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Abstract

A Segal T-space A gives a homotopy functor A(X) and a connective homology theory h.(X;A) =
m«(A(X)). The infinite symmetric product SP*°(X) and the configuration space C(R*;X) ~ Q(X)
are well-known examples of Segal I'-spaces; the former giving singular homology IL(X;Z) and the lat-
ter stable homotopy theory as their homotopy groups. Here we are concerned with another important
example, the Segal I'-space K leading to connective KO-theory: 7, K(X) = I{\(;(X).

Like the first two examples, such functors A come very often with a filtration A,,(X) which splits after
applying another suitable homotopy functor, perhaps even a Segal I'-space B; in the first two examples
one can take B = A and obtain the well-known Dold-Puppe splitting of SP*°(X) resp. the Snaith splitting
of Q(X). Our main result is a splitting of K (X) using the functor B(X, ) ~ Q>°~}(MO AX, ) representing
unoriented cobordism, namely

B(K (X)) = B(\/ Ka(X)/Kn-1(X)).
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Chapter 1
Introduction

In the 1970’s Segal [Se2| introduced the concept of Segal I-spaces and proved they give rise to a homotopy
category equivalent to the usual homotopy category of connective (i.e. (-1)-connected) spectra. To
describe his construction, let T be the category of finite pointed sets m = {0,1,--- ,n} with 0 the base
point and morphisms the based functions. A Segal I'-space is a covariant functor A : I' — Top, such
that p, : A(n) — A(1)" induced by m; : m — 1,m;(j) = d;; and po : A(0) — A(1)° = * are homotopy
equivalences. The space A(1) is called the underlying space of A. A Segal I'-space A can be extended, by
left Kan-extension, along the inclusion I' — Top, to a functor A : Top, — Top,, i.e.

nel’
A(X):/ An) x X" = (] Aln) x x™)/
nel’

The relation is generated by (a,a*(z)) ~ (ax(a),z) for a € A(n),x € X™ and @« : m — m in . We
say a Segal I'-space A is very special, if mo(A) is a group. A very special Segal I'-space determines an Q-
spectrum by applying it to the sphere spectrum, namely A(S) = {A(S%),A(S1), A(S?), - }. Let ho(—;A)
be the associated homology theory, i.e. h,(X;A) := 7, (A(S) A X) = m,(A(X)) for X € Top,. Segal [Se2]
showed that this homology theory is connective and every connective homology theory arises from a Segal
I'-space.

Such functors come very often with a filtration

CCALX)C AL (X))

And in many examples we observe the following splitting phenomenon: there is a homotopy functor B
with a weak equivalence

B(\/ An(X)/An-1(X)). (1.0.1)

n>1

We call such functor B a splitting functor of A. It is natural to ask if an arbitrary Segal I'-space A admits
such a splitting functor B. Our motivation comes from several well-known homotopy functors.

The historically first example is the infinite symmetric product SP*(X) = J,, SP™(X) with SP"(X) =
X"/%,. As a Segal I'-space A it arises as A(n) = N". The juxtaposition X" x X™ — X"t gives a
commutative multiplication SP™(X) x SP™(X) — SP™""(X) making SP*°(X) into an abelian monoid.



It was first proved by Dold and Thom |DoTh| that for X a CW-complex of finite type, SP™(X) is a
product of Eilenberg-MacLane spaces.

SP>(X) ~ [ [ K(Hi(X;Z);4).

This makes the functor SP° a representative functor for singular homology. More precisely, they proved

that 7, SP*(X) & H,(X;Z) for any connected space X. This is the first example in the history that the
homology of a space has been written as the homotopy of a functor applied to that space. Later, Dold
and Puppe [DoPu] proved that there is a splitting

SP>(SP™ X) ~ SP=(\/ SP*(X)/SP* ! (X)). (1.0.2)
E>1
Since in this example the splitting functor can be taken to be B = A itself, we call this a self-splitting.

An element in SP*°(X) is a formal sum Xk;x; of points in X with multiplicatives k; € N; written in this
way the identifications in SP*°(X) are Oz = 0 = x (base point), k* = * and kz + k'x = (k + k).

We can thus identify SP*°(X) as

SP>(X) = [[N" xx, X"/(0z = s, kx =, kz + Kz = (k+ K )z).

This definition has been generalized in [McC]|. For any abelian monoid G with unit e, we define a
generalized symmetric product,

SPG(X) := HG” Xs X"/(ex = *,gx = *x,gr + gz = (g + ¢')x).

n

We studied two examples, namely A = SPZ,, associated to G = Z,, = Z/n, and A = SP Z associated
to G = Z. They are representative functors for mod-n homology and again for integral homology. That

is, m« SPZ,(X) & H.(X;Z,) and 7, SPZ(X) = H.(X;Z). To describe their splittings, assume n =
pi* -+ pSr is the prime decomposition of n € N. Set

N - pp ifr=162>1
1 else.

We prove in Chapter 3 that there are weak homotopy equivalences

Theorem 3.4.2.

SP Z (SP Zy (X)) ~ SP Zn(\/ Di SP Zy (X)) (1.0.3)
k>1
and
Theorem 3.5.1.
SP Z(SP Z(X)) ~ SP Z(\/ D) SPZ(X)), (1.0.4)
E>1

where D A(X) stands always for the filtration quotients Ag(X)/Ag_1(X). In the last two examples the
filtration is given by the sum of the coefficients. Note that in case A = SPZ,, it is not a self-splitting as
in the case A = SP* or A = SP Z.



The next example is the functor C(X) = C(R*>°; X), the configuration space of R>® with labels in X
defined as
CR*: X) = (] O"(®R™) xx, X")/ ~.
n>1

Here C"(R™) is the space of ordered configurations of n distinct points in R and the equivalence relation
~ is generated by (21, "+ ,2n; @1,y Tn) ~ (21,0 oy Ziy " 20 Ty e oy Tiy - o, &) if @ = xg. There is an
obvious filtration by the length n of a configuration. It is well-known that C'(X) ~ Q®°X*X = Q(X),
ie. m.C(X) = 7m5t2P(X) is the stable homotopy theory of X.

