≤
(

1 +
1

R

)

∫

QL

|∇χ̃|dx
(49)
≤
(

1 +
1

R

)

∫

QL

|∇χ|dx,establishing (54). To obtain (55) we ompute
∫

QL

|χ− uχ̃|dx ≤

∫

QL

|χ− χ̃|dx+

∫

QL

|χ̃− uχ̃|dx(50),(57)
≤ C0(n)

∫

QL

|∇χ|dx+ C0(n)

∫

QL

|∇χ̃|dx(49)
≤ 2C0(n)

∫

QL

|∇χ|dx.Thus uχ̃ has the properties laimed in the lemma for δ and C(n) = 2C0(n), ompleting the proof if
L = L0.It remains to onsider the ase L < L0. If L ≥ 1 we resale lengths aording to

x̂ =
L0

L
x, δ̂ =

L0

L
δ, L̂ =

L0

L
L = L0.This puts us in the ase already dealt with and we obtain an approximation û : QL̂ → [−1, 1] for

χ̂ : QL̂ → {−1, 1} with (54) and (55) in the new oordinates, i.e. for δ̂ ≤ δ0 we have
∫

QL̂

δ̂

2

1

1 − û2
|∇̂û|2 +

1

2δ̂
(1 − û2)dx̂ ≤

(

1 +
1

R

)

∫

QL̂

|∇̂χ̂|dx̂and
∫

QL̂

|χ̂− û|dx̂ ≤ C(n)

∫

QL̂

|∇̂χ̂|dx̂.Resaling bak, we notie that the onstant for (55) only improves (by a fator L
L0

< 1 on the right handside whih we may drop) and (54) remains valid with δ = L
L0
δ̂ ≥ 1

L0
δ̂. As δ0 may depend on L0, this isnot a problem and so the laim of the lemma is established for 1 ≤ L ≤ L0 when we replae the original

δ0 by 1
L0
δ0. 53



Finally, we need to address the ase 0 < L < 1. Without loss of generality, we assume ∫
QL

χdx ≥ 0.Obviously u ≡ 1 satis�es (54). We laim that it is also a good approximation in the sense of (55). Notethat by our assumption of χ having non-negative average
∫

QL

|χ− u|dx =

∫

QL

|χ− 1|dx = 2Ln({x ∈ QL|x = −1}) ≤ 1,so we are done if ∫
QL

|∇χ|dx ≥ 1. Otherwise, we an estimate similarly to (53) but this time using thePoinar�e-Sobolev inequality
∫

QL

|χ− u|dx ≤

∫

QL

|χ− L−n

∫

QL

χ|dx+

∫

QL

|1 − L−n

∫

QL

χ|dx

=

∫

QL

|χ− L−n

∫

QL

χ|dx+ 2Ln({x ∈ QL|x = −1})

≤ 3

∫

QL

|χ− L−n

∫

QL

χ|dx

≤ 3C3(n)
(

∫

QL

|∇χ|dx
)

n
n−1

≤ C(n)

∫

QL

|∇χ|dx,and so (55) is veri�ed, onluding the proof of the lemma.We now proeed to the ore argument, where we deompose very large ubi domains into suh ofmoderate size in order to improve the above onvergene result by eliminating the dependene of theapproximation length sale δ on the system size L.Lemma 12. For all R > 0 there is a δ > 0 suh that for any system size L̃ > 0 and for all funtions
χ : QL̃ → {−1, 1} periodially extended to Rn there exists a periodi approximation u : QL̃ → [−1, 1] suhthat

∫

QL̃

(

δ

2

1

1 − u2
|∇u|2 +

1

2δ
(1 − u2)

)

dx ≤
(

1 +
1

R

)

∫

QL̃

|∇χ|dx, (58)and
∫

QL̃

|χ− u|dx ≤ C4(n)

∫

QL̃

|∇χ|dx. (59)Proof. It is well to develop a plan before delving into the minutiae. Our basi idea is to split QL̃, whihwe think of as being very large, into ubes of a suitably hosen intermediate size L. Then we applyLemma 11 to these sububes in order to obtain approximating funtions on eah piee and glue togetherone on QL̃. We need to apply some are to appropriately hoose the width Λ and position of the overlapduring the utting in order to keep a lid on |∇χ|. We also need to make a onsiderate hoie of the regionof glueing to not lose the approximation property.Let us now �x an arbitrary L̃-periodi χ : Rn → {−1, 1}. Given δ small enough, smallness dependingonly on R, our goal is to onstrut some u satisfying
Eδ(u,QL̃) ≤

(

1 + C(n)
( 1

R
+

Λ

L
+
R

Λ

)

)∫

QL̃

|∇χ|dx. (60)54



Λ

L

}
}

Figure 9: deomposing QL̃ into overlapping regionsThen we optimize the oe�ient to determine Λ and L suh that
1

R
=

Λ

L
=
R

Λ
,i.e. we set

Λ = R2 and L = R3,establishing (58) with a renaming of R to ompensate the onstant 3C(n). Thus we need to ahieve (60)and (59) to prove the lemma.To begin in earnest we deompose R
n into ubes {Qk

L−Λ}k∈Zn of size L−Λ > 0 and denote their entersby xk = (L − Λ)k. For given k ∈ Zn, let Qk
L = QL(xk) be the ube of size L with the same enter as

Qk
L−Λ. As alluded to above the ubes {Qk

L}k∈Zn overlap with width Λ, see also Figure 9. Without lossof generality, we assume R ≥ 2. This entails that the overlap width is not too large ompared to the sizeof the Qk
L, more preisely, we use that

Λ ≤
L

2
. (61)For onveniene we also assume that L̃ = M(L − Λ) for some M ∈ N so that Mn ubes Qk

L−Λ overexatly one fundamental ell in the domain of the L̃-periodi funtions. A variation of the resaling usedin the proof of Lemma 11 an be used to deal with nonintegral ratios greater than 1 and in the remainingase of small L̃ the present lemma does not laim any improvement over the previous. We remark that
δ, whih we want to depend only on (the dimension n and) the approximation quality R, may by aboveonsiderations also depend on the quantities L and Λ determined by R, a fat that shall be of use to us.With these preparations, let us determine good areas of overlap, i.e. a good o�set for the xk. Using the
L̃-periodiity we laim that there exists a translation vetor h ∈ Rn suh that

∑

k∈{1,...,M}n

∫

QL(xk+h)

|∇χ|dx ≤

(

L

L− Λ

)n ∫

QL̃

|∇χ|dx. (62)55



Λ

δ

}

}Figure 10: hoosing a good set of stripes of width δ in the overlapIndeed, we have for the average over h′ ∈ QL̃

1

Ln(QL̃)

∫

QL̃

∑

k∈{1,...,M}n

∫

QL(xk+h)

|∇χ|dxdh′

=
∑

k∈{1,...,M}n

Ln(Qk
L)

Ln(QL̃)

∫

QL̃

|∇χ|dx

= Mn Ln

Mn(L− Λ)n

∫

QL̃

|∇χ|dx,and there must be an h for whih the integrant is bounded by the average. Without loss of generality,we assume h = 0.Aording to Lemma 11 there exists a 0 < δ = δ(L,R) ≤ L
2 with the property that for any k ∈ Zn afuntion uk : Qk

L → [−1, 1] exists suh that
∫

Qk
L

δ

2

1

1 − u2
k

|∇uk|
2 +

1

2δ
(1 − u2

k)dx ≤
(

1 +
1

R

)

∫

Qk
L

|∇χ|dx (63)and
∫

Qk
L

|χ− uk|dx ≤ C(n)

∫

Qk
L

|∇χ|dx. (64)For given k ∈ Zn, onsider QL−Λ+δ/2(xk +h) ⊂ Qk
L for translation vetors h ∈ QΛ−δ/2(0). In order to beable to glue funtions together we are interested in the approximation quality in the boundary layer ofthikness δ, i.e. the set QL−Λ+δ/2(xk + h) \QL−Λ−δ/2(xk + h). We laim that there exists h ∈ QΛ−δ/2(0)suh that

∑

k∈{1,...,M}n

∫

h+(Qk
L−Λ+δ/2

\Qk
L−Λ−δ/2

)

|uk − χ|dx ≤
4nδ

Λ

∑

k∈{1,...,M}n

∫

Qk
L

|uk − χ|dx. (65)This is shown similarly to (62), this time with a one-dimensional optimization (see Figure 10): Considering56



stripes
Sk(h1) := Qk

L ∩ {x|x1 ∈ x1
k + h1+

(

[−(L− Λ)/2 − δ/2,−(L− Λ)/2 + δ/2)

∪ [(L− Λ)/2 − δ/2, (L− Λ)/2 + δ/2)
)

}there is a h1∗ with
∑

k∈{1,...,M}n

∫

Sk(h1∗)

|uk − χ|dx

≤
1

Λ − δ/2

∫ Λ/2−δ/4

−Λ/2+δ/4

∑

k∈{1,...,M}n

∫

Sk(h1)

|uk − χ|dx dh1

≤
2δ

Λ − δ/2

∑

k∈{1,...,M}n

∫

Qk
L

|uk − χ|dx.As noted in the beginning of the proof Λ depends only on R, so we may assume δ ≤ Λ/2. Optimizationfor and summation over all oordinate diretions yields the desired estimate (65).Let {ηk : Rn → [0, 1]}k∈Zn be a partition of unity subordinate to QL−Λ+δ/2(xk + h). More preisely weask that
∑

k∈Zn

ηk = 1 in R
n, (66)

ηk ≡ 1 on QL−Λ−δ/2(xk + h),

ηk = 0 on R
n \QL−Λ+δ/2(xk + h) ⊃ R

n \Qk
L. (67)In addition we hoose ηk suh that

|∇ηk|
2 ≤

C

δ2
ηk(1 − ηk). (68)Let us emphasize that this partition of unity is uniformly loally �nite in the sense that for any k thenumber of uto� funtions with support overlapping that of ηk is bounded by a onstant depending onlyon n, i.e. for all k ∈ Zn

#{k′ ∈ Z
n| supp ηk′ ∩ supp ηk 6= ∅} ≤ C(n). (69)We an now de�ne the L̃-periodi funtion u : Rn → [−1, 1] as u =

∑

k∈Zn ηkuk and set out to verify (60)57



and later (59). We begin by notiing that
1 − u2 = 1 −

∑

k∈Zn

∑

k′∈Zn

ηkηk′ukuk′

= 1 −
∑

k∈Zn

η2
ku

2
k −

∑

k∈Zn

∑

k′ 6=k

ηkηk′ukuk′

= 1 −
∑

k∈Zn

ηku
2
k +

∑

k∈Zn

(

(ηk − η2
k)u2

k −
∑

k′ 6=k

ηkηk′ukuk′

)(66)
=

∑

k∈Zn

ηk(1 − u2
k) +

∑

k∈Zn

(

ηk(1 − ηk)u2
k −

∑

k′ 6=k

ηkηk′ukuk′

)(66)
=

∑

k∈Zn

ηk(1 − u2
k) +

∑

k∈Zn

∑

k′ 6=k

(

ηkηk′u2
k − ηkηk′ukuk′

)

=
∑

k∈Zn

ηk(1 − u2
k) +

∑

k∈Zn

∑

k′ 6=k

ηkηk′uk(uk − uk′)

=
∑

k∈Zn

ηk(1 − u2
k) +

1

2

∑

k∈Zn

∑

k′∈Zn

ηkηk′(uk − uk′)2 (70)(66)
=

1

2

∑

k∈Zn

∑

k′∈Zn

ηkηk′

(

(1 − u2
k) + (1 − u2

k′) + (uk − uk′)2
)

. (71)Using ∑k∈Zn ∇ηk
(66)
= 0 we see that

∇u =
∑

k∈Zn

ηk∇uk +
∑

k∈Zn

uk∇ηk

=
∑

k∈Zn

ηk∇uk +
∑

k∈Zn

(

uk −
∑

k′∈Z

ηk′uk′

)

∇ηk(66)
=

∑

k∈Zn

ηk∇uk +
∑

k∈Z

∑

k′∈Z

(uk − uk′)ηk′∇ηk. (72)We an thus estimate with Young's inequality
|∇u|2 ≤

(

1 +
1

R

)∣

∣

∣

∑

k∈Zn

ηk∇uk

∣

∣

∣

2

+ (1 +R)
∣

∣

∣

∑

k∈Z

∑

k′∈Z

(uk − uk′)ηk′∇ηk

∣

∣

∣

2

.Combining this with (70) and (71) we get
1

1 − u2
|∇u|2 ≤

(

1 +
1

R

)

∣

∣

∑

k∈Zn ηk∇uk

∣

∣

2

∑

k∈Zn ηk(1 − u2
k)

+ (1 +R)

∣

∣

∑

k∈Z

∑

k′∈Z
(uk − uk′)ηk′∇ηk

∣

∣

2

1
2

∑

k∈Zn

∑

k′∈Zn ηkηk′ ((1 − u2
k) + (1 − u2

k′) + (uk − uk′)2)
.We use the onvexity of (v, g) 7→ 1

v |g|
2 on (0,∞)×Rn to estimate by pulling the (loally �nite) summationin the �rst term out of the fration and obtain

1

1 − u2
|∇u|2 ≤

(

1 +
1

R

)

∑

k∈Zn

ηk
|∇uk|2

1 − u2
k

+ (1 +R)

∣

∣

∑

k∈Z

∑

k′∈Z
(uk − uk′)ηk′∇ηk

∣

∣

2

1
2

∑

k∈Zn

∑

k′∈Zn ηkηk′ ((1 − u2
k) + (1 − u2

k′) + (uk − uk′)2)
.58



In ombination with (70), this entails
δ

2

1

1 − u2
|∇u|2 +

1

2δ
(1 − u2)

≤
(

1 +
1

R

)

∑

k∈Zn

ηk

(δ

2

|∇uk|2

1 − u2
k

+
1

2δ
(1 − u2

k)
)

+ (1 +R)
δ
∣

∣

∑

k∈Z

∑

k′∈Z
(uk − uk′)ηk′∇ηk

∣

∣

2

∑

k∈Zn

∑

k′∈Zn ηkηk′ ((1 − u2
k) + (1 − u2

k′) + (uk − uk′)2)