The Snaith splitting [Sn| asserts

TXC(R®; X) ~ £ \/ Di(R™; X), (1.0.5)
E>1
or equivalently
QQX ~Q(\/ Dr(R>; X)). (1.0.6)
k>1

Before we describe our main result we digress to describe related splitting results. Denote by C(M, My; X)
the configuration space on a manifold pair (M, My) with labels in X. Here My C M is a codimension-zero
submanifold of M; My can be empty. Let C’"(M) denote the space of ordered configurations (z1,- - , z5)
in M. For a space X with a base point zy we denote by
C(M, Mo; X) := ([ €™(M) x5, X™)/ ~
n>1

the space of configurations in M modulo My with labels in X; here ¥, is the symmetric group of rank n
with the obvious permutation action on C’"(M) and on X"; and the equivalence relation ~ is generated by
the cancelations (21, , 2n; T1, ..oy Zn) ~ (21, .0y Ziy 3 203 T1y vy Tiye vy y) if 25 € My or if ; = x9.

Ever since the work of James, Segal, Cohen, Bédigheimer etc., it has become clear that configuration spaces
can be used to model mapping spaces. A simple but useful construction given in terms of configurations
with labels and due to Milgram, May and Segal gave very concrete models for iterated loop spaces. This
model was later extended by Cohen, Bédigheimer and McDuff to various other mapping spaces by choosing
configurations to lie not in disks but other parallelizable manifolds.

a) The May-Milgram model [Mi] says that the configurations on R™ with labels in a based connected
space X is homotopy equivalent to the m-fold loop space of an m-fold suspension on X, that is

C(R™; X)—=QmymX.
b) In the limit case this gives C(R*; X)) ~ Q>*°X> X, used above.

¢) Cohen [Co| and Bodigheimer [B51] also studied the case M = S*, My = () and proved C(S*; X) ~ AYX,
the free loop space of a suspension of a connected space X.

d) Historically the first model is the James model J(X) in [Ja], the free non-commutative topological
monoid generated by X modulo its base point zg. And J(X) ~ C(R; X) ~ QX X.

e) All these are special cases of [B61], where the based mapping spaces Map(K, Ko; ¥™X), here Ky C
K C R™ are finite polyhedra in R™; and X or the pair (K, Ky) must be connected. If W C R™ is open
with W D M D My such that (M, My) ~ (K, Kj), then there is a homotopy equivalence

C/(M, My; X)— Map(W\ Mo, W\M; £™X). (1.0.7)



One of the most important applications of configuration space models was the stable splitting of mapping
spaces into bouquets of simpler spaces. These simpler spaces are the filtration quotients

Dy (M, Mo; X) = Cp(M, Mo; X)/Cr—1(M, Mo; X)

of the filtration

k
Cr(M, Mo; X) := (] C"(M) x5, X™)/ ~.

Note that the spaces Dy(M;S9) are Thom spaces of the vector bundles C*(M) x5, R%* — C¥(M).
Bodigheimer [B61], [B6Ma] proved that

2% Map(K, Ko; X) ~ £ \/ Dy(M, Mo; X). (1.0.8)
E>1

The first result of this kind was James unstable splitting [Ja] of 23X . He proved in [Ja] that there is an
unstable splitting of the James model, known as the James splitting,

BJ(X) ~ 208X ~ % \/ X", (1.0.9)
k=1

We note here that the free loop space AXX can be split with just two suspensions, see [B6Wa].

We return after this digression to our next example, which stands in the center of this work. The space
K (X), introduced by Segal [Se3|, is obtained from the Segal I'-space K of finite-dimensional Grassman-
nians in R>®. More precisely,

K(1) = [T, Gri(R*),

K(n) ={(V1,---, Vo) € KQU)*"|V; LVj, if i # j}.
So the extension K (X) has the form

E(X) = ([T Kn) x5, x™)/ ~,

n>0
where
(Vl7"' 7%7"' ,Vn;l'l,"' sy Liy 7;[;,”)/\.4(‘/1, 7‘/;7"' ,Vn;fEl,"' 71?7;7"' ,J/'n), 1f$12$07
and

(...,‘/i’...,‘/j,...;...7xi7...7xj,...)r\;(...7‘/i®‘/j7...7‘/]-7...;...,I',L-,...7$j7...), lfl‘l:z]

Its filtration is given by the sum of dimensions of the vector spaces

Kn(X) = { Vi € K(X) | SdimV; <n }

Segal proved that K(X) is a representing space for the connective real K-homology theory, namely
T K (X) =2 ko(X).



Our goal is to construct a splitting functor B for K (X), that is, to find a homotopy functor B and a weak

equivalence

B(K(X)}) = B(\/ Kn(X)/ Ky 1(X)). (1.0.10)

We prove in Chapter 5 that there exists such a B which represents the infinite loop space of the Thom
spectrum MO for the universal real vector bundles, i.e. it represents unoriented cobordism.

The main idea to search for the functor B is implicit in the work of Randal-Williams [RW]. He defined in
case Y = SY a topology on the set of equivalence classes:

By(M;Y) = (] [ Bmb(F, M) xpigg(ry) Map(F,Y))/ ~
F

where F' varies over smooth d-dimensional manifolds without boundary (not necessarily compact or con-
nected). The equivalence relation cancels a component of a manifold F if the labeling function is trivial
on that component. He proved that this space is weakly equivalent to the space of sections of a certain
fiber bundle. The space B4(M;Y) is a kind of configuration space of d-dimensional manifolds € : F — M
in M with label functions ¢ : F — Y.