+
1

4δ

∑

k∈Zn

∑

k′∈Zn

ηkηk′ (uk − uk′)2

=: S1 + S2 + S3. (73)We address the terms on the right hand side separately. Starting with S1 we write
∫

QL̃

S1dx =
(

1 +
1

R

)

∫

QL̃

∑

k∈Zn

ηk

( δ

2

|∇uk|2

1 − u2
k

+
1

2δ
(1 − u2

k)
)

dx(67)
≤

(

1 +
1

R

)

∑

k∈{1,...,M}n

Eδ

(

uk, QL−Λ+δ/2(xk + h)
)

≤
(

1 +
1

R

)

∑

k∈{1,...,M}n

Eδ

(

uk, Q
k
L

)(63)
≤

(

1 +
1

R

)2 ∑

k∈{1,...,M}n

∫

Qk
L

|∇χ|dx(62)
≤

(

1 +
1

R

)2( L

L− Λ

)n
∫

QL̃

|∇χ|dx. (74)We proeed to estimate S2 + S3 at any point x ∈ Rn. To this end, assume without loss of generality
χ(x) = 1 and let J = J(x) = {k ∈ Zn|x ∈ supp ηk}. Using the loal �niteness (69) and R ≥ 1 we see

S2 + S3

= (1 +R)
δ
∣

∣

∑

k∈Z

∑

k′∈Z
(uk − uk′)ηk′∇ηk

∣

∣

2

∑

k∈Zn

∑

k′∈Zn ηkηk′ ((1 − u2
k) + (1 − u2

k′) + (uk − uk′)2)

+
1

4δ

∑
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∑

k′∈Zn

ηkηk′ (uk − uk′)2

≤ C(n)R
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∑
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∑

k′∈Z
(uk − uk′)2η2

k′ |∇ηk|2
∑

k∈Zn

∑

k′∈Zn ηkηk′ ((1 − u2
k) + (1 − u2

k′) + (uk − uk′)2)

+
1

4δ

∑
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∑

k′∈Zn

ηkηk′ (uk − uk′)2(68)
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1

δ
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ηkηk′ (uk − uk′)2

(1
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+

C(n)Rηk′ (1 − ηk)
∑

k∈Zn

∑

k′∈Zn ηkηk′ ((1 − u2
k) + (1 − u2

k′) + (uk − uk′)2)

)

(ηk≤1)

≤
1

δ

∑

k∈Zn

∑

k′∈Zn

ηkηk′ (uk − uk′)2
(1

4
+

C(n)R

(1 − u2
k) + (1 − u2

k′) + (uk − uk′)2

)

. (75)59



We now laim
(uk − uk′)2

(1 − u2
k) + (1 − u2

k′) + (uk − uk′)2
≤ |uk − uk′ | + (1 − uk) + (1 − uk′). (76)If uk ≤ 0 or uk′ ≤ 0, the left hand side smaller than 1 while the right hand side is larger, so that theinequality is trivial in this ase. For uk ≥ 0 and uk′ ≥ 0 we start with the elementary observation

(a− b)2 ≤ |a− b||a+ b|,whih, for a, b ≥ 0 is equivalent to
(a− b)2

a+ b
≤ |a− b|.Plugging in a = 1 − uk and b = 1 − uk′ , this beomes

(uk − uk′)2

(1 − uk) + (1 − uk′)
≤ |uk − uk′ |,whih, by 1 − u2 = (1 − u)(1 + u) ≥ 1 − u for u ≥ 0 and adding non-negative terms to the denominatorand right hand side implies

(uk − uk′)2

(1 − u2
k) + (1 − u2

k′) + (uk − uk′)2

≤
(uk − uk′)2

(1 − uk) + (1 − uk′)
≤ |uk − uk′ | ≤ |uk − uk′ | + (1 − uk) + (1 − uk′).Thus (76) is established.We an now ontinue with our estimation (75), we start with using (u1 − u2)

2 ≤ 2|u1 − u2|

S2 + S3(75)
≤

1

δ

∑

k∈Zn

∑

k′∈Zn

ηkηk′(uk − uk′)2
(1

4
+

C(n)R

(1 − u2
k) + (1 − u2

k′) + (uk − uk′)2

)

≤
1

δ

∑

k∈Zn

∑

k′∈Zn

ηkηk′

(1

2
|uk − uk′ | +

C(n)R(uk − uk′)2

(1 − u2
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k′) + (uk − uk′)2

)(76)
≤

C(n)R

δ
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k∈Zn

∑
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ηkηk′ (|uk − uk′ | + (1 − uk) + (1 − uk′))

≤
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δ
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∑

k′ 6=k

ηkηk′ (|χ− uk| + |χ− uk′ |)(66)
≤

C(n)R

δ

∑

k∈Zn

ηk(1 − ηk)|χ− uk|, (77)in the last two estimates we use the triangle inequality and our assumption χ(x) = 1.Using our hoie of the boundary layer we estimate the integral over S2 + S3 (whih are supported only60



on the boundary layers) as
∫

QL̃

S2 + S3dx(77)
≤

C(n)R

δ

∑

k∈{1,...,M}n

∫

QL̃

ηk(1 − ηk)|χ− uk|dx(67)
≤

C(n)R

δ
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k∈{1,...,M}n

∫
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L
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∫
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L
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Λ
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k∈{1,...,M}n

∫

Qk
L

|∇χ|dx(62),(61)
≤

C(n)R

Λ

∫

QL̃

|∇χ|dx. (78)Combining (73), (74), and (78), we see that
∫

QL̃

δ

2

1
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1

2δ
(1 − u2)dx(73)
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∫
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S1 + S2 + S3dx(74),(78)
≤
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QL̃
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( 1

R
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Λ

L
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Λ

)
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QL̃

|∇χ|dx.But this is (60), whih we know from above to imply (58). To omplete the proof of the lemma we needto verify the approximation property (59). By de�nition of u
∫
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whih is (59), the missing piee in the proof of our lemma.Finally, we prove Proposition 4.Proof of Proposition 4. Let α > 0 be given and set R = 1
α . Denote by δ̂ = δ̂(R) the parameter ofLemma 12 and let C5(n,R) = 1

δ̂
C4(n).We resale the lengths aording to

x =
δ

δ̂
x̂, L =

δ

δ̂
L̂.Aording to Lemma 12, there exists û : QL̂ → [−1, 1] suh that
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|χ̂− û|dx̂ ≤ C4(n)

∫

QL̂

|∇̂χ̂|dx̂.Resaling bak this gives u : QL → [−1, 1] suh that
∫
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|∇χ|dx,and
∫

QL

|χ− u|dx ≤ C4(n)
δ

δ̂

∫
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|∇χ|dxas desired.8 Loal behavior of the energy in minimizersWe now prove Theorem 3. In the following we refer to the sharp-interfae energy
Em3,h′(x0, lx′ , lx3) := 2

∫

x0+([−lx′ ,lx′ )2×(0,lx3))

|∇′m3|dx+

∫

x0+((−lx′ ,lx′)2×(0,lx3))

|h′|2dxas the energy for on�gurations with
∂3m3 + ∇′ · h′ = 0and appropriate boundary onditions.The lower bound of the theorem is essentially an appliation of Lemma 5.Lemma 13. There is a universal onstant C suh that any energy-minimizing on�guration m3, h′de�ned on (−l, l)2× (0, 2) and (−l, l)2-periodi in x′ with m3 ⇀ 0 weakly as x3 → {0, 2} has the followingproperty: For any x′0 ∈ (−l, l)2 and any l ≥ lx′ ≥ Cl

2/3
x3

Em3,h′(x′0, lx′ , lx3) := 2

∫

(x′
0+(−lx′ ,lx′)2)×(0,lx3)

|∇′m3|dx +

∫

(x′
0+[−lx′ ,lx′)2)×(0,lx3)

|h′|2dx ≥ Cl1/3
x3
l2x′ .The onstants are universal in the sense that they are independent of l, x0, lx′ , and lx3.62



Proof. Without loss of generality we assume x′0 = 0. We re�et the magnetization evenly and �eld oddlyat x3 = lx3 . After another set of re�etions at x1 = ±lx′ and x2 = ±lx′ , even in the h′-omponent in thediretion of extension, odd in m3 and the other h′-omponent, as detailed in the proof of Lemma 9 andresaling x3 by l−1
x3

and x′ by l−2/3
x3 as desribed at the end of Setion 4 we obtain an (−2l

−2/3
x3 lx′ , 2l

−2/3
x3 lx′)-periodi on�guration with m3 ⇀ 0 as x3 → {0, 2} with energy

8l−5/3
x3

Em3,h′(x′0, lx′ , lx3) + Cl−2/3
x3

lx′ .By Lemma 5 any (−2l
−2/3
x3 lx′ , 2l

−2/3
x3 lx′)2-periodi on�guration on (−2l

−2/3
x3 lx′ , 2l

−2/3
x3 lx′)2 × (0, 2) hasenergy bounded from below by 1

C l
−4/3
x3 l2x′ . Thus

Em3,h′(x′0, lx′ , lx3) ≥
1

C
l1/3
x3
l2x′ − Clx3 lx′whih is the laim of the lemma when we bound the seond term on the right hand side by one half ofthe �rst for lx′ ≥ 2C2l

2/3
x3 .Interestingly, but not of relevane here, the analogue of the equipartition of energy result [KM94,Lemma 2.6℄ implies that utting out a sample piee around the enter in x3-diretion (i.e. taking aperiodi minimizer and performing only the �rst, vertial re�etion desribed above) does not yield aminimizer: The sliewise �eld energy of minimizers onverges to 0 at the enter for minimizers, it doesnot for the onstruted omparison funtion.The upper bound is one of the laims of Theorem 5 proved in the remainder of this setion.8.1 Upper bound for the energy in subdomainsThe loal upper estimates for the energy are derived in two steps. We onsider a �xed minimizingon�guration (m3, h

′). We drop the (now �xed) m3 and h′ (unless that would lead to onfusion) andwrite E as a funtion of the extension of the uboid in whih we integrate the energy density, i.e.
E(lx′ , lx3) := 2

∫

[−lx′ ,lx′)2×(0,lx3)

|∇′m3|dx+

∫

(−lx′ ,lx′ )2×(0,lx3)

|h′|2dx.In fat we modify the energy by subtrating the x3-average h̄′(x′) =
∫ lx3

0 h′dx3 of h′ and onsider
Ẽ(lx′ , lx3) := 2

∫

[−lx′ ,lx′ )2×(0,lx3)

|∇′m3|dx+

∫

(−lx′ ,lx′)2×(0,lx3)

|h′ − h̄′|2dx,see below for more disussion.Before we begin we make a �rst observation onerning the two energies E and Ẽ.Lemma 14. Given top and bottom magnetization as funtions
mT

3 ,m
B
3 : (−lx′ , lx′)2 → [−1, 1],a �eld �ux

f : ∂(−lx′ , lx′)2 × (0, lx3) → R63



aross the sides, and url-free umulated �elds H ′
T, H ′

B : (−lx′ , lx′)2 → R2 at top and bottom with
−∇′ ·H ′

T = mT
3 in (−lx′ , lx′)2,

−∇′ ·H ′
B = mB

3 in (−lx′ , lx′)2,

ν′ · (H ′
T −H ′

B)(x′) =

∫ lx3

0

f(x′, x3)dx3 for H1-a.e. x′ ∈ ∂(−lx′ , lx′)2let m3 : (−lx′, lx′)2 × (0, lx3) → {+1,−1} and h′ : (−lx′ , lx′)2 × (0, lx3) → R2 be an energy-minimizingon�guration among all (m3, h
′) suh that

∂3m3 + ∇′ · h′ = 0 distributionally in (−lx′ , lx′)2 × (0, lx3),

m3 ⇀ mB
3 weakly as x3 → 0,

m3 ⇀ mT
3 weakly as x3 → lx3 ,

h′ · ν′ = f on ∂(−lx′ , lx′)2 × (0, lx3).Then
∫ lx3

0

h′(x′, x3)dx3 = (H ′
T −H ′

B)(x′) for a.e. x′ ∈ (−lx′ , lx′)2. (79)Proof. When we �x the magnetization m3 the �eld h′ is a minimizer, i.e.
∫

(−lx′ ,lx′)2×(0,lx3)

|h′|2dx = min
h̃′∈A

∫

(−lx′ ,lx′)2×(0,lx3 )

|h̃′|2dxwith the admissible lass
A =

{

h̃′
∣

∣h̃′ · ν′ = f on ∂(−lx′, lx′)2 × (0, lx3), ∇
′ · h̃′ + ∂3m3 = 0 in (−lx′ , lx′)2 × (0, lx3)

}

.By deomposing h′ orthogonally into x3-average and x3-osillation we an split the minimization
min
h̃′∈A

∫

(−lx′ ,lx′)2×(0,lx3)

|h̃′|2dx = min
h̃′
0∈A0

∫

(−lx′ ,lx′)2×(0,lx3)

|h̃′0|
2dx+ min

h̃′
1∈A1

lx3

∫

(−lx′ ,lx′)2
|h̃′1|

2dx′.with the admissible lass deomposed into
A0 =

{

h̃0

∣

∣h̃0 · ν
′ = f − l−1

x3
(HT −HB) · ν′ on ∂(−lx′ , lx′)2 × (0, lx3),

∇′ · h̃′0 + ∂3m = 0 in (−lx′ , lx′)2 × (0, lx3),
∫ lx3

0

h̃0(x
′, ξ3)dξ3 = 0 for a.e. x′ ∈ (−lx′ , lx′)2

}

,

A1 =
{

h̃1

∣

∣h̃1 · ν
′ = l−1

x3
(HT −HB) · ν′ on ∂(−lx′ , lx′)2 × (0, lx3),

∇′ · h̃1 = −l−1
x3

(mT −mB) in (−lx′ , lx′)2
}

.As l−1
x3

(HT−HB) is url-free by assumption, it also solves the minimization problem in A1. By uniquenessof the minimizer of the stritly onvex minimization problem, we have l−1
x3

(HT−HB) = h1, as laimed.As the �rst step, in an inner iteration we onsider subdomains Q(lx′ , lx3) := (−lx′ , lx′)2× (0, lx3) for �xed
lx3 and varying (but not too small in a sense to be made preise) lx′ . Quite literally, our starting pointare large horizontal ubes, lx′ = l. For these the bound Ẽ(lx′ , lx3) ≤ CEl