Define B5(M x R¥*1;Y,) to be the subspace of Bq(M x R4 Y, ) where e(F) C M x R projects into
a compact subspace of M. We use his idea and define a topology on Bg(M;Y) for all Y. Then we apply
Gromov’s h-principle and prove that there is a weak homotopy equivalence

BS(M x R4 Y, ) — Sect®(Eg(M x R4 Y,), M). (1.0.11)
Here Sect(Egz(M x R, Y,)) is the space of compactly supported sections of the bundle
Eq(M;Yy) ==V (TM) Xo(n) (Th(Ug,,) AYy) 5 M. (1.0.12)

Vo(TM) is the frame bundle of M, Uz, := {(V,v) € Grg(R") x R*|V L v}, and Th(Ug,,) is the
corresponding Thom space. As n varies, all the Thom spaces Th(Ud%n) form a spectrum, denoted by
MTO,.

We have for M = R"™! a weak equivalence

v: BGR" x R™L VL) ~ Q' N (Th(U,) AYa). (1.0.13)

For the limit case n — oo, we obtain a weak equivalence
B5(R>®™1 x RTL Y, ) o~ Q71 (MTO4 AY,) (1.0.14)
which is the infinite loop space of the Thom spectrum MTO4 AYS .
By crossing a manifold with R!, we define a map
BSR™' x RTL YY) — BG4 (RET x R YL (1.0.15)
Rt S pd By, Rootdtl L pd g jU 2y,
where ¢ : F x RY = Y, (f,t) — o(f).

Define
B(Y}) = colim B5(R>®™1 x RITL Y, ).



This is the splitting functor we are looking for. Its homotopy type is

B(Y,) ~ Sect(Y,) ~ Q*'MOAY,.

The main result of this thesis is the following splitting.
Theorem 5.3.6.
B(K (X)) ~B(\/ Kn(X)/Kn 1(X)). (1.0.16)
n=0

We should remark that a splitting functor is in general not unique, as one can see from the example
A = C(R*; —) which is split by B; = A itself and by By = SP*°. Whether there is and how to find for a
given A the "best" (i.e. universal) splitting functor B is a difficult question.

Looking back at our proof we notice, that the functor B can also be used to split other Segal I'-spaces A,
if some mild hypothesis is satisfied: the space A(1) is assumed to be disjoint unions of finite-dimensional
manifolds and certain subspaces of A(n) are finite-dimensional manifolds. Under these conditions there

is a weak equivalence

Theorem 6.4.1. -
B(ACX)+) ~ B(\/ An(X)/An 1(X)). (1.0.17)
n=0

The plan of this paper is as follows.
In Chapter 2 the Segal I'-spaces are defined and discussed.

Chapter 3 and 4 concentrate individually on the separate cases of Segal I'-spaces: infinite symmetric
product SP*°(X), configuration space C'(R*; X). Their homotopy types are well understood and we
introduce the well-known Dold-Thom splitting and Snaith splitting. The work we present in these two
chapters is a mixture of previously known results, new results and also previously known results in a new

framework.

In Chapter 5 we study the example K (X). This is the main part of the thesis. We find the splitting
functor B for K and prove the main result Theorem 5.3.6.

Chapter 6 then deals with the splitting of an arbitrary Segal I'-space A. The proof is parallel to the proof
in Chapter 5.

In Appendix A we explain the h-principle of Gromov; this is crucial for the proof of Theorem 5.3.6.

In Appendix B we outline the homotopy calculus of functors according to Goodwillie.
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Chapter 2
Segal ['-Spaces

This chapter is concerned with G. Segal’s notion of I'-space [Se2], in which he showed that the homotopy
category is equivalent to the usual homotopy category of connective spectra and therefore gives rise to
a connective homology theory. Furthermore, every connective homology theory can be represented by a
Segal T'-space.

Throughout this chapter Top, means the category of based compactly generated Hausdorff spaces and
based maps, and let Ab be the category of abelian topological monoids.

2.1 Segal I'-Spaces - a Covariant Version

Let T denote the category of finite pointed sets represented by n = {0,1,--- ,n} with 0 as base point and
the morphisms are pointed maps. It is isomorphic to the opposite of that category which was also called
I in [Se2].

For each 4, let m; be the morphism 7; : n — 1,7m;(j) = 0;; in I". And let p,, : A(n) — A(1)" be the map
whose i-th component is induced by ;.

Definition 2.1.1. A Segal T'-space is a covariant functor A : I — Top, such that

(1) A(0) ~

(2) pn : A(n) — A(1)™ is a homotopy equivalence.

A morphism of Segal I'-spaces is a natural transformation of functors F' : A — A’, such that the diagram
is homotopy commutative,

An) =% Ar(n)

(
|

A1) —5 A1)

We denote the category of Segal I'-spaces by I' Top,. Analogously, a contravariant functor A* : I'P —



Top, which satisfies (1) and (2) will be called a I'°P-space, and they are objects in a topological category
TP Top, .

For a Segal I'-space A, mpA(1) is an abelian monoid with multiplication

(m1, Xma, )~

roA(1) x moA(1) L roA(2) 1 moA(1),

where p: 2 — 1 is the fold map defined by p(1) = p(2) = 1. It also implies that A(1) is an H-space.

Example 2.1.2. Fix an abelian topological monoid A, written additively with neutral element 0. It
determines a Segal I-space A be setting A(n) := A", and by setting for « : m — m in T

A(O&) = Q! A" — Ama (ala e 70"1) = (EjE(l*l(l)ajv T 72j€a*1(i)aja e 72j€a*1(n)aj)

and if a=1 (k) = ), we set ag = 0. Note that it also works for the discrete monoid, for example the natural
numbers N, N(n) := N".

Example 2.1.3. One interesting example is the configuration space. Define

()= [] Cn(r>)

n>0

to be the disjoint union of ordered configuration spaces on R*. Define

Ck)={ (&, &) € COO* | &g =0imR= fori £ }.

We shall prove in section 4.4 that this is a Segal I'-space. Another example is the Grassmanniann of
finite-dimensional real vector spaces. More precisely,

K(1) = I1), Gre(R>),
Kmn)={(04,---,V,) € K(1)*™Vy,---,V, pairwise orthogonal}.
We shall prove in section 5.1 that this also defines a Segal I'-space.