1/3
x3 l

2
x′ is essentially established64
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Figure 11: The ODE argument in a nutshell: if E(lx′ , lx3) intersets with Cl1/3
x3 l

2
x′ it has smaller derivativetherein [CK98℄ in a setting similar in Lemma 8, we present a slight variation below. We now want to extendthe ontrol of the energy as lx′ dereases.Our argument and presentation resembles the �ODE argument� of [ACO06, Lemma 3.5℄, the one in[Con00℄ is very similar.Imagine that lx′ 7→ Ẽ(lx3 , lx′) were smooth. If Ẽ(lx3 , lx′) > CE l

1/3
x3 l

2
x′ for some lx′ then there is a largesthorizontal length l∗ suh that Ẽ(l∗) ≥ CE l

2
∗. This implies that at l∗ the energy must grow more slowlythan CE l

1/3
x3 l

2
x′ , i.e. Ẽ′(l∗) ≤ (CE l

1/3
x3 l

2
x′)′
∣

∣

lx′=l∗
= 2CEl

1/3
x3 l∗. Combining these two inequalities with adi�erential inequality relating Ẽ′ and Ẽ we an obtain an estimate for l∗.The di�erential inequality in [ACO06℄ takes (in two dimensions) the form

E(lx′) ≤ C(l2x′ + (E′(lx′))4/3) (80)to allow the onlusion that l∗ is bounded by a onstant independent of the system size l. This inneriteration with the ODE argument is done rigorously in Setion 8.2.As we want to onstrut omparison on�gurations for on�gurations with presribed boundary values,we need to introdue the umulated �eld with more preision. We onsider a uboid domain and presribea (relaxed) magnetization m3(x) ∈ [−1, 1] to be weakly assumed at the top and bottom boundary and a�eld �ux ν ·h′ aross the vertial boundaries. For onveniene, we move the domain to (−lx′ , lx′)2×(0, lx3).The most important ase is a uboid lose to the sample boundary {x3 = 0} with m3(x
′, 0) = 0 weakly.If x3 = 0 is a sample boundary where the magnetization vanishes weakly, we set

H ′(x) =

∫ x3

0

h′(x′, ξ3)dξ3.We do, however, need a slight generalization, so for
mB

3 ∈ [−1, 1]65



and possibly some presribed �ux at the boundary there is an L2-minimal H ′
B suh that

−∇′ ·H ′
B = mB

3and de�ne for a on�guration with m3 ⇀mB
3 weakly as x3 → 0 the umulated �eld as

H ′(x) = H ′
B(x′) +

∫ x3

0

h′(x′, ξ3)dξ3.Loosely speaking, sup |H ′| bounds the domain width. The �eld H ′ is the equivalent of the salar funtion
u in the funtional of Kohn and M�uller in [KM94℄. We sometimes speak of ∫ |H ′|2dx′ as the energy of
H ′.In the seond, outer iteration we use the loal bound to show deay of the umulated �eld H ′ towardsthe boundary and derive the desired energy bounds. The ourse of our arguments is in this step modeledafter [Con00℄. Here we onsider the di�erene to the linear interpolation again. With the aid of theloal bounds from the inner step we an estimate the distane to the linear interpolation. Cruially, wean do so in a way that has a less-than-linear dependene on the onstant relating |H ′| to its expetedsaling. Fousing on the enter of the x3-interval we an then use this fat and that deay of the linearinterpolation (trivially exponent 1) deays better than the expeted saling (exponent 2

3 ) to absorb theonstants from our estimates and get the desired saling result for H ′. This is done in Setion 8.3.8.2 Loalization of the energy estimate w.r.t. the horizontal diretionsIn this subsetion we provide the di�erential inequality and then make the ODE argument introduedabove preise. As usual onstants suh as the generi C and those named after lemmas and the propo-sition, e.g. CL1, CP1, are allowed to depend on eah other (but not ylially). However, in this setionthey ruially do not depend on CH′ . Instead the dependene of estimates on CH′ is always expliitlytraked. This is important beause we hoose CH′ to suit our needs based on the other onstants in thenext subsetion.Proposition 5. Given top and bottom magnetization as funtions
mT

3 ,m
B
3 : (−lx′ , lx′)2 → [−1, 1],a �eld �ux

f : ∂(−lx′, lx′)2 × (0, lx3) → Raross the sides, and umulated �elds H ′
T, H ′

B : (−lx′ , lx′)2 → R2 at top and bottom with
−∇′ ·H ′

T = mT
3 in (−lx′ , lx′)2,

−∇′ ·H ′
B = mB

3 in (−lx′ , lx′)2,

ν′ · (H ′
T −H ′

B)(x′) =

∫ lx3

0

f(x′, x3)dx3 for H1-a.e. x′ ∈ ∂(−lx′ , lx′)2let m3 : (−lx′, lx′)2 × (0, lx3) → {+1,−1} and h′ : (−lx′ , lx′)2 × (0, lx3) → R2 be an energy-minimizingon�guration among all (m3, h
′) suh that

∂3m3 + ∇′ · h′ = 0 distributionally in (−lx′ , lx′)2 × (0, lx3),

m3 ⇀ mB
3 weakly as x3 → 0,

m3 ⇀ mT
3 weakly as x3 → lx3 ,

h′ · ν′ = f on ∂(−lx′ , lx′)2 × (0, lx3).66



Given a onstant CH′ ≥ 1 let H ′, f , and lx′ satisfy
sup |H ′

T|, sup |H ′
B| ≤ CH′ l2/3

x3
, (81)

lx′ ≥
16

3
CH′ l2/3

x3
,

∫

∂(−lx′ ,lx′)2×(0,lx3)

|f −
1

lx3

ν′ · (H ′
T −H ′

B)|2dx ≤ 2−9lx3 l
3
x′ . (82)Then the energy of (m3, h

′) in (−lx′ , lx′)2 × (0, lx3) is bounded by
Ẽ(lx′ , lx3) := 2

∫

[−lx′ ,lx′)2×(0,lx3)

|∇′m3|dx+

∫

(−lx′ ,lx′)2×(0,lx3)

|h′ −
1

lx3

(H ′
T −H ′

B)|2dx

≤ CP5l1/3
x3
l2x′ + CP5CH′ l2/3

x3

∫

∂(−lx′ ,lx′)2×(0,1)

|f −
1

lx3

ν′ · (H ′
T −H ′

B)|2dx′

+CP5l1/3
x3

(

∫

∂(−lx′ ,lx′)2×(0,lx3)

|f −
1

lx3

ν′ · (H ′
T −H ′

B)|2dx′

)4/3

.If H ′
T −H ′

B is url-free we may rewrite this as
E(lx′ , lx3) := 2

∫

[−lx′ ,lx′)2×(0,lx3 )

|∇′m3|dx+

∫

(−lx′ ,lx′)2×(0,lx3)

|h′|2dx

≤ CP5l1/3
x3
l2x′ + CP5CH′ l2/3

x3

∫

∂(−lx′ ,lx′)2×(0,1)

|f −
1

lx3

ν′ · (H ′
T −H ′

B)|2dx′

+CP5l1/3
x3

(

∫

∂(−lx′ ,lx′)2×(0,lx3)

|f −
1

lx3

ν′ · (H ′
T −H ′

B)|2dx′

)4/3

+l−1
x3

∫

(−lx′ ,lx′)2
|H ′

T −H ′
B|

2dx.Estimating the energy di�erene between the linear interpolation and the �eld instead of the full energy(or equivalently having onstant 1 in the additional term in the seond estimate) seems to have been akey improvement in the onstrution of omparison funtions in [Con00℄ over [KM94℄. It is ruial forbeing able to prove the required deay of the umulated �eld H ′
T.Proof. 1. Resaling. We resale to lx3 = 1. This sales x′, lx′ , and H by l−2/3

x3 and the energy by l−5/3
x3 .2. Splitting the �eld boundary data. We split f into three parts: The �rst part is the x3-average of f , i.e.

f1(x
′) :=

∫ 1

0

f(x′, x3)dx3 = ν′ · (H ′
T(x′) −H ′

B(x′)).Next we split the x3-osillation f − f1 into a high-frequeny (w.r.t. x′) and a low-frequeny part. We dothis by deomposing f into loal averages and osillation relative to that. We over a boundary layer ofsize sx′,b = lx′2−N+1, leaving N to be determined later, with squares
Sb,i,j = (isx′,b, (i+ 1)sx′,b) × (jsx′,b, (j + 1)sx′,b)and de�ne the loal averages

f2(x) := |∂(−lx′ , lx′)2 ∩ ∂Sb,i,j|
−1

∫

∂(−lx′ ,lx′ )2∩∂Sb,i,j

f(ξ′, x3)dξ
′ for x′ ∈ ∂(−lx′, lx′)2 ∩ ∂Sb,i,j.67



We denote the osillatory omponent by
f3 := f − f1 − f2.Note that this is an L2-orthogonal projetion (on eah setor), in partiular

∫

∂(−lx′ ,lx′)2∩∂Sb,i,j

|f2|
2dx′ +

∫

∂(−lx′ ,lx′)2∩∂Sb,i,j

|f3|
2dx′ =

∫

∂(−lx′ ,lx′)2∩∂Sb,i,j

|f − f1|
2dx′.We aomodate the high-frequeny part f3 by a divergene-free �eld, i.e. one not in�uening the mag-netization. In eah slie we apply Lemma 16 on Sb,i,j at the boundary. As the boundary �ux we usethe (zero-mean) osillatory part f3 on the one or two sides ∂Sb,i,j ∩ ∂(−lx′, lx′)2 and zero on the othersides of ∂Sb,i,j. Note that x∗1 of the lemma does not play a role here as the jump height would be zero.Lemma 16 yields a omparison �eld h′0 with energy bounded as

∫

Sb,i,j

|h′0|
2dx′ ≤ CL16sx′,b

∫

∂Sb,i,j∩∂(−lx′ ,lx′)2
|f3|

2dx′.Adding up all boundary squares we have the bound
∫

(−lx′ ,lx′)2\(−lx′+sx′,b,lx′−sx′,b)2
|h′0|

2dx′ ≤ CL16sx′,b

∫

∂(−lx′ ,lx′)2
|f3|

2dx′ ≤ CL16sx′,b

∫

∂(−lx′ ,lx′)2
|f − f1|

2dx′.By splitting out the highly osillatory part we gain an L∞-estimate for the remaining low-frequeny part
f2. Knowing f2 is onstant on ∂Sb,i,j ∩ ∂(−lx′ , lx′)2 we ompute

sup
∂Sb,i,j∩∂(−lx′ ,lx′)2

|f2| = |∂Sb,i,j ∩ ∂(−lx′ , lx′)2|−1

∫

∂Sb,i,j∩∂(−lx′ ,lx′)2
|f2|dx

′

≤ |∂Sb,i,j ∩ ∂(−lx′ , lx′)2|−1/2

(

∫

∂Sb,i,j∩∂(−lx′ ,lx′)2
|f2|

2dx′

)1/2

≤ s
−1/2
x′,b

(

∫

∂Sb,i,j∩∂(−lx′ ,lx′)2
|f − f1|

2dx′

)1/2

, (83)or if we prefer to just take the supremum over the full boundary
sup

x′∈∂(−lx′ ,lx′ )

|f2| ≤ s
−1/2
x′,b

(

∫

∂(−lx′ ,lx′)2
|f − f1|

2dx′

)1/2

. (84)We introdue the umulated �eld �ux aross the boundary
F2(x

′, x3) :=

∫ x3

0

f2(x
′, ξ3)dξ3.3. An initial relaxed magnetization. We start with the linear interpolation between m3 and H ′ at topand bottom. By onstrution

mlin
3 := x3m

T
3 + (1 − x3)m

B
3 ,

h′lin := H ′
T −H ′

B,

H ′lin := x3H
′
T + (1 − x3)H

′
B68



satisfy
∂3m

lin
3 + ∇′ · h′lin = 0 in (−lx′, lx′)2 × (0, 1),

h′lin · ν′ = f1 = (H ′
T −H ′

B) · ν′ on ∂(−lx′, lx′)2 × (0, 1).Note that this x3-onstant �eld does provide a lower bound for the �eld energy.We have to also aomodate the �eld �ux f2. To this end, onsider again a square
S = Sb,i,jat the boundary. We want to hange the magnetization within S to obtain a valid relaxed magnetization

m̃3 (i.e. |m̃3| ≤ 1) and �eld suh that
∂3m̃3 + ∇′ · h̃′ = 0and

ν′ · h̃′ =

{

ν′ · h′lin + f2 on ∂S ∩ ∂(−lx′, lx′)2,

ν′ · h′lin on ∂S \ ∂(−lx′, lx′)2.As we wish to simultaneously do this for all horizontal slies we need to hange the total magnetizationin S to satisfy
∫

S

m̃3dx
′ =

∫

S

mlin
3 dx′ −

∫

∂S∩∂(−lx′ ,lx′)2
F2dx

′.We want to hange the linear magnetization proportionally to the distane (in the hange diretion ±1in the image spae) to the onstraint m̃3 ∈ [−1, 1]. We thus estimate the (double) �volume of eah phase�
M±1 :=

∣

∣

∫

S

(±1 +mlin
3 )dx′

∣

∣

≥ |S| −
∣

∣

∫

S

mlin
3 dx′

∣

∣

= |S| −
∣

∣

∫

S

∇′ ·H ′lindx′∣∣
= |S| −

∣

∣

∫

∂S

ν′ ·H ′lindx′∣∣
≥ |S| − |∂S| sup |H ′lin|
= s2x′,b − 4sx′,b sup |H ′lin|,abusing the term volume of a phase by applying it to a relaxed magnetization. In order to be able toaomodate a sizable deviation from the average magnetization we want

sx′,b ≥
16

3
CH′ ≥

16

3
sup |H ′lin| (85)to get

M±1 ≥
1

4
s2x′,b.Note that

∂3M
±1 = ±

∫

S

∂3m
lin
3 dx′ = ∓1

∫

∂S

ν′ · (H ′
T −H ′

B)dx′,in partiular
|∂3M

±1| ≤ 2s2x′,b. (86)69



To avoid overlap we prefer
sx′,b ≤ lx′ . (87)We an now treat F2 by adding a fration of −mlin

3 − signF2 to the magnetization, more preisely wede�ne the additional relaxed magnetization as
madd

3 :=

{

|∂S∩∂(−lx′ ,lx′)2|
Msign F2

(−|F2|mlin
3 − F2) in eah S = Sb,i,j ,

0 in (−lx′ + sx′,b, lx′ − sx′,b)2and the relaxed magnetization
m̃3 := mlin

3 +madd
3 . (88)Reall that F2 is onstant on eah ∂Sb,i,j ∩∂(−lx′, lx′)2 to see that there is no ambiguity in the de�nition.We need to take are that m̃3 ∈ [−1, 1]. This is lear in (−lx′ +sx′,b, lx′ −sx′,b)2. In the remaining regionwe estimate by seeing that m̃3 is a onvex ombination of mlin

3 and − signF . More preisely,
m̃3 =

(

1 −
|∂S ∩ ∂(−lx′, lx′)2|

M sign F2
|F2|

)

mlin
3 +

|∂S ∩ ∂(−lx′ , lx′)2|

M signF2
|F2|(− signF2)is a onvex ombination of values in [−1, 1] when

|∂S ∩ ∂(−lx′ , lx′)2|

M signF2
|F2|

(85)
≤

|∂S ∩ ∂(−lx′, lx′)2|
1
4s

2
x′,b

|F2| ≤
2sx′,b

1
4s

2
x′,b

sup
∂S∩∂(−lx′ ,lx′)2

|F2|is bounded by 1. Thus we an ensure m̃3 ∈ [−1, 1] by requiring
sx′,b ≥ 8 sup

(∂S∩∂(−lx′ ,lx′)2)×(0,1)

|F2|. (89)We also speify a �eld h̃′ suh that
∂3m̃3 + ∇′ · h̃′ = 0by means of a orretion h′add to h′lin suh that

∂3m
add
3 + ∇′ · h′add = 0 in eah Sb,i,j,

ν′ · h′add = f2 on eah ∂Sb,i,j ∩ ∂(−lx′ , lx′)2,

ν′ · h′add = 0 on eah ∂Sb,i,j \ ∂(−lx′, lx′)2.Let us again �x S = Sb,i,j . We apply Lemma 16 on eah boundary setor to obtain divergene-free �elds
H ′

T,0 with normal omponent
f =

{

−ν′ ·H ′
T + |∂S ∩ ∂(−lx′ , lx′)2|−1

∫

∂S ν
′ ·H ′

T dx
′ on ∂S ∩ ∂(−lx′ , lx′)2,

−ν′ ·H ′
T on ∂S \ ∂(−lx′ , lx′)2and analogously H ′

B,0 with H ′
B in the boundary �ux. From the lemma and (81) we know that

sup |H ′
T,0|, sup |H ′

B,0| ≤ CCH′ . (90)As in the de�nition of H ′
lin we write

H ′
lin,0 := x3H

′
T,0 + (1 − x3)H

′
B,0.70



Let H ′
1 be the unique linear �eld with

∇′ ·H ′
1 = 1 in S,

ν′ ·H ′
1 =

|S|

|∂S ∩ ∂(−lx′, lx′)2|
on ∂S ∩ ∂(−lx′ , lx′)2,

ν′ ·H ′
1 = 0 on ∂S \ ∂(−lx′ , lx′)2,i.e.

H ′
1 =



























































(lx′ − sx′,b + x1)e1 if i = −2N−1, j 6∈ {−2N−1, 2N−1 − 1},

(lx′ − sx′,b − x1)e1 if i = 2N − 1, j 6∈ {−2N−1, 2N−1 − 1},

(lx′ − sx′,b + x2)e2 if j = −2N−1, i 6∈ {−2N−1, 2N−1 − 1},

(lx′ − sx′,b − x2)e2 if j = 2N−1 − 1, i 6∈ {−2N−1, 2N−1 − 1},
1
2 (lx′ − sx′,b + x1)e1 + 1

2 (lx′ − sx′,b + x2)e2 if i = −2N−1, j = −2N−1,
1
2 (lx′ − sx′,b + x1)e1 + 1

2 (lx′ − sx′,b − x2)e2 if i = −2N−1, j = 2N−1 − 1,
1
2 (lx′ − sx′,b − x1)e1 + 1

2 (lx′ − sx′,b + x2)e2 if i = 2N−1 − 1, j = −2N−1,
1
2 (lx′ − sx′,b − x1)e1 + 1

2 (lx′ − sx′,b − x2)e2 if i = 2N−1 − 1, j = 2N−1 − 1.Note that
sup |H ′

1| ≤ sx′,b (91)and that the normal omponent of both H ′
lin + H ′

lin,0 and H ′
1 vanishes on ∂S \ ∂(−lx′ , lx′)2, so we anglue and extend by 0 without inurring a singular divergene term at these boundaries.With these preparations we de�ne

H ′
add :=

{

|∂S∩∂(−lx′ ,lx′)2|

Msign F2
F2

(

− signF2(H
′
lin +H ′

lin,0) +H ′
1

) in S = Sb,i,j

0 in (−lx′ + sx′,b, lx′ − sx′,b)2,satisfying ∇′ ·H ′
add = −madd

3 and ompute the x3-derivative h′add := ∂3H
′
add to get a �eld

h′add =



























|∂S∩∂(−lx′ ,lx′)2|
Msign F2

f2

(

− signF2(H
′
lin +H ′

lin,0) +H ′
1

)

− |∂S∩∂(−lx′ ,lx′ )2|
Msign F2

∂3Msign F2

Msign F2
F2

(

− signF2(H
′
lin +H ′

lin,0) +H ′
1

)

+ |∂S∩∂(−lx′ ,lx′ )2|

Msign F2
F2

(

− signF2((H
′
T +H ′

T,0) − (H ′
B +H ′

B,0))
) in S = Sb,i,j

0 in (−lx′ + sx′,b, lx′ − sx′,b)
2,to math ∂3m

add
3 . Observe that madd

3 vanishes where signF2 hanges. Thus we may assume that signF2is onstant when omputing the derivative beause it indeed is for almost every x3. The normal om-ponents of the last two summands exatly anel at the boundary. Reall that f2 is onstant on eah
∂Sb,i,j ∩ ∂(−lx′, lx′)2. The �eld

h̃′ := h′lin + h′addis ompatible with the magnetization m̃3 de�ned in (88). At the boundary ∂(−lx′ , lx′)2 ∩ ∂S we have
ν′ · h̃′ = ν′ · h′lin +

|∂S ∩ ∂(−lx′ , lx′)2|

M sign F2
f2

− signF2

∫

∂S
ν′ ·H ′

lin dx
′ + |S|

|∂S ∩ ∂(−lx′, lx′)2|

= ν′ · h′lin +
f2

M sign F2

∫

S

(− signF2 ∇′ ·H ′
lin + 1) dx′

= ν′ · h′lin +
f2

M sign F2

∫

S

(signF2 mlin
3 + 1) dx′

= f1 + f2, 71



as desired. By (81), (85), (86), (90), and (91) we an estimate the additional �eld strength for theorretion in the boundary layer as
sup

Sb,i,j⊂(−lx′ ,lx′)2\(−lx′+sx′,b,lx′−sx′,b)2
|h′add|(81),(86),(90),(91)

≤ C(|f2| + |F2|)s
−1
x′,b(CH′ + sx′,b)(85)

≤ C(|f2| + |F2|). (92)We emphasize that it would be premature to take the supremum over the full boundary layer at thispoint beause we later want to integrate over the boundary layer and would lose a fator of essentially
lx′ if we took the supremum now.4. Subdivision of the domain and loal averaging. In preparation for de�ning a {−1,+1}-valued magne-tization we loally modify m̃3. We divide the uboid (−lx′ , lx′)2 × (0, 1) in a way suh that the piees getsmaller towards the boundary. It is natural to onstrut the magnetization on these piees. Before wedo that, however, we average the magnetization to be pieewise onstant in x′ on eah horizontal slie ofsuh a uboid setor while still being ontinuous in x3 even aross setor boundaries. We fully re�ne thestruture as x3 approahes either top or bottom boundary in order to get by without detailed knowledgeabout the magnetization mT

3 and mB
3 at the top and bottom boundaries. To make things preise, eahlayer is in an x3-interval

Ix3,k := (2−3(k+1)/2−1, 2−3k/2−1) ∪ (1 − 2−3k/2−1, 1 − 2−3(k+1)/2−1)for k ∈ N0. We de�ne the x′-lengthsale on eah Ix3,k

sx′ = 2−k0+k+1lx′ .with k0 hosen as the unique positive integer suh that
1

2
< 2−k0+1lx′ ≤ 1.We divide (−lx′ , lx′) into the subintervals

Ik
x′,j = (jsx′ , (j + 1)sx′)and so split (−lx′ , lx′)2 into 22(k+k0) subsquares
S′k

i,j := Ik
x′,i × Ik

x′,j .Let
α(x3) :=

{

x3−2−3(k+1)/2−1

2−3k/2−1−2−3(k+1)/2−1 for x3 ∈ Ix3,k ∩ [0, 1
2 ],

α(lx3 − x3) for x3 ∈ Ix3,k ∩ (1
2 , 1]be the relative position of x3 in Ix3,k. We split eah Ix3,k in two parts, one in whih the loal averaging of

m̃3 is re�ned and a seond where the geometri re�nement is done. This is done to simplify the somewhattehnial onstrution and only osts a onstant fator in our estimates. We thus introdue
α0(x) := min{2α, 1},

α1(x) := max{2α− 1, 0}.72



We de�ne the envisioned average magnetization for x suh that x3 ∈ Ix3,k and x′ ∈ S′k
i′,j′ ⊂ S′k−1

i,j as
m̂3(x

′, x3) := (1 − α0(x3))|S
′k
i′,j′ |

−1

∫

S′k
i′,j′

m̃3(ξ
′, x3)dξ

′ + α0(x3)|S
′k−1
i,j |−1

∫

S′k−1
i,j

m̃3(ξ
′, x3)dξ

′.Note that in partiular ∫
(−lx′ ,lx′)2

m̂3(x
′, x3)dx

′ =
∫

(−lx′ ,lx′)2
m̃3(x

′, x3)dx
′ so the magnetization is om-patible with the boundary onditions.5. Undoing the relaxation. We now de�ne a {+1,−1}-valued magnetization that has average m̂3. Wetreat two adjaent setors S′k

2i,j′ ∪ S
′k
2i+1,j′ at one. Let

m3 :=



















+1 for x1 ∈ (sx′2i, sx′(2i+ min{(1 + α1)
m̂3+1

2 , 1}))

∪(sx′(2i+ 1), sx′(2i+ 1 + max{(1 − α1)
m̂3+1

2 , m̂3})),

x2 ∈ Ik
x′,j′ ,

−1 elsewhere on S′k
2i,j′ ∪ S

′k
2i+1,j′ .Note that m̂3 is onstant on the union of the two setors when α1 6= 0. We see that the averages of m̂3and m3 agree, i.e.

∫

S′k
2i,j′

∪S′k
2i+1,j′

m̂3dx
′ =

∫

S′k
2i,j′

∪S′k
2i+1,j′

m3dx
′and so on the larger setors S′k−1

i,j we have
∫

S′k−1
i,j

m̂3dx
′ =

∫

S′k−1
i,j

m3dx
′ =

∫

S′k−1
i,j

m̃3dx
′.We ompute ∂3m3 in the sense of distributions and see that it an be represented as

∂3m3 = 2∂3x
(2i,j,k)
1 (x3) · H

1x{x1 = x
(2i,j,k)
1 (x3)}

+2∂3x
(2i+1,j,k)
1 (x3) · H

1x{x1 = x
(2i+1,j,k)
1 (x3)}when we de�ne

x
(2i,j,k)
1 (x3) := sx′(2i+ min{(1 + α1)

m̂3 + 1

2
, 1}),

x
(2i+1,j,k)
1 (x3) := sx′(2i+ 1 + max{(1 − α1)

m̂3 + 1

2
, m̂3}).6. Comparison �eld. As the onstrution of m3 from m̃3 preserves sliewise averages in Sk−1

i,j × Ix3,k ourstrategy is to onstrut the omparison �eld using a loal modi�ation h̃′ to deal with the hange in m̂3.Let us write
(f)i,j,k := |S′k

i,j |
−1

∫

S′k
i,j

fdξ′.For the following alulations we �x i, j and let i′ and j′ vary in {2i, 2i+ 1} and {2j, 2j + 1}, respe-tively. We ompute the �rst density 2∂3x
(2i,j′,k)
1 if S′k

2i,j′ has not �lled up with +1 magnetization, i.e.73



x
(2i,j′,k)
1 < (2i+ 1)sx′ or α0 < 1,

2∂3x
(2i,j′,k)
1 = sx′∂3α1(m̂3 + 1) + sx′(1 + α1)∂3m̂3

= sx′∂3α1(m̂3 + 1) + sx′(1 + α1)∂3

(

(m̃3)(2i,j′,k) + α0((m̃3)i,j,k−1 − (m̃3)2i,j′,k)
)

= sx′∂3α1(m̂3 + 1) + sx′(1 + α1)∂3α0((m̃3)i,j,k−1 − (m̃3)2i,j′,k)

+sx′(1 + α1)
(

(1 − α0)(∂3m̃3)(2i,j′,k) + α0((∂3m̃3)i,j,k−1)
)

= sx′∂3α1(m̂3 + 1) + sx′∂3α0((m̃3)i,j,k−1 − (m̃3)2i,j′,k)

+sx′

(

(1 − α0)(∂3m̃3)(2i,j′,k) + (1 + α1)α0((∂3m̃3)i,j,k−1)
)

,where we have used that at any point either α1 = ∂3α1 = 0 or α0 = 1 and ∂3α0 = 0.Similarly we ompute the seond density in the ase that x(2i,j′,k)
1 < (2i+ 1)sx′ or α0 < 1, i.e. when themaximum in the expression for x(2i+1,j′,k)

1 is the �rst argument,
2∂3x

(2i+1,j′,k)
1 = −sx′∂3α1(m̂3 + 1) + sx′(1 − α1)∂3m̂3

= −sx′∂3α1(m̂3 + 1) + sx′(1 − α1)∂3α0((m̃3)i,j,k−1 − (m̃3)2i+1,j′,k)