Recall the simplicial category A whose objects are finite ordered sets [m] = {0,1,---,m} and whose
morphisms are non-decreasing maps. Note that the category I' is larger than the simplicial category,
because it has more morphisms. A simplicial space is a contravariant functor A — Top,. There is a
contravariant functor A — T' taking [n] to the corresponding unordered set n with base point 0 and an
order preserving morphism f : [m] — [n] to 6 : n — m by

) = {j, FG=1) <i< ()

0, otherwise.

Therefore a Segal I'-space can be regarded as a simplicial space and the realization of a Segal I'-space
means the realization of the simplicial space it defines.

There is a natural extension of a Segal I'-space A : I' — Top, to a functor which we also denote by
A : Top, — Top,. Recall the coend construction: if A is a Segal I'-space, X is a based topological space
with xg as base point, i.e. a ['°P-space, consider the contravariant functor px : I' — Top,, n — X", a

10



map « :n — m in I' induces a*(z1,- -+ ,2m) = (Ta@), -+ » Ta(n)), where all z,(;) with a(i) = 0 are the
base points zo. We let A(X) denote the quotient space

nel’
AX) = ] An) x X"/(a,0*z) ~ (ona,z) = / A(n) x X™.
nel’
where a € A(n),x € X™. Note that the equivalence relation ~ includes the action of the symmetric group
¥, on A(n)x X™. In case p, : A(n) — A(1)" is an inclusion one can view an element of A(X) as a formal
sum [a;z] = X7 a;z; with p,(a) = (a1, ,an). We do not distinguish the extention notationally from
the original Segal I'-space. The extended functor preserves homotopy equivalences in Top,. Obviously, if
S is a discrete finite space, this new definition of A(S) agrees with the old one.

Example 2.1.4. In the case A = N, we have A(n) = N”, and thus A(X) = SP*°(X), the infinite
symmetric product. In the case A = C, it is C(X) = C(R*; X), the labeled configuration space of R>.
In the case A = K, it is the space K(X). This was mentioned in the introduction, which will be given
more details in Chapter 5.

2.2 Segal I'-Spaces Arising From Categories

Segal [Se2] demonstrated that the Segal I'-spaces can be obtained naturally from categories with compo-
sition laws. In this section we are going to reformulate it in a covariant version. As in [Sel], "category"
means that the set of objects and the set of morphisms have topologies for which the structural maps are

continuous.

First we recall the nerve N/ of a small category o7 [Sel|. It is a simplicial set with n-simplex N.g7, =
homq¢([n], &), set of functors from [n] to «7. That is, an n-simplex is a string

ap 5 ap =% - 2,
of composable arrows of length n in /. The geometric realization of this simplicial set, denoted by
Bg/ := |Ngo/| = |o/] is called the classifying space of <.

Here are some elementary properties:
(i) | x o' ~ || x ||
(ii) Equivalence of categories &/ — &/’ induces a homotopy equivalence |&/| — |&7’|.

Example 2.2.1. Fix an a topological group G, one can associate a topological category ¢ with one object
* and one morphism g : * — %, for each g € G, then ob(¥4) = %, mor(¢) = G, N4, = G*, thus

BY = |N9| = (]| A" x G*)/ ~= BG,
k

which is the Milnor construction.

Definition 2.2.2. ([Se2], Definition 2.1.) A I'-category is a covariant functor & : I' — categories, which
satisfies

(i) <7 (pt) is equivalent to the category with one object and one morphismy;

(ii) for any n, the functor p,, : &(n) — &7(1)™ induced by the morphisms m; : n — 1 defined in Definition
2.1.1. is an equivalence of the categories.
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Proposition 2.2.3. ([Se2|, Corollary 2.2.) If &/ is a I'-category, then |&/| is a Segal I'-space. O
Here | 7| means the functor S — |7 (S5)].

Let % be a category in which sums exist. For each object S € T', associate a category £(S) whose
objects are pointed subsets of S and inclusions as morphisms, an object of the category %€(.5) is a functor
P(S) — € which takes wedge product of sets to sums in €. Morphisms are isomorphisms of functors.
Now consider the object of €(2), it is a diagram A; — A3 < A with the universal property that
regarding A1 as a coproduct of A; and As, i.e. Ao := A; + As. The morphisms are defined that the
morphisms S — T € T correspond to functors #(S) — (T) which preserves wedge products. Then
S+ €(S) is a covariant functor from I" to categories. And since the forgetful functor

% (2) . ¢ x%
(A1 = Aip — Ay) — (A1, Ay)

is an equivalence of categories, we obtain a I'-category as defined.

Example 2.2.4. ([Se2|, page 299) Consider the category . of pointed finite sets under wedge product
V as the sum operation, choose a model for . in which there is one object n for each natural number.
For example, .7 (1) is a category with objects F': (1) — ., F({0}) = 0, F({0,1}) = n and morphisms
are pointed automorphism of n, namely ¥,,. Segal showes that
@) =[] BEn-
n>0

We denote this Segal I'-space || by BX.

One can generalize BY. as follows: let F' be a contravariant functor from the category of finite pointed sets
with inclusions as morphisms to the category Top,. Let “F be the topological category whose objects are
pairs (S, z) with S a finite set and z € F(S) and whose morphism (S, z) — (T, y) are injections 6 : S — T
such that 0*(y) = x. One can then construct .#»(n) in a similar way as .(n). If for each S,T the map
F(SVvT)— F(S) x F(T) is a homotopy equivalence, then n — |.¥(n)| is a Segal T'-space.

Example 2.2.5. ([Se2|, Chapter 2) Define F' : Set®® — Top,, n — X" for a fixed space X. Then the
category .#7(1) has objects to be functors #(1) — Sr,1 — (S,z) with = (21, -+ ,z,) € X" and
morphisms are automorphisms o, : (n, (z1, -+ ,2n)) — (N, (Toy,, * , To,,)) for o € X, We call the
resulting Segal I'-space BX. x, and especially

BEx(1) = (][] ESn x X™)/Zn,
n>0

which is the labeled configuration space of R>, i.e. C'(R*>; X).

2.3 Segal I'-Spaces and Spectra

In this section we show the equivalence between the category of Segal I'-spaces and the category of
connective spectra. To associate a spectrum to a Segal I'-space, there are two ways: (i) the classifying
space construction; (ii) applying the extended Segal I'-space to the spheres.

For a Segal I'-space A, we know from last section that moA(1) is an abelian monoid.

12



Definition 2.3.1. A Segal I'-space A is very special (or sometimes called group complete), if moA(1) is
an abelian group.

Now we digress to the general group completion theory associated to a topological monoid M. Assume
M is strictly associative and has a unit. Consider its classifying space BM. It is a based space, and the
adjoint of the inclusion XM — BM is amap i : M — QBM which is a weak homotopy equivalence if the
monoid of connected components (M) is a group. Quillen’s group completion theorem ([May|, [McD],
[Kal]) indicates the relationship between M and QBM generally.

A map f: M; — M between two topological monoids is a group completion if mo(f) : 1M1 — 7o Ma is
an algebraic group completion (i.e. 7o(f) is universal with respect to morphisms of monoids from 7o (Ms)
to groups), and if f. : H.(M;) — H.(Ms) is a localization of the ring H.(M;) at its multiplicative

submonoid (M) for every commutative coefficient ring R.

Theorem 2.3.2. (Quillen’s group completion Theorem, [May]), the natural inclusion i : M — QBM is a
group completion whenever M is homotopy commutative. [

Consider the example 1.2.4 in the last section. The Barratt-Priddy-Quillen theorem tells us that BX
group completes to QS°.

A spectrum consists of a collection of pointed spaces X = {X,, },>0 together with maps o, : ¥X,, — X,,11.
If all o, are weak equivalences, it is called a suspension spectrum. If the adjoint maps 0'31 Xy — QX
are weak equivalences, it is called an Q-spectrum. A map of spectra X — Y consists of maps X,, — Y,
strictly commuting with the suspension maps. We denote the category of spectra by Sp. The homotopy
groups of a spectrum X are defined as

Wn& = colimi 7Tn+iXi-

A map of spectra is a stable equivalence if it induces isomorphisms on all homotopy groups.

Return to our case when M = A(1) with the discrete topology. Segal (|[Sel|) showed that a Segal T'-space
A gives rise to a spectrum. For X,Y € Top,, denote Map, (X,Y) space of based maps from X into Y,
the continuous map

Map, (X, Y) — Map, (A(X), A(Y)), f — A(f)

preserves base points. Hence there are natural maps, called assembly maps
XANAY) — AKX AY)
which are the adjunctions of the composition
X—L s Map, (Y, X AY)—2> Map, (A(Y), A(X AY)),
where [ is given by I(z)(y) =z A y.
Given an object X = {X"},>0 in Sp, we define A(X) € Sp by A(X)" = A(X™) with the structure map

STAAX™) = A(ST A X™) — A(XHY).

13



Analogously, for X € Sp, L € Top,, one has a natural map A(X)AL — A(XAL)in Sp. A Segal I'-space de-

)i
{A(S?), A(SY), A(S?),--- }.
)

for X € Top,.

termines a spectrum by applying A to the sphere spectrum S, namely A(S) =
Let h.(—;A) be the associated homology theory, i.e. h.(X;A) = 7. (A(S) A

An alternative construction of h,(X;A) is given as follows:
We first need to recall the concept of quasifibration, introduced by Dold and Thom [DoTh], which is made
exactly in order to obtain the homotopy exact sequence which we have for the Serre fibrations.

Definition 2.3.3. (Dold-Thom) A map p: F — B is called a quasi-fibration, if for every b € B and for
every e € p~1(b) we have that
Dt Wn(E;pil(b)v 6) - 7Tn(B7 b)

is an isomorphism for all n > 0.
It is equivalent to say that the fiber p~1(b) is weakly equivalent to the homotopy fiber of p over b. Thus,

quasi-fibrations behave for homotopy theory very much like other types of fibrations since we have the
following:

If p: E — Bis a quasi-fibration, b € B and e € p~1(b) = F, then there is a long exact homotopy sequence

o1, (F, €)L>7TH(E, e)iwrn(B, b)—8>ﬂ'n,1(F, e)—>---

Proposition 2.3.4. If Y is a path connected closed subspace of X with a well-based base point zy €
Y C X, then the cofibration ¥ — X — X/Y induces a quasi-fibration A(X) — A(X/Y) with all its
fibres homeomorphic to A(Y).

We will give the proof in Section 6.1.

Theorem 2.3.5. (|Se2|, [Wol) If A is a Segal I-space, then &, (X;A) := 7, (A(X)) is a homology theory
for connected space X. [J

Example 2.3.6. (1) When A = = N, then A(X) = SP*°(X), by the Dold-Thom Theorem, the induced
homology theory is h,(X;A) = H, (X;Z), the singular homology theory.

(2) If A = G a discrete abelian group, then A(X) = SPG(X), and h,(X;A) & H,(X;G), singular
homology with coefficients in G.

(3) When A = C the configuration space,
A(X) 2 C(R®; X) 2 1im C(R™; X) = im Q7S X =: Q°E®X = Q(X),

then A, (X;A) = 7%2P(X), the stable homotopy theory.