+sx′(1 − α1)
(

(1 − α0)(∂3m̃3)(2i+1,j′,k) + α0((∂3m̃3)i,j,k−1)
)

= −sx′∂3α1(m̂3 + 1) + sx′∂3α0((m̃3)i,j,k−1 − (m̃3)2i+1,j′,k)

+sx′

(

(1 − α0)(∂3m̃3)(2i+1,j′,k) + (1 − α1)α0((∂3m̃3)i,j,k−1)
)

.In the other ase, x(2i,j′,k)
1 = (2i+ 1)sx′ and α0 = 1, the density is instead

2∂3x
(2i+1,j′,k)
1 = 2sx′∂3m̂3

= 2sx′(∂3m̃3)i,j,k−1.We onstrut the omparison �eld as a sum of �elds re�eting this deomposition of ∂3x
(2i,j′,k)
1 and

∂3x
(2i+1,j′,k)
1 . Denoting by ei the standard unit vetors we see that

h′a =

{

−sx′∂3α1(m̂3 + 1)e1 for x1 ∈ (x
(2i,j,k)
1 , x

(2i+1,j,k)
1 ), x

(2i,j,k)
1 < sx′(2i+ 1),

0 otherwiseompensates the �rst summand (featuring ∂3α1) if it ours. The strength of this �eld is bounded by
|h′a| ≤ 4sx′s−1

x3
.For the term involving ∂3α0 we onsider the four squares S′k

2i,2j , S′k
2i+1,2j , S′k

2i,2j+1, S′k
2i+1,2j+1 omprising

S′k−1
i,j . We note that α1 = 0 if ∂α0 6= 0. Let

h′b,1,i,j′(x) =











−sx′∂3α0((m̃3)i,j,k−1 − (m̃3)2i,j′,k)e1 in S′k
2i,j′ ∩ {x1 ≥ x

(2i,j′,k)
1 },

sx′∂3α0((m̃3)i,j,k−1 − (m̃3)2i+1,j′,k)e1 in S′k
2i+1,j′ ∩ {x1 ≤ x

(2i+1,j′,k)
1 },

0 elsewhere in S′k
2i,j′ ∪ S

′k
2i+1,j′and

h′b,2,i,j(x) =































−sx′∂3α0(2(m̃3)i,j,k−1 − (m̃3)2i,2j,k − (m̃3)2i+1,2j,k)(e1 + e2)in S′k
2i+1,2j ∩ {x2 − 2jsx′ ≥ x1 − (2i+ 1)sx′},

−sx′∂3α0(2(m̃3)i,j,k−1 − (m̃3)2i,2j+1,k − (m̃3)2i+1,2j+1,k)(e1 − e2)in S′k
2i+1,2j+1 ∩ {x2 − (2j + 1)sx′ ≤ (2i+ 2)sx′ − x1},

0 elsewhere.74



x2

x1

x2

x1Figure 12: Constrution of h′b,1 (left) and h′b,2 (right), blak regions have magnetization m3 = +1, (arrowlengths are not drawn to sale)Then
h′b = h′b,1,i,2j + h′b,1,i,2j+1 + h′b,2,i,j(see also Figure 12) mathes the terms of the derivative of m3 involving ∂3α0 and we an bound the �eldstrength as

|h′b| ≤ 12sx′|∂3α0| ≤ 24sx′s−1
x3without trying to get a good onstant.Finally, we want to orret h̃ to math the non-relaxed magnetization, i.e. �nd a �eld orresponding tothe terms involving ∂3m̃3 in the density of the measure representing ∂3m3. As the reader might suspetafter our onstrution of h̃, we adjust h′lin and h̃′ − h′lin separately.We start with h′lin. We apply Lemma 15 on S′

(i′,j′,k) with
g = ∇′ · h′lin = −∂3m

lin = −(mT
3 −mB

3 )and M = {x
(i′,j′,k)
1 } × Ik

x′,j′ to �nd h′c,1,i′,j′ := h′lin + ∇′w. With
∫

S′
(i′,j′,k)

|g|2dx′ ≤ 2|S′
(i′,j′,k)| = 2s2x′the bound of Lemma 15 is

∫

S′
(i′,j′,k)

|h′lin − h′c,1,i′,j′ |
2 ≤ Cs4x′and we ahieve

∇′ · h′c,1,i′,j′ = −sx′(∂3m̃3)i′,j′,k · H1xM on S′k
i′,j′ .We apply Lemma 15 a seond time, now on S′k−1

i,j with g = ∇ · h′lin and the same M ⊂ S′k
i′,j′ to obtain

h′c,2,i′,j′ := h′lin + ∇w with the same estimate (but the onstant being 16 times larger) and
∇′ · h′c,2,i′,j′ = −4sx′(∂3m̃3)i,j,k−1 · H

1xM on S′k−1
i,j .75



In the boundary setors we also need to take are of h′add. We proeed in a slighly di�erent way keepingan eye on the maximal �eld strength instead of the energy per setor. We apply Lemma 16 on S′k
i′,j′with f = ν′ · h′add, x∗1 = x

(i′,j′,k)
1 and M = Ik

x′,j′ to obtain h′d,1,i′,j′ . Similarly, we apply Lemma 16 on
S′k−1

i,j with the same f , x∗1, and M to obtain h′d,2,i′,j′ . We have the estimate pair
sup

S′k
i′,j′

|h′d,1,i′,j′ | ≤ CL16 sup
S′k

i′,j′

|h′add|and
sup

S′k−1

i′,j′

|h′d,2,i′,j′ | ≤ 2CL16 sup
S′k−1

i,j

|h′add|.For S = S′k
i′,j′ or S = S′k−1

i,j we have
∫

∂S

ν′ · h̃′dx′ =

∫

S

∇′ · h̃′dx′ = −

∫

S

∂3m̃3dx
′and so

∇′ · h′d,1,i′,j′ = s−1
x′

∫

∂S′k
i′,j′

ν′ · h′d,1,i′,j′dx
′ · H1x{x

(i′,j′,k)
1 } × Ik

x′,j′

= −s−1
x′

∫

S′k
i′,j′

∂3m
add
3 dx′ · H1x{x

(i′,j′,k)
1 } × Ik

x′,j′

= −sx′(∂3m
add
3 )i′,j′,k · H1x{x

(i′,j′,k)
1 } × Ik

x′,j′and similarly
∇′ · h′d,2,i′,j′ = −4sx′(∂3m̃

add
3 )i′,j′,k · H1x{x

(i′,j′,k)
1 } × Ik

x′,j′ .Consistently with h′add ≡ 0 in (−lx′ + sx′,b, lx′ − sx′,b)2 we de�ne all h′d,... to vanish there. Reall that werequire that 2sx′ divides sx′,b, so any S′k−1
i,j is ontained either in the boundary layer or its omplement.We see that the onvex ombination

h′c =



















(1 − α0)h
′
c,2,i′,j′

+(1 + α1)α0
1
4 (h′c,2,2i,2j + h′c,2,2i,2j+1)

+(1 − α1)α0
1
4 (h′c,2,2i,2j + h′c,2,2i,2j+1) on S′k

i′,j′ if x2i,j′,k
1 < (2i+ 1)sx′ or α0 < 1,

1
2 (h′c,2,2i+1,2j + h′c,2,2i+1,2j+1) on S′k−1

i,j if x2i,j′,k
1 = (2i+ 1)sx′ and α0 = 1and hd de�ned as a onvex ombination with the very same oe�ients are �elds ompensating the termsinvolving ∂3m

lin
3 and ∂3m

add
3 , respetively, so their sum ompensates ∂3m̃3 in the derivative of ∂3m3 on

S′k−1
i,j . With ν′ · (h′c + h′d) = ν′ · h̃′ we an glue the �eld for all setors and obtain a �eld mathing ourboundary onditions.We have treated these two omponents separately to be able to bound their energy ontribution indi�erent ways. The onvex-ombination of the bounds from Lemma 15 gives

∫

S′k
i′,j′

|h′c − h′lin|dx′ ≤ Cs4x′ .Lemma 16 lets h′d inherit the L∞-bound (92) from h′add, i.e.
sup

S′k−1
i,j

|h′d| ≤ 2CL16 sup
S′k−1

i,j

|h′add|
(92)
≤ C(|f2| + |F2|)76



for eah S′k−1
i,j ⊆ Sb,ib,jb

⊂ (−lx′ , lx′)2 \ (−lx′ + sx′,b, lx′ − sx′,b)2.Summing up, we have onstruted in eah slie
h′abcd := h′a + h′b + h′c + h′dsatisfying

∂3m3 + ∇′ · h′abcd = 0 in (−lx′ , lx′)2,

ν′ · h′abcd = ν′ · h̃′ = f1 + f2 on ∂(−lx′ , lx′)2.Adding the divergene free h′0 in the boundary squares, i.e. letting
h′ :=

{

h′abcd in (−lx′ + sx′,b, lx′ − sx′,b)
2,

h′abcd + h′0 in (−lx′ , lx′)2 \ (−lx′ + sx′,b, lx′ − sx′,b)2we have the desired omparison �eld h′ with
∂3m3 + ∇′ · h′ = 0 in (−lx′ , lx′)2,

ν′ · h′ = f on ∂(−lx′ , lx′)2.7. Energy bound and boundary layer size. In the interior we estimate h′−h′lin beause we want to exploitthe orthogonality with h′lin one we integrate in x3. We thus bound the �eld energy as
∫

(−lx′ ,lx′ )2
|h′ − h′lin|

2dx′ .

∫

(−lx′ ,lx′)2
|h′a + h′b|

2 + |h′c − h′lin|
2dx′

+

∫

(−lx′ ,lx′ )2\(−lx′+sx′,b,lx′−sx′,b)2
|h′d|

2 + |h′0|
2dx′

. s2x′s−2
x3
l2x′ + s2x′ l2x′ +

∑

Sb,i,j

sx′,b|F2|
2

+sx′,b

∫

∂(−lx′ ,lx′)2
|f − f1|

2dx′

. s2x′s−2
x3
l2x′ + sx′,b

∫

∂(−lx′ ,lx′)2
|f − f1|

2dx′ +
∑

Sb,i,j

sx′,b|F2|
2.Reall that F2 is onstant on ∂Sb,i,j∩∂∂(−lx′, lx′)2 for eah Sb,i,j . The interfaes are the setor boundariesand (at most) one line through eah setor. We thus have

2

∫

[−lx′ ,lx′)2
|∇′m3|dx

′ . s−1
x′ l

2
x′ .Adding interfaial and �eld energy, plugging in the x3-dependent lengthsales sx′ and sx3 , and integratingover x3 we see that

2

∫

[−lx′ ,lx′)2×(0,1)

|∇′m3|dx+

∫

(−lx′ ,lx′ )2×(0,1)

|h′ − h′lin|
2dx

. l2x′

∫ 1

0

(s−1
x′ (x3) + (sx′(x3))

2sx3(x3)
−2)dx3 + sx′,b

∫

∂(−lx′ ,lx′)2×(0,1)

|f − f1|
2dx′ +

∑

Sb,i,j

sx′,b|F2|
2

. l2x′ + sx′,b

∫

∂(−lx′ ,lx′)2×(0,1)

|f − f1|
2dx′. 77



Before we an omplete the estimate, we have to ollet our assumptions on CH′ , lx′ , and sx′,b. We wantto hoose
sx′,b ≥ 4

(

∫

∂(−lx′ ,lx′)2×(0,1)

|f − f1|
2dx

)1/3beause then by (84)
8 sup

∂(−lx′ ,lx′)2×(0,1)

|F2|
(84)
≤ 4

(

∫

∂(−lx′ ,lx′ )2×(0,1)

|f − f1|
2dx

)1/3

≤ sx′,b,whih we required in (89). Combined with the restrition of (85) and our desire that 2sx′ divides sx′,bwe hoose sx′,b = 2−N+1lx′ with N the unique integer suh that
1

2
sx′,b < max







4

(

∫

∂(−lx′ ,lx′)2×(0,1)

|f − f1|
2dx

)1/3

,
16

3
CH′ , 2







≤ sx′,b. (93)To be able to drop the last restrition we ask that
CH′ ≥ 1.Per (87) we want the boundary layer to not oupy too muh of the domain, so we impose

lx′ ≥
16

3
CH′and, beause we want to interpret the required relation as a bound on the boundary energy in terms of

lx′ ,
∫

∂(−lx′ ,lx′)2×(0,1)

|f − f1|
2dx ≤ 2−9l3x′ .Undoing the resaling, we have the �rst energy estimate of the proposition.It remains to onsider the full energy instead of h′−h′lin for the seond formulation. Similar to Lemma 14we onsider our onstruted omparison �eld as a omparison �eld for the minimization of the �eld energywith given magnetization m3. For H ′

T −H ′
B to be url-free is equivalent to it having minimal L2-normfor given magnetization di�erene mT

3 −mB
3 and normal omponent on ∂(−lx′ , lx′)2. By Lemma 14 theoptimal �eld h′opt for given m3 has an x3-average that is orthogonal to the x3-osillation and thus solvesthe same minimization problem. By the uniqueness of the minimizer the average has to oinide with

1
lx3

(H ′
T −H ′

B) = h′lin and optimality of the osillation implies
∫

(−lx′ ,lx′)2×(0,lx3)

|h′opt|
2dx =

∫

(−lx′ ,lx′)2×(0,lx3)

|h′opt − h′lin|
2dx+

∫

(−lx′ ,lx′ )2×(0,lx3)

|h′lin|
2dx

≤

∫

(−lx′ ,lx′)2×(0,lx3)

|h′ − h′lin|
2dx+

∫

(−lx′ ,lx′)2×(0,lx3)

|h′lin|
2dx.Plugging this into the �rst estimate we obtain the seond.The following two lemmas are used in the onstrution of the �eld for the magnetization above. The�rst is a dual estimate to the Poinar�e inequality in the form of Lemma 20 ombined with the usual

L2�estimate for the solution of the Poisson equation.78



Lemma 15. Given g ∈ L2((0, l)2) and M = {x∗1} × (a, a+ b) ⊂ (0, l)2 let w be the solution to
−∆′w = g −

(

|M |−1

∫

(0,l)2
gdx′

)

· H1xM distributionally in (0, l)2,

∂ν′w = 0 on ∂(0, l)2,
∫

(0,l)2
wdx′ = 0.Then with the universal onstant C = C(2, 2) of Lemma 20

∫

(0,l)2
|∇′w|2dx′ ≤ Cl3|M |−1

∫

(0,l)2
|g|2dx′.

Proof. We denote the density we want to put on M by
ḡ := |M |−1

∫

(0,l)2
gdx′.Without loss of generality we assume x∗1 < l and let, for small ε,

χ := χ(x∗
1,x∗

1+εḡ)×(a,a+b).For x∗1 = l we ould use χ = χ(x∗
1−εḡ,x∗

1)×(a,a+b) instead. Let wε be the solution to
−∆′wε = g − ε−1χ in (0, l)2,

∂ν′wε = 0 on ∂(0, l)2,
∫

(0,l)2
wεdx

′ = 0.We estimate the L2-norm of the gradient by testing with
ϕ = ‖∇′wε‖

−1
L2

(

wε −

(
∫

χdx′
)−1 ∫

wεχdx
′

)

.79



Using the Poinar�e inequality from Lemma 20 we see that
(

∫

(0,l)2
|∇′wε|

2dx′

)1/2

=

∫

(0,l)2
∇′wε∇

′ϕdx′

= −

∫

(0,l)2
∆′wεϕdx

′

=

∫

(0,l)2
gϕdx′ −

∫

(0,l)2
ε−1χϕdx′

=

∫

(0,l)2
gϕdx′

≤

(

∫

(0,l)2
|g|2dx′

)1/2(
∫

(0,l)2
|ϕ|2dx′

)1/2Lemma 20
≤ C1/2l

l1/2

|M |1/2

(

∫

(0,l)2
|g|2dx′

)1/2(
∫

(0,l)2
|∇′ϕ|2dx′

)1/2

= C1/2l
l1/2

|M |1/2

(

∫

(0,l)2
|g|2dx′

)1/2

.For ε→ 0 the equation onverges to
−∆′w = g − ḡH1xM in (0, l)2and the solutions to the linear equation onverge wε

w
⇀ w weakly in H1, so we have

∫

(0,l)2
|∇′w|2dx′ ≤ Cl2

l

|M |

∫

(0,l)2
|g|2dx′,the desired estimate.Lemma 16. Given a square S = (0, l)2, a funtion f on ∂S, x∗1 ∈ (0, l), and M ⊂ (0, l) a �nite unionof intervals of measure H1(M) = αl, there exists h′ suh that

∇′ · h′ = (αl)−1

∫

∂S

fdx′ · H1x{x∗1} ×M,

ν′ · h′ = fon ∂Ssatisfying
sup

S
|h′| ≤ CL16 α−1 sup

∂S
|f |and if α = 1

∫

S

|h′|2dx′ ≤ CL16 l ∫
∂S

|f |2dx′.The onstant CL16 is universal (e.g. the �rst estimate would work with CL16 = 16).The ondition thatM is a �nite union of intervals is motivated by the appliation in the proof of Lemma 15and we would expet the assertion of the lemma to hold under more general onditions.80



Proof. Without loss of generality x∗1 ≤ 1
2 l. De�ne

h′a(x
′) = (−f(0, x2) − f(x1 − x2, 0) − f(x1 + x2 − l, l))e1 + (f(x1 − x2, 0) − f(x1 + x2 − l, l))e2with the onvention that f vanishes outside ∂S and

f̃(x2) = f(l, x2) − ν′ · h′a.Let hb be the rotated gradient of
ψ(x′) =

(

1 −
x1 − x∗1
l − x∗1

)

∫ l

0

f̃(ξ2)dξ2(αl)
−1

∫ x2

0

χM (ξ2)dξ2 +
x1 − x∗1
l − x∗1

∫ x2

0

f̃(ξ2)dξ2on {x′|x1 ∈ (x∗1, l)} extended to (0, l)2 by zero, i.e.
h′b(x′) =















(

(

1 − x1−x∗
1

l−x∗
1

) ∫ l

0
f̃(ξ2)dξ2(αl)

−1χM (x2) +
x1−x∗

1

l−x∗
1
f̃(x2)

)

e1

+ 1
l−x∗

1

(

∫ x2

0
f̃(ξ2)dξ2 −

∫ l

0
f̃(ξ2)dξ2(αl)

−1
∫ x2

0
χM (ξ2)dξ2

)

e2 if x1 > x∗1,

0 otherwise.We see that h′ = h′a + h′b satis�es the right boundary onditions and with the estimates
|h′a| . sup |f |and (using α ≤ 1)

|h′b| . sup |f̃ | . |f |we have the desired L∞-estimate. Similarly
∫

S

|h′|2dx′ .

∫

S

|h′b|
2 + |h′b|

2dx′ . l

∫

∂S

|f |2dx′,proving our laim.The following lemma enhanes the sketh of the ODE argument of the previous subsetion to a rigorousproof. We have two options to deal with the non-smoothness of E. In [ACO06℄ the non-di�erentiability isdealt with diretly by onsidering the upper limit of the di�erene quotient. We take a slightly di�erentroute and use a good uboid width near the suspeted breakdown of the estimate. This adds variety andis somewhat quiker at the expense of at most a fator in the onstants.Lemma 17. There is a universal onstant CL17 ≥ 1 permitting the following estimate. Given top andbottom magnetization as funtions
mT

3 ,m
B
3 : (−l, l)2 → [−1, 1],and (−l, l)2-periodi umulated �elds H ′

T, H ′
B : (−l, l)2 → R2 at top and bottom with

−∇′ ·H ′
T = mT

3 in (−l, l)2,

−∇′ ·H ′
B = mB

3 in (−l, l)2,let m3 : (−l, l)2 × (0, lx3) → {+1,−1} and h′ : (−l, l)2 × (0, lx3) be energy-minimizing among all (−l, l)2-periodi on�gurations on (−l, l)2 × (0, lx3) satisfying
∂3m3 + ·∇′ · h′ = 0 distributionally in (−lx′ , lx′)2 × (0, lx3),

m3 ⇀ mB
3 weakly as x3 → 0,

m3 ⇀ mT
3 weakly as x3 → lx3 ,

∫ lx3

0

h′dx3 = H ′
T −H ′

B in (−l, l)2.81



Assume that there is CH′ ≥ 1 suh that
sup |H ′

T|, sup |H ′
B| ≤ CH′ l2/3

x3
,

l ≥ CL17CH′ l2/3
x3
.Then for any lx′ ≥ CL17CH′ l

2/3
x3 and any x′ ∈ (−l, l)2 we have

Ẽ(lx′ , x′) = 2

∫

(x′+[−lx′ ,lx′ )2)×(0,lx3)

|∇′m3|dx+

∫

(x′+(−lx′ ,lx′)2)×(0,lx3)

|h′ −
1

lx3

(H ′
T −H ′

B)|2dx ≤ CL17l1/3
x3
l2x′ .If H ′

T −H ′
B is url-free then

E(lx′ , x′) = 2

∫

(x′+[−lx′ ,lx′)2)×(0,lx3)

|∇′m3|dx+

∫

(x′+(−lx′ ,lx′r)2)×(0,lx3)

|h′|2dx ≤ (CL17 + 8CH′)l1/3
x3
l2x′ .Proof. By translation we only need to be onerned with domains (−lx′ , lx′)2 × (0, lx3) and an write

Ẽ(lx′) := Ẽ(lx′ , 0). Let us assume
CL17 ≥ 8CP5.An initial appliation of Proposition 5 on (−l, l)2 × (0, lx3) with f(x′, x3) = 1

lx3
ν′ · (H ′

T −H ′
B) yields

Ẽ(l) ≤ CP5l1/3
x3
l2.We onsider the energy on (−2−il, 2−il) × (0, lx3). For i = 0 the energy is bounded as desired. Assumethat there is some smallest i∗ suh that

Ẽ(2−il) ≤ 8CP5l1/3
x3

2−2il2 for 0 ≤ i ≤ i∗ (94)and
Ẽ(2−i∗−1l) > 8CP5l1/3

x3
2−2i∗−2l2. (95)We now bound 2−i∗ l. By Fubini's theorem and beause when omputing a mean, not every value an beabove average, there exists a horizontal length l∗ ∈ (2−(i∗+1)l, 2−i∗ l) suh that

∫

∂(−l∗,l∗)2×(0,lx3)

|ν′ · (h′ −
1

lx3

(H ′
T −H ′

B))|2dx

≤ 2i∗+1l−1

∫

(−2−i∗ l,2−i∗ l)2×(0,lx3)

|ν′ · (h′ −
1

lx3

(H ′
T −H ′

B))|2dx

≤ 2i∗+1l−1Ẽ(2−i∗ l). (96)Eyeing (82) we reognize that
(

∫

∂(−l∗,l∗)2×(0,lx3)

|ν′ · (h′ −
1

lx3

(H ′
T −H ′

B))|2dx

)1/3 (96)
≤

(

2i∗+1l−1Ẽ(2−i∗ l)
)1/3(94)

≤
(

2i∗+1l−18CP5l1/3
x3

(2−i∗ l)2
)1/3

= 2C
1/3P5 l1/9

x3
2−i∗/3+1/3l1/3

≤ 2C
1/3P5 l1/9

x3
22/3l

1/3
∗

≤ 2−3l−1/3
x3

l∗82



for l∗ ≥ 27C
1/2P5 l2/3

x3 . By de�nition, the restrition of H ′
T is ompatible with the boundary values ν′ · h′.Provided l∗ ≥ 16

3 CH′ this allows us to plug (96) into the bound of Proposition 5 for l∗ and we see inombination with (94) and (95) that
2CP5l1/3

x3
(2−i∗ l)2

= 8CP5l1/3
x3

2−2i∗−2l2(95)
≤ Ẽ(2−i∗−1l)

≤ Ẽ(l∗)Prop. 5
≤ CP5l1/3

x3

((

∫

∂(−l∗,l∗)2×(0,lx3)

|ν′ · (h′ −
1

lx3

(H ′
T −H ′

B))|2dx

)4/3

+CH′ l1/3
x3

∫

∂(−l∗,l∗)2×(0,lx3)

|ν′ · (h′ −
1

lx3

(H ′
T −H ′

B))|2dx+ l2∗

)(96)
≤ CP5l1/3

x3

(

(

2i∗+1l−1E(2−i∗ l)
)4/3

+ CH′ l1/3
x3

2i∗+1l−1E(2−i∗ l) + (2−i∗ l)2
)(94)

≤ CP5l1/3
x3

(

(

2i∗+1l−18CP5l1/3
x3

2−2i∗ l2)
)4/3

+ CH′ l1/3
x3

2i∗+1l−18CP5l1/3
x3

2−2i∗ l2 + (2−i∗ l)2
)

= C
7/3P5 24l7/9

x3
2−4i∗/3+4/3l4/3 + 8C2P5CH′ lx32

−i∗+1l+ CP5l1/3
x3

(2−i∗ l)2.Absorbing the last term into the left hand side we obtain
(2−i∗ l)2 ≤ C

4/3P5 l4/9
x3

2−4i∗/3+16/3l4/3 + CP5CH′ l2/3
x3

2−i∗+4land somewhat lazily onlude
2−i∗ l ≤ max{219/2C2P5l2/3

x3
, 25CP5CH′ l2/3

x3
}.This is as desired when we hoose

CL17 := 4 max{219/2C2P5, 25CP5, 16

3
, 27C

1/2P5 }and reall CH′ ≥ 1. The fator 4 is to extend the estimate from 2−il to arbitrary lx′ . The seond estimateis analogous to the seond statement in Proposition 5. It is not useful as long as we need very preisebounds but allows a nier formulation in the �nal theorem.8.3 Deay of the umulated �eld and loal energy boundsWe now use the x′-loal estimate of Lemma 17 to obtain information on H ′ that allows us to onsideruboid subdomains with smaller x3-extension. The tehnique and result of the next lemma resembles[Con00, Proposition 2.11℄ and the preparatory lemmas. We prefer to postpone speializing the boundaryonditions for one more step, though. This is the point where we hoose the CH′ that we arefully trakedthroughout Setion 8.2.Lemma 18. Given a onstant C0 there is lower bound C(C0) depending only on C0 suh that for any
CH′ ≥ C(C0) the following estimate is valid: Let

lx3 ≤ Lx383



and
l ≥ CH′L2/3

x3and let (m3, h
′) be of minimal energy among (−l, l)2-periodi on�gurations on (−l, l)2×(0, lx3) satisfying

∂3m3 + ∇′ · h′ = 0 distributionally in (−l, l)2 × (0, lx3),

m3 ⇀ mB
3 weakly as x3 → 0,

m3 ⇀ mT
3 weakly as x3 → lx3 ,where the top magnetization and bottom magnetization are funtions

mT
3 ,m

B
3 : (−l, l)2 → [−1, 1],suh that the (−l, l)2-periodi url-free �elds H ′

T, H ′
B satisfy

−∇′ ·H ′
T = mT

3 in (−l, l)2,

−∇′ ·H ′
B = mB

3 in (−l, l)2,
∫ lx3

0

h′dx3 = H ′
T −H ′

B in (−l, l)2.Assume
sup |H ′

T −H ′
B| ≤ CH′L1/3

x3
l1/3
x3and that for any x′ ∈ (−l, l)2

∫

B
C

H′ L
2/3
x3

(x′)×(0,lx3)

|h′ −
1

lx3

(H ′
T −H ′

B)|2dx ≤ C0C
2
H′ l1/3

x3
L4/3

x3
. (97)Then the strength of the umulated �eld

H ′(x′, x3) = H ′
B +

∫ x3

0

h′(x′, ξ3)dξ3is lose to the umulated �eld at the boundary in the sense that at x3 = lx3/2

|H ′(x′, lx3/2) −H ′
B(x′)|, |H ′(x′, lx3/2) −H ′

T(x′)| ≤ CH′ l1/3
x3
L1/3

x3and for arbitrary x ∈ (−l, l) × (0, lx3)

|H ′(x) −H ′
B(x′)|, |H ′(x) −H ′

T(x′)| ≤ 2CH′ l1/3
x3
L1/3

x3
.The two lengths lx3 and Lx3 should be thought of as the length of the uboid and (after translation)the distane to the sample boundary. The latter in�uenes the typial domain size. When we use thelemma for estimates at the sample boundary lx3 and Lx3 oinide, but they di�er substantially when weapply the lemma in the interior of the sample. The fat that we do not distinguish between them in theprevious setion an be ompensated by saling the onstant CH′ to be used in Lemma 17 by l−2/3

x3 L
2/3
x3 .We should expet a better behavior of the energy in the interior, but that would require omparisononstrutions taking into aount the fat that the top and bottom boundary magnetizations are notarbitrary in the interior. 84