Lemma 2.3.7. (|BoFr|,|Wo|) If A is a Segal T'-space and X € Top,, then the map A(S)AX — A(SAX)
is a weak equivalence, and thus h,(X;A) 2 colim,, 7, ,A(S™ A X). O

The Segal T-space ®(S, —) associated to a spectrum X is defined
n — Homg, (™", X) =: ®(S, X)(n).
This indeed defines a Segal I'-space, because

P(9,X)(n) =Hom(S x ---x S, X)~Hom(SV--- VS, X)=Hom(S, X)" = d(S, X)(1)".
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The functor ®(S,—) : Sp — T'Top,, X — (S, X) is actually right adjoint to the functor T Top, —
Sp, A — A(S), so it implies that

Proposition 2.3.8. ([Se2]) The homotopy category of very special Segal I'-spaces is equivalent to the
homotopy category of connective spectra. [J
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Chapter 3

Infinite Symmetric Products and

Singular Homology

3.1 Definition

The infinite symmetric product was first studied by Dold and Thom in the 1950s [DoTh]. It is the first
example that a homology theory can be described as the homotopy group of a functor. It is also used
to construct the classifying spaces for monoids, and to generalize the definition of Eilenberg-MacLane
spaces of certain type. Furthermore, the infinite symmetric product SP*°(X) of a topological space X
is a homotopically simpler space which reflects the topological properties of X, since SP*°(X) has the
property of being an abelian topological monoid.

We assume in this section that all spaces are pointed, connected and all maps are base-point preserving.

Definition 3.1.1. The n-th symmetric product SP™(X) of a based space X is the quotient X" /%,, of
n-th cartesian product of X by the permutation action of the symmetric group ¥,, on the coordinates.

We denote the equivalence class of (z1,- - ,x,) by [z1,-- -, z,]. Sometimes we use the formal sum notation
Y.x;. Note that these z; are not necessarily distinct. Then there is a natural inclusion by adding the base

point *,

SP*"(X) — SP"+1(X), [X1,- - ,xp] = [21, 0, Tny ]

The union SP*(X) = [JSP"(X) with the weak topology is called the infinite symmetric product of X.

Remark 3.1.2. e The elements of SP*(X) can be viewed as unordered tuples [z1, -+ ,z,] in M for some
n( repetition is allowed). There is a unique smaller n > 0 with z; # *. We denote the base point [] = 0,
represented by * or 0.

o If X is a CW-complex, one can give the CW-structure to X™ such that each o € 3, is either the identity

on a cell or a homeomorphism of the cell onto some other cell. Hence the quotient space SP™(X) has also
a CW-structure. SP"~!(X) is a sub-complex, and the colimit SP>(X) is also a CW-complex.
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e The juxtaposition of points X™ x X™ — X" induces a commutative diagram

X" x X™m Xntm

lanZm lzn«#m

SP"(X) x SP™(X) — SP"™ (X))

It follows that SP°°(X) is an abelian monoid with neutral element 0.

e A pointed map f : X — Y induces a map SP*°(f) : SP*(X) — SP*(Y). This construction has the
following functorial properties:

2) Given f: X =Y and ¢g: Y — Z,then SP*(go f) = SP™(g) o SP*°(f).
3) If f ~ g, then SP°(f) ~ SP*°(g). In particular if X is contractible, so is SP*°(X).

Example 3.1.3. (1) SP?(S') = Mobius band. By definition, SP?(S') = (S* x SY)/(x,y) ~ (y, ), by
cutting and pasting along the rectangle, we get the Mobius band.

(2) SP"(S2) = CP".

View S% = CJ{oo} as the Riemann sphere CP!. The element of CP™ can be thought of as a homogeneous
polynomial of degree n by its coefficients. So assume given |21, -+ ,2,] € SP(S?) = SP(C|J{o0}), there
exists a nonzero polynomial [[, ..., (z — 2;), unique up to a nonzero complex factor, of degree < n whose
roots are precisely z1,-- -, 2. If the degree is k < n, then there are only k complex roots and the remaining
entries will be assigned the point at infinity, we can view oo as a root of the polynomial. Consider the
coefficients of the polynomial as homogeneous coordinates on the complex projective space CP", we get
the homeomorphism by constructing the inverse map directly by

[ao:alz"':an]ﬁ[zl,"',Zk,OO,"',OO]

where z; are the roots of a,z"™ + - -+ a121 + ag- The map is well-defined and bijective, hence a homeomor-
phism. Thus we can regard SP"(S?) as the space of nonzero polynomials Y . a;z" of degree < n.

(3) SP™(S1) ~ S* for all n > 1.

View St ~ §2—{0,00} = C* as the Riemann sphere punctured in its poles. Let H be the space of nonzero
polynomials with nonzero roots. By looking at the coefficients H is homeomorphic to C*~! x C* ~ S!.
Since SP™(S1) ~ SP™(C*), and the map

SP™(C*) — ™H, Zzi — H (2 —2;) (3.1.1)

1<i<n

is a homeomorphism, so it follows that SP™(S!) ~ S

18



3.2 Dold-Thom Theorem and Dold-Puppe Splitting

Most of the proofs in this section are omitted since they are either well-known or trivial. Good references
for much of the materials are [AGP], [Kal], [DoTh], [DoPul].

The following theorem is a key point in showing that the functor SP* induces a homology theory, since
it is a homotopy functor converting cofibrations into quasifibrations.

Theorem 3.2.1. (Dold-Thom) Suppose that X is a Hausdorff space with a closed path-connected sub-
space A and A — X is a closed cofibration. Then the quotient map p : X — X/A induces a quasifibration
p: SP(X) — SP>(X/A) with the fiber homotopy equivalent to SP*(A). O

Corollary 3.2.2. For a pointed map f: X — Y, the cofibration sequence
xLy-ocoLex
induces a quasifibration p : SP*(Cy) — SP*(XX) with fibre p~!(z) ~ SP>*(Y). O
Particularly, from the cofibration sequence
XL X —0X —5X
we obtain the quasifibration SP*°(CX) — SP*(XX) with fibre SP*(X).

Corollary 3.2.3. If X is Hausdorff and path-connected, for every n > 0, we have an isomorphism
Tn+1(SPP(XX)) 2 7, (SP(X)). O

Suppose that X is a connected space, the canonical inclusion i : X — SP*°(X) induces the Hurewicz
homomorphism 7.(X) — H,(X), it also induces that

Theorem 3.2.4. (Dold-Thom Theorem, [AGP], A.3.) 7, (SP*°(X)) & H.(X;Z). O

The following theorem shows that SP°°(X) is an generalized Eilenberg-Mac Lane space.