Proof of Lemma 18. Let
H ′

lin(x′, x3) = H ′
B +

x3

lx3

(H ′
T(x′) −H ′

B(x′))and onsider for some �xed γ ∈ (0, 1)

sup
(−l,l)2×{γlx3}

|H ′ −H ′
lin|.We may assume that the supremum is attained at x′ = 0. By de�nition, H ′ − H ′

lin vanishes for
x3 ∈ {0, lx3}. Thus we an estimate

|(H ′ −H ′
lin)(x

′, γlx3)| =

∣

∣

∣

∣

∣

∫ γlx3

0

h′(x′, ξ3) −
1

lx3

(H ′
T(x′) −H ′

B(x′))dξ3

∣

∣

∣

∣

∣

≤ (γlx3)
1/2

(

∫ γlx3

0

∣

∣

∣

∣

h′(x′, ξ3) −
1

lx3

(H ′
T(x′) −H ′

B(x′))

∣

∣

∣

∣

2

dξ3

)1/2 and
|(H ′ −H ′

lin)(x
′, γlx3)| =

∣

∣

∣

∣

∣

∫ lx3

γlx3

h′(x′, ξ3) −
1

lx3

(H ′
T(x′) −H ′

B(x′))dξ3

∣

∣

∣

∣

∣

≤ ((1 − γ)lx3)
1/2

(

∫ lx3

γlx3

∣

∣

∣

∣

h′(x′, ξ3) −
1

lx3

(H ′
T(x′) −H ′

B(x′))

∣

∣

∣

∣

2

dξ3

)1/2

.Combining the square of the two, we have
1

γ(1 − γ)lx3

|(H ′ −H ′
lin)(x′, γlx3)|

2 =

(

1

γlx3

+
1

(1 − γ)lx3

)

|(H ′ −H ′
lin)(x

′, γlx3)|
2

≤

∫ lx3

0

∣

∣

∣

∣

h′(x′, ξ3) −
1

lx3

(H ′
T(x′) −H ′

B(x′))

∣

∣

∣

∣

2

dξ3.Integrating in x′ over a ball Bρ := Bρ(0) yields
∫

Bρ

|(H ′ −H ′
lin)(x

′, γlx3)|
2dx′ ≤ γ(1 − γ)lx3

∫

Bρ×(0,lx3 )

|h′ −
1

lx3

(H ′
T −H ′

B)|2dx′. (98)By |∇′ ·H ′| = |m3| = 1 we have
sup

(−l,l)2×{γlx3}

|∇′ · (H ′ −H ′
lin)| ≤ sup

x′

|m3(x
′, γlx3) − γm3(x

′, lx3)| ≤ 1 + γ. (99)From, say, [ACO06, Lemma 3.6℄ we take the standard estimate
|∇′u|2(0) ≤ C1

∫

B1

|∇′u|2dx′ + C1 sup
B1

|∆′u|2and resale to
|∇′u|2(0) ≤ C1ρ

−2

∫

Bρ

|∇′u|2dx′ + C1ρ
2 sup

Bρ

|∆′u|2.Beause we assumed (h′,m3) to be minimal, we know that h′ is minimal for �xed m3 and thus h′is a gradient �eld for almost every x3 and so is H ′ beause H ′
B(x′) is url-free. Thus we an write85



H ′ −H ′
lin = −∇′u and obtain with (98) and (99) and assumption (97)

|(H ′ −H ′
lin)(0, γlx3)|

2 ≤ C1ρ
−2

∫

Bρ×{γlx3}

|H ′ −H ′
lin|

2dx′ + C1ρ
2 sup

(−l,l)2×{γlx3}

|∇′ · (H ′ −H ′
lin)|2.

≤ C1γ(1 − γ)lx3ρ
−2

∫

Bρ×(0,lx3)

|h′ −
1

lx3

(H ′
T −H ′

B)|2dx+ C1ρ
2(1 + γ)2(97)

≤ C1γ(1 − γ)l4/3
x3
ρ−2C0C

2
H′L4/3

x3
+ C1ρ

2(1 + γ)2,provided ρ ≤ CH′L
2/3
x3 . By requiring CH′ ≥ C

1/2
0 we may optimize in ρ to obtain

|(H ′ −H ′
lin)(0, γlx3)|

2 ≤ C1C
1/2
0 γ1/2(1 − γ)1/2(1 + γ)CH′ l2/3

x3
L2/3

x3

≤ C1C
1/2
0 CH′ l2/3

x3
L2/3

x3
.Let us emphasize the saling in H ′ here: Keeping in mind that our goal is to estimate H ′ in terms of

CH′L
1/3
x3 l

1/3
x3 , the bound is quadrati in CH′ on the left hand side but only linear on the right.We fous on γ = 1

2 . By hoosing CH′ to satisfy
(

1

22/3
−

1

2

)

CH′ ≥ C
1/2
1 C

1/4
0 C

1/2
H′or equivalently

CH′ ≥ 4(21/3 − 1)−2C1C
1/2
0we an estimate

sup
(−l,l)2×{ 1

2 lx3}

|H ′ −H ′
B| ≤

1

2
sup

(−l,l)2
|H ′

T −H ′
B| + sup

(−l,l)2×{ 1
2 lx3}

|H ′ −H ′
lin|

≤ 2−2/3CH′ l1/3
x3
L1/3

x3and similarly
sup

(−l,l)2×{ 1
2 lx3}

|H ′ −H ′
T| ≤ 2−2/3CH′ l1/3

x3
L1/3

x3
.For arbitrary γ our information is not as preise and we lose the exat saling, but we still ahieve

sup
(−l,l)2×(0,lx3)

|H ′ −H ′
B|, sup

(−l,l)2×(0,lx3)

|H ′ −H ′
T| ≤

(

1

2
+

1

22/3

)

CH′ l1/3
x3
L1/3

x3
,as laimed.Iterating Lemma 18 we obtain the two-dimensional equivalent of [Con00, Theorem 2.1℄.Theorem 5. There is a universal onstant CH′ suh that the following holds. Let

l ≥ 4CH′ l
2/3
x3,0and let (m3, h

′) be of minimal energy among (−l, l)2-periodi on�gurations on (−l, l)2×(0, lx3,0) satisfying
∂3m3 + ∇′ · h′ = 0 distributionally in (−l, l)2 × (0, lx3,0),

m3 ⇀ 0 weakly as x3 → 0,

m3 ⇀ mT
3 weakly as x3 → lx3 ,86



where the top magnetization is a funtion
mT

3 : (−l, l)2 → [−1, 1],suh that the (−l, l)2-periodi �eld H ′
T(x′) =

∫ lx3

0
h′(x′, x3)dx3 satis�es

−∇′ ·H ′
T = mT

3 in (−l, l)2and
sup |H ′

T| ≤ CH′ l
2/3
x3,0.Then the strength of the umulated �eld

H ′(x′, x3) =

∫ x3

0

h′(x′, ξ3)dξ3deays as
sup

(−l,l)2×{lx3}

|H ′| ≤ CH′ l2/3
x3

for any lx3 < lx3,0. (100)On any uboid y + ((−lx′ , lx′)2 × (0, lx3)) ⊆ (−l, l)2 × (0, lx3,1) with lx′ ≥ CL17CH′ l
2/3
x3,1 the energy isbounded by

2

∫

(y′+[−lx′ ,lx′)2)×(y3,y3+lx3 )

|∇′m3|dx+

∫

(y′+(−lx′ ,lx′)2)×(y3,y3+lx3 )

|h′(x)−
1

lx3

(H ′(x′, y3 + lx3)−H
′(x′, y3))|

2dx ≤ CL17l1/3
x3
l2x′ ,in partiular, for uboids at the sample boundary

2

∫

(y′+[−lx′ ,lx′)2)×(0,lx3)

|∇′m3|dx+

∫

(y′+(−lx′ ,lx′ )2)×(0,lx3)

|h|2dx ≤ Cl1/3
x3
l2x′ .Furthermore H ′ ∈ C0,1/3((−l, l)× (0, lx3,1)) with

|H ′(x) −H ′(y)| ≤ CH′ (1 + l
2/3
x3,1)|x− y|1/3.Proof. We iterate Lemma 18 with lx3 := Lx3 := 2−klx3,0 and C0 := C3L17 and H ′

B ≡ 0 to obtain (100)for lx3 of this form and, after enlarging CH′ by a fator of two, also on lx3 ∈ (2−klx3,0, 2
−k−1lx3,0), i.e.all lx3 < lx3,0 after the iteration. For the loal energy bound, we use Lemma 18 with CH′ replaed by

l
−2/3
x3 l

2/3
x3,1CH′ .We now turn to the H�older ontinuity. Iterating Lemma 18, this time with Lx3 := lx3,1, lx3 := 2−klx3,1,

H ′
B(x′) := H ′(x′, (1 − 2−k)lx3,1), and H ′

T (x′) := H ′(x′, lx3,1), we obtain
|H ′(x′, x3) −H ′(x′, y3)| ≤ CH′ l

1/3
x3,1|x3 − y3|

1/3.For the horizontal diretion we employ the standard interior ellipti estimates after writing H ′ as agradient again. From
sup

x′,y′∈B1/2

|∇′u(x′) −∇′u(y′)|

|x′ − y′|α
≤ C(α)(‖∆′u‖L2/(1−α)(B1) + ‖∇′u‖L2(B1)),87



valid for any 0 < α < 1, see e.g. [HL97, Theorems 3.1 and 3.13℄, we onlude
sup

x′,y′∈B1/2

|H ′(x′, x3) −H ′(y′, x3)|

|x′ − y′|α
≤ C(sup

B1

|∇′ ·H ′| + sup
B1

|H ′(x′, x3)|) ≤ C(1 + CH′ l2/3
x3

).Combined with the boundedness of H ′ we have that H ′ ∈ C0,1/3 with norm bounded by CH′(1 + l
2/3
x3,1)after replaing CH′ with CCH′ .We remark that the theorem is appliable with H ′

T ≡ 0 in order to bootstrap the argument starting fromthe full sample.8.4 Blowup at the sample boundaryUsing the loal energy bound from Theorem 5 we an prove L1
loc-ompatness (for m3) of blow-upsequenes.Lemma 19. Let m3, h′ be a minimizing (−l, l)2-periodi on�guration as in Theorem 5.Consider m3, h′ as periodially extended to R2 × (0, lx3). Then any blow-up sequene

m
(j)
3 (x′, x3) = m3(θ

j(x′ − x′0), θ
3j/2x3),

h′
(j)

(x′, x3) = θj/2h′(θj(x′ − x′0), θ
3j/2x3)for some θ < 1 has a subsequene suh that

m
(j)
3 → m∗

3 in L1
loc and a.e.,

h′
(j)

⇀ h′
∗ weakly in L2

loc,

H ′(j) → H ′∗ in C0
loc,

H ′(j) ⇀ H ′∗ weakly in H1
loc,in the sense that for any given ompat domain after dropping �nitely many items the restrition of thefuntions in the sequene onverges.Proof. We �x some uboid Q := Q(a) := (−a, a)2 × (0, (CL17CH′ )−3/2a3/2) and show onvergene on Qfor a subsequene. Taking a diagonal subsequene for a series of uboids, say Q(2k), yields the full resulton R2 × (0,∞).We have three uniform bounds for the sequene to work with. Trivially

‖m
(j)
3 ‖L∞ = 1and by the energy bound of Theorem 5

∫

Q

|∇′m
(j)
3 |dx ≤ C(a),

∫

Q

|h′
(j)

|2dx ≤ C(a).By the L∞-bound for m(j)
3 we know that for a subsequene

m
(j)
3 ⇀m∗

3 weakly-* in L∞(Q).88



We want to use the other two bounds to see that the onvergene is in fat strong in L1. We thus wantto show that
∫

(−a+α,a−α)2×(0,(CL17CH′ )−3/2a3/2)

|m
(j)
3 (x′ + y′, x3) −m

(j)
3 (x′, x3)|dx ≤ C|y′| (101)for |y′| ≤ α,

(

∫

(−a+α,a−α)2×(α3/2,(CL17CH′ )−3/2a3/2−α3/2)

|m
(j)
3 (x′, x3 + y3) −m(j)(x′, x3)|

2dx

)1/2

≤ C|y3|
1/3 (102)for |y3| ≤ α3/2,and then apply the ompatness riterion of M. Riesz (see e.g. [Ada75, Theorem 2.21℄).The �rst inequality (101) is a diret onsequene of the BV -bound, i.e.