Theorem 3.2.5. (Dold-Thom [DoTh]) For a connected CW-complex X, there is a homotopy equivalence

SP™(X) ~ [[ K(Hi(X;Z),4). (3.2.1)

O

We are interested in the splitting property of symmetric product. Denote the filtration quotient by
D™(X) :=SP™"(X)/SP" (X) = X""/%,,,

where X = X A--- A X is the n-fold smash product. The following Dold-Puppe splitting shows that
SP is a self-splitting functor.

Theorem 3.2.6. (Dold-Puppe splitting, [DoPu], section 10) For a connected space X, there ia a homotopy

equivalence

SP*(SP> (X)) ~ SP™>( {7 D"(X)). (3.2.2)

n=1
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Proof. For each n and k, we first need to construct the map A? : SP™(X) — SP>(D*(X)). Given
€=lx, - ,an], let I =41, -, jx Cn={1,---,n} with cardinality I = k. Let — : SP*(X) — DF(X)
be the quotient map. So we can define

hg(&) = Z Ly Ly - (3.2.3)

ICn
HI=k

And these maps make the following triangle commutative

SPn+1 (X)

+1
in

SP™(X) ——— SP>(D*(X))

where 4, : SP"(X) — SP""(X) is the standard base point adjunction. Thus they induce a map h" :
SP™(X) — SP*(\i_, D*(X)) = [li_, SP(D*(X)). By taking the colimit of all A", we obtain the

"power" map
o0

h: SP®(X) — SP>(\/ D*(X)).
k=1
The natural inclusion X = SP*(X) < SP*(X) induces the inclusion ¢ : SP*°(X) < SP*°(SP*>°(X)).
The extension h of h is defined by h : SP™(SP™® X) — SP>(\/;2, D¥(X)),&1 -+ & h(&) -+ h(&).

It is easy to check that this map makes the triangle commutative:

SP>(SP™ (X))

(R

SP®(X) ———>SP*(V;5; D*(X)).

Moreover, we claim that the following diagram is also commutative:

SP**(D"(X)) =———— SP™(D" (X))

| !

SP*(SP" (X)) —> SP>(\/}_, D*(X))

| !

PSP (X)) 1> §P (\/7 ) DE(X))

This is because in the case n = 1, SP'(X) = D'(X), so h' = id : SP®(SP'(X)) — SP>(D'(X)). For
any £ € SP™(X) and also £ € SP" (X)), h"(€) = A" 1(€) lies in the (n — 1)-th filtration. So if we project
them to the n-th filtration quotient D™(X), they are the base point. Therefore we only need to consider
the nontrivial case. In this case, given &; - - - &, € SP®(SP"(X)), then it means each & € SP"(X). So by
the construction of A", we have to take all possible n subtuple of points out of an n-tuple. Then there is
only one choice, namely each ¢ itself. Thus h"(&;---&,,) = h(&1) - h(&y) = & -+ - &m, which proves the
commutativity of the top diagram.
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Since SP"7!(X) — SP"(X) — D"(X) and \/}—] D*(X) — \/}_, D*(X) — D"(X) are cofibrations, so
two columns are quasi-fibrations. By induction and Five-lemma it follows that & is a weak equivalence. [

3.3 Generalized Symmetric Product

The symmetric product construction is the first example which gives rise to a homology theory. Now we
are going to see other similar constructions which also have this property.

Definition 3.3.1. For any abelian monoid G with identity 0, define the generalized symmetric product
on a connected space X with base point o to be the abelian topological monoid with * as base point,

SPG(X) = [[ ¢" xz, X™/(~).

n>1

We use the formal sum _ g;x; to denote an element of SPG(X) with g; € G,z; € X. So ~ is generated
by 0z = %, gxo = *, gt + g’z = (g + ¢')z.

It is easy to see that SPG(X) = SP(G A X)/(~), here the identification ~ is
(giANz)+ (g ANx)=(gi+gj) Nx, 0Nz =%,g Az = *

And it is a homotopy functor in the first variable and a functor of monoids and monoids of maps in the
second variable. It was McCord who first studied this construction [McC].

Example 3.3.2. When G = N, then SPN(X) = SP*(X). When G = Z,, we get the truncated symmetric
product. It also can be represented by SPZ, (X) = SP>(X)/(nz ~ %). By [BCM], it is a functor that
represents mod — n homology theory. In the next section we mainly focus on this example.

SPG(—) is a homotopy functor of pointed spaces, and converts cofibrations into fibrations, we skip the
proof here, it is similar as the proof for SP>°. Indeed for a cofibration sequence X — Y ER Y/X, the

extension SPG(Y') =N SPG(Y/X) is a homomorphism of groups with fibre f~!(x) = SPG(X). Note that
for the cofibration sequence X «— C'X — ¥ X, one can get an equivalence

Q(SPG(2X)) ~ SPG(X)

given by h: SPG(X) — Q(SPG(XX)), h(Xg;x;)(t) = Xgi[t A 2;]. This indicates SPG(XX) is a delooping
of SPG(X), or equivalently a classifying space of SPG(X). In particular, one has SPG(S?) = G, thus
SPG(S!) = BSPG(SY) = BG. It follows that SPG(S™) ~ K (G, n) for discrete abelian group G. Because
for an abelian G, BG is also abelian, so SPG(S™) ~ B"G is an n-fold classifying space for G, hence an
Eilenberg-MacLane space of type K(G,n).

The above statement implies that 7, (SPG(—)) represents a reduced homology theory h.. When G is
discrete, this homology becomes ordinary in the sense that iLn(SO) = 0,n > 0 and hence h, is in fact the
singular homology with coefficients in ho(S°) = G.
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3.4 Splitting of SPZ,

Assume given an element Xg;x; € SPZ,(X), we write Xg;x; to denote its reduced representative such
that g; € {0,1,--- ,n —1}.

Define the m-th filtration of SP Z,,(X) by
SP Z (X ) := { S giw; € SPZ(X) | Y gi<meN } .

and we regard the unique element of SPZ,,(X)o as the base point . In fact this is an infinite filtration,
since the sum Y., g; can be greater than n.

One sees immediately that SP Z,,(X)m—1 C SP Z,(X).m, and we write
Dy SPZp(X) := (SP Zn(X)m)/(SP Zp, (X ) im—1)

as the filtration quotient.

Definition 3.4.1. For n = p{' - - pir, the prime decomposition of n € N. We define

N - pp ifr=162>1
1 else.

as a function N = N(n) of n. Note that ged((}),--,(,",)) = N.

n—1

Here is a table of the first few numbers of NV and the binomial coefficients (’]:)

n N
0 0 0
1 1 1 1
2 1 2 1 2
3 1 3 3 1 3
4 1 4 6 4 1 2
5 1 5 10 10 5 1 5
6 1 6 15 20 15 6 1 1
7 1 7 21 35 35 21 7 1 7
8 1 8 28 56 70 56 28 8 1 2
9 1 9 36 84 126 126 84 36 9 1 3
10 1 10 45 120 210 252 210 120 45 10 1 1

Theorem 3.4.2. There is a weak homotopy equivalence

SP Zn (SP Z (X)) ~ SP Zn (\/ D SP Zy (X)).
E>1

In other words: The functor B = SP Zy splits the functor A = SPZ,,. In particular, SPZ, is a self-
splitting if p is a prime.

Note that SPZ;(X) is a point, thus this splitting is only of value if n = p® is a prime power (and thus
N =p).

Proof. First for each m,k > 1, we construct a map

fm,k : SPZn(X)m — SPZ]\](D}C SPZW(X))
S gy — 1 Z(Zkéi)(Z(*) a;x;).
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Where the sum X(,ya;x; mean all the formal sums ¥;a;x; such that each a; is not greater than the reduced
representative g; of g;,i.e. 0 < a; < g; and ¥a; = k. Here (Zk“}i) gives the cardinality of all the possibilities
of these a;’s.

All the f, ; together induces a map

f:SPZ,(X)— SP ZN(<7 Dy, SPZ, (X))
k=1

Now we are going to extend this map to a map f as follows:

SP Z,,(X) ———= SPZn (V2 , Dy, SP Z, (X))

€
.

—

1-¢ SP Zx (SP Z0 (X))

F:Y gi-&— > gi- f(&), where & € SPZ,(X).
i=1 i=1

This extension makes the above triangle commutative. To show that f is a homotopy equivalence, consider
the following commutative diagram
SP Z (Dyn SP Zy (X)) — = SP Zy (Dyy SP Zoy (X))

SP Zn (SP Zy (X)) —22 SP Zn (/7" Dy, SP Z, (X))

| |

ﬁnfl —
SP ZN(SP Zn (X )m—1) —— SP Zn (\/}," Dy SP Z,,(X))

where ¢, and fm are the induced maps of the quotients.

We prove it by induction. For m = 1, we have SPZ,(X); = D; SPZ,(X). So it implies that f; = id :
2o gi(1 i) = 30 gi(1- ).

For the top arrow, we claim that f,, = id. Because for any ¢ € SP ZN(Dy, SP Z, (X)) and in particular if
€ € SPZN(SP Zp(X)m_1), then f,,(€) = fin_1(€) lies in the (m — 1)-th filtration. So if we project them to
the m-th filtration quotient D,,, SP Z,,(X), they are the base point. Therefore we only need to consider the
nontrivial case, in which £ can be represented by £ = >0, gi(zg;l gi;vij) such that Z;lzl gi; = m. By
the construction of f,,, one need to find the coefficients a;; such that the sum adds up exactly to m. Since
(Z"-‘zij) = (z) =1, so there is only one unique choice of the equivalence class, namely a;; = ggj, because
otherwise all the other choices would project to the trivial element in D,,, SP Z, (X ). Hence f,, = id.

Moreover notice that the two sequences

SP Zy,(X)m—1 — SP Zy(X ) — Dy SP Z,,(X),

m—1 m
\/ DiSPZy(X) — \/ DiSPZn(X) — Dy SP Zy(X)
k=1 k=1
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are cofibrations. Therefore, the vertical sequences in the diagram are both quasifibrations. Passing to the
homotopy groups, we know that f,,,. is an isomorphism, so by induction and the Five-Lemma we get f,,.
is an isomorphism, for all m. This proves the Theorem 3.4.2. o

Corollary 3.4.3.

H.(K(Zn, 0);Zx) = @D Ho(DiK (Zn, 0); Zy).
E>1
O

Example 3.4.4. In the case X = S',n = 2 thus N = 2, the Corollary becomes

H (K (Z2,1); Z2) = @) H.Di K (Z,1); Zo).
E>1

In fact there is a direct way to see it:
LHS = H,(RP®;Zy) = 7y < u >, |u| = 1.
On the RHS, we claim that Dy, SP Zy(S') 22 S*, because by identifying S* = 1/(0 ~ 1),
Dy SP Zy(S™) = (SP Za(S")x)/(SP Zo(S")x—1) =2 A* /AR~ = GF,
It implies that
RHS = EBH DK (Zy,1) @H (S*:Zs) @Z2<uk>,|uk|=k
k>1 k>1 k>1
The functor SP Zs has been studied by [MiL5] and [BCM]. In [BCM] they showed that
Theorem 3.4.5. ([BCM], Theorem 2.9.) Let Y be a locally finite based CW-complex, then there is an

isomorphism
H.(SP Zo(Y ) s Zo)) = @D Ho(SP Zo(Y )y, SP Zop(Y )13 Zo).

r<n

O

So if we take the colimit in both sides, we get the special case of Corollary 3.4.2. for