∫

(−a+α,a−α)2×(0,(CL17CH′)−3/2a3/2)

|m
(j)
3 (x′ + y′, x3) −m

(j)
3 (x′, x3)|dx ≤ |y′|

∫

Q

|∇′m
(j)
3 |dx ≤ |y′|C.For the inequality (102) we use a ompensated-ompatness argument leveraging the weak ontrol over

∂3m3 with the stronger ontrol on ∇′m3. Let (f)α denote the onvolution (w.r.t. x′) of any funtion fwith a saled standard molli�er ϕα(x′) = α−2ϕ1(α
−1x′), ϕ1 ∈ C∞

c (B1(0)), ϕ1 ≥ 0 with mass 1. Fromthe ompatibility equation for m(j)
3 , h′(j) we dedue

∂3(m
(j)
3 )α + ∇′ · (h′

(j)
)α = 0in (−a+ α, a− α)2 × (0, (CL17CH′ )−3/2a3/2).In partiular, by the standard trik of estimating the divergene of the onvolution by di�erentiation ofthe molli�er

‖∂3(m
(j)
3 )α‖L2((−a+α,a−α)2×(0,(CL17CH′ )−3/2a3/2)) = ‖∇′ · (h′

(j)
)α‖L2((−a+α,a−α)2×(0,(CL17CH′ )−3/2a3/2))

≤ Cα−1‖h′
(j)

‖L2(Q)

≤ Cα−1.Integrating over an x3-interval of length τ we obtain
‖(m

(j)
3 )α(x′, x3 + τ) − (m

(j)
3 )α(x′, x3)‖L2((−a+α,a−α)2×(τ,(CL17CH′ )−3/2a3/2−τ)) ≤ C|τ |α−1.Finally, we bound the di�erene of the onvolution to m

(j)
3 with the help of estimate (101) for the

x′-modulus of ontinuity. This yields
‖m

(j)
3 (x′, x3 + τ) −m

(j)
3 (x′, x3)‖L2((−a+α,a−α)2×(τ,(CL17CH′)−3/2a3/2−τ))

≤ ‖(m
(j)
3 )α(x′, x3 + τ) − (m

(j)
3 )α(x′, x3)‖L2((−a+α,a−α)2×(τ,(CL17CH′)−3/2a3/2−τ))

+2‖(m
(j)
3 )α −m

(j)
3 ‖L2((−a+α,a−α)2×(0,(CL17CH′)−3/2a3/2))

≤ C|τ |α−1 + 2 sup
|y′|≤α

‖m
(j)
3 (x′ + y′, x3) −m

(j)
3 (x′, x3)‖L2((−a+α,a−α)2×(0,(CL17CH′)−3/2a3/2))

≤ C|τ |α−1 + 2 sup
|y′|≤α

‖m
(j)
3 (x′ + y′, x3) −m

(j)
3 (x′, x3)‖L2((−a+α,a−α)2×(0,(CL17CH′)−3/2a3/2))

≤ C|τ |α−1 + 23/2 sup
|y′|≤α

‖m
(j)
3 (x′ + y′, x3) −m

(j)
3 (x′, x3)‖

1/2

L1((−a+α,a−α)2×(0,(CL17CH′ )−3/2a3/2))(101)
≤ C|τ |α−1 + Cα1/2. 89



Choosing the optimal α = |τ |2/3 we obtain (102). The uniform L∞-bound implies that the L1-normin a boundary layer vanishes uniformly as the width onverges to 0. This ombined with (101) and(102) allows us to onlude with the theorem of M. Riesz that the sequene is preompat in L1. Thusa subsequene m(j)
3 onverges in L1 (and any Lp with p < ∞) and almost everywhere to m∗

3 and inpartiular |m∗
3| = 1 a.e.From interior ellipti regularity theory (writing H ′ as a gradient) we know that

∫

Q

|∇′H ′(j)|2dx

.

∫

(−a−1,a+1)2×(0,(CL17CH′)−3/2a3/2)

|H ′(j)|2dx+

∫

(−a−1,a+1)2×(0,(CL17CH′)−3/2a3/2)

|m
(j)
3 |2dx

≤ C(a).Thus H ′(j) is bounded in W 1,2(Q) and so for a subsequene
H ′(j) ⇀ H ′∗ weakly in W 1,2(Q).Finally, boundedness in C0,δ implies ompatness in C0 by Arzela-Asoli's theorem and, taking a furthersubsequene if neessary, we have
H ′(j) → H ′∗ strongly in C0(Q),so we have established onvergene for Q. As indiated in the beginning, we obtain the full result bytaking a diagonal sequene over some exhaustion of the half spae.9 Appendix9.1 Stray �eldFor the reader's onveniene we ollet some fats related to the treatment of the stray �eld and ournotation involving the inverted divergene in this appendix.As the magnetization indues a stray �eld h, the oneptually simplest way to inlude its ontributionto the energy is to expliitly inlude the squared L2-norm

∫

R3

|h|2dxin the energy. The stray �eld h satis�es Maxwell's equations (greatly redued in the magnetostati aseto)
∇ · (h+m) = 0 and ∇× h = 0, (103)both understood in the sense of distributions on R3. For notes on the derivation, see e.g. [DKMO05℄.Being url-free, h is a gradient �eld and, in fat, the Helmholtz projetion of −m onto the spae ofgradient �elds. One way to ompute h is setting h = −∇u where

∆u = ∇ ·m in Ω,
[

∂u
∂ν

]

= m · ν on ∂Ω,

∆u = 0 outside Ω.

(104)90



We an similarly de�ne h for periodi domains, then (104) redues to the �rst equation ∆u = ∇ ·m.An alternative approah to the stray-�eld energy is to inlude h in the minimization in order to makethe problem more loal. Observe that the L2-norm of (−l, l)2-periodi h : R3 → R3 de�ned by (103) anbe rewritten in terms of the minimization problem
∫

(−l,l)2×R

|h|2dx = min
{

∫

(−l,l)2×R

|h̃|2dx
∣

∣

∣ h̃ : R
3 → R

3 is (−l, l)2-periodi in x′,
∇ · (h̃+m) = 0 distributionally in R

3
}

, (105)and the seond equation in (103) is just the Euler-Lagrange equation for the minimization. Hene, setting
eQ,d,t,l(m,h) :=

1

4l2

(

d2

∫

Ω

|∇m|2dx+Q

∫

Ω

|m′|2dx+

∫

R3

|h|2dx

)we have
e(Q, d, t, l) = min

{

eQ,d,t,l(m,h)
∣

∣

∣m,h : R
3 → R

3 are (−l, l)2-periodi in x′,
|m|2 =

{

1 for x3 ∈ (−t, t),

0 otherwise,
∇ · (h+m) = 0 distributionally in R

3
}

.There is a third way to think about h that we want to illustrate with the stray-�eld term in the reduedenergy onerning m3 : R3 → {−1, 1} and h′ : R3 → R2, both (−l, l)2-periodi in x3 and satisfying
m2

3 = 1 if x3 ∈ (−1, 1) and m2
3 = 0 otherwise and

∇′h+ ∂3m3 = 0.We are tempted to invert the operator ∇′ in the above equation. Indeed we de�ne for any distribution f(with zero sliewise average)
∫

(−l,l)2×R

∣

∣

∣|∇′|−1f
∣

∣

∣

2

dx = min
{

∫

(−l,l)2×R

|h̃′|2dx
∣

∣

∣ h̃ : R
3 → R

3 is (−l, l)2-periodi in x′,
∇′ · h̃′ = f distributionally in R

3
}and an thus write in the spirit of (105)

∫

(−l,l)2×R

|h′|2dx =

∫

(−l,l)2×R

∣

∣

∣
|∇′|−1∂3m

∣

∣

∣

2

dx.Another way to look at |∇′|−1 is by taking Fourier series in x′-diretion. With
F ′(ζ)(n′) =

1

2l

∫

(−l,l)2
exp

(

−πin′ ·
x′

l

)

ζ(x′)dx′and
∫

(−l,l)2×R

∣

∣|∇′|−1f
∣

∣

2
dx =

∫

R

∑

n′∈Z2

l2

π2|n′|2
|(F ′f)(n′)|2dx391



we an rewrite the energy as
∫

(−l,l)2×R

|h′|2dx =

∫

(−l,l)2×R

∣

∣|∇′|−1∂3m3

∣

∣

2
dx =

∫

R

∑

n′∈Z2

l2

π2|n′|2
|(F ′(∂3m3))(n

′)|2dx3.This also aligns well to the method of de�ning the energy via (104), when we plug in the usual Fourier-series solution formula for Poisson's equation on periodi domains.Let us brie�y look at the r�ole of this inverse norm as a dual of the H1-seminorm making a brief appearanein the proof of the interpolation inequality Lemma 4. Fix two (−l, l)2-periodi funtions f, g with average
0, thought of as smooth, and let u be a solution to ∆u = g. Then by the divergene theorem and theCauhy-Shwarz inequality, the duality estimate is but a simple alulation

∫

(−l,l)2
fg dx′ = −

∫

(−l,l)2
f∆u dx′

=

∫

(−l,l)2
∇f · ∇u dx′

≤

(

∫

(−l,l)2
|∇f |2dx′

)1/2(
∫

(−l,l)2
|∇u|2dx′

)1/2

=

(

∫

(−l,l)2
|∇f |2dx′

)1/2(
∫

(−l,l)2

∣

∣|∇|−1g
∣

∣

2
dx′

)1/2

. (106)9.2 A Poinar�e inequalityThere are so many variants of the Poinar�e inequality in the literature that it seems hard to �nd onemathing our spei� needs. We inlude the following for onveniene.Lemma 20. Let Q1 := (0, l)n. Any funtion
f : (0, l)n → Rwith derivatives in Lp suh that the mean over some sububoid Q0 :=

∏n
i=1(ai, ai + bi) vanishes satis�esthe Poinar�e estimate

∫

Q1

|f |pdx ≤ C(n, p)
|Q′

1|

|Q′
0|
lp
∫

Q1

|∇f |pdxwhere the Q′
i are the projetions of the Qi into one axis-parallel n−1-dimensional subspae. The onstant

C(n, p) only depends on the dimension n and exponent p and not on f , l, ai, or, importantly, bi.Considering a smooth funtion vanishing on (0, 1)n and onstant 1 on (0, l)n \ (0, 2)n we see that thesaling is optimal for p = 1. For larger p it is just good enough for our purposes.Proof. We start in one dimension and so onsider
f : (0, l) → Rwith

1

b

∫ a+b

a

fdx = 092



where (a, a+ b) ⊆ (0, l). Averaging
f(x) = f(t) +

∫ x

t

f ′(τ)dτ.we obtain
f(x) =

1

b

∫

(a,a+b)

(

f(t) +

∫ x

t

f ′(τ)dτ

)

dt

=
1

b

∫

(a,a+b)

∫ x

t

f ′(τ)dτdt

=
1

b

(

∫

(a,min{a+b,x})

∫ x

t

f ′(τ)dτdt −

∫

(max{a,x},a+b)

∫ t

x

f ′(τ)dτdt

)

=

∫

(a,x)

min
{ t− a

b
, 1
}

f ′(t)dt−

∫

(x,a+b)

min
{a+ b− t

b
, 1
}

f ′(t)dt.Note that for t1 < t2 we use the usual onventions ∫ t1
t2

= −
∫ t2

t1
but (t2, t1) = ∅ and so ∫(t2,t1)

= 0. Weplug this expression into the integral for the Lp-norm and get
∫ l

0

|f |pdx =

∫ l

0

∣

∣

∣

∣

∣

∫

(a,x)

min
{ t− a

b
, 1
}

f ′(t)dt −

∫

(x,a+b)

min
{a+ b− t

b
, 1
}

f ′(t)dt

∣

∣

∣

∣

∣

p

dx

≤

∫ l

0

∣

∣

∣

∣

∣

∫

(a,x)

min
{ t− a

b
, 1
}

|f ′(t)|dt +

∫

(x,a+b)

min
{a+ b− t

b
, 1
}

|f ′(t)|dt

∣

∣

∣

∣

∣

p

dx

≤

∫ l

0

∣

∣

∣

∣

∣

∫ l

0

|f ′(t)|dt

∣

∣

∣

∣

∣

p

dx

≤ lp
∫ l

0

|f ′(t)|pdt.This is the desired estimate in one dimension.For higher dimensions we assume w.l.o.g. that bn is minimal among the bi and let Q1 := (0, l)n,
Q′

1 := (0, l)n−1, Q2 :=
∏n

i=1(ai, ai + bi) and Q′
2 :=

∏n−1
i=1 (ai, ai + bi) and fM := |M |−1

∫

M
fdx(′).We note that

fQ′
1(xn) =

(

fQ′
1(xn) − f

)

Q′
0(xn)

+ (f)Q′
1(xn)and thus with Jensen's inequality and its elementary variant (a+ b)p ≤ 2p−1(ap + bp)

|fQ′
1(xn)|

p ≤ 2p−1
(

|fQ′
1(xn) − f

∣

∣

p
)Q′

0(xn) + 2p−1|(f)Q′
0(xn)|

p. (107)Applying the one-dimensional estimate to
g(xn) := fQ′

0(xn)we have that
∫

(0,l)

|fQ′
0(xn)|

pdxn ≤ lp
∫

(0,l)

|∂nfQ′
0(xn)|

pdxn ≤ lp+1(|∇f |p)Q′
0×(0,l).93



Integrating (107) we obtain
|fQ1 |

p ≤ l−1

∫

(0,l)

|fQ′
1(xn)|

pdxn

≤ l−12p−1

∫

(0,l)

(

|fQ′
1(xn) − f

∣

∣

p
)Q′

0(xn)dxn + l−12p−1

∫

(0,l)

|(f)Q′
0(xn)|

pdxn

≤ l−12p−1

∫

(0,l)

(

|fQ′
1(xn) − f

∣

∣

p
)Q′

0(xn)dxn + 2p−1lp(|∇f |p)Q′
0×(0,l)

≤ l−12p−1

∫

(0,l)

|Q′
0|

−1

∫

Q′
1(xn)

|fQ′
1(xn) − f |pdx′dxn + 2p−1lp(|∇f |p)Q′

0×(0,l).Appealing to the usual Poinar�e inequality
∫

(0,l)d

∣

∣f − (f)(0,l)d

∣

∣

p
dx ≤ Cp,d l

p

∫

(0,l)d

|∇f |pdxwe estimate
|fQ1 |

p ≤ l−12p−1

∫

(0,l)

|Q′
0|

−1

∫

Q′
1(xn)

|fQ′
1(xn) − f |pdx′dxn + 2p−1lp(|∇f |p)Q′

0×(0,l)

≤ Cn−1,pl
−1+p2p−1|Q′

0|
−1

∫

Q1

|∇f |pdx+ 2p−1lp(|∇f |p)Q′
0×(0,l)

≤ (Cn−1,p + 1)l−1+p2p−1|Q′
0|

−1

∫

Q1

|∇f |pdx.With this estimate and the regular Poinar�e inequality for d = n we onlude
∫

Q1

|f |pdx ≤ 2p−1

∫

Q1

|f − fQ1 |
pdx+ 2p−1|Q1| |fQ1 |

p

≤ 2p−1Cp,nl
p

∫

Q1

|∇f |pdx+ 22p−2(Cn−1,p + 1)|Q′
1|l

p|Q′
0|

−1

∫

Q1

|∇f |pdx

≤ C
|Q′

1|

|Q′
0|
lp
∫

Q1
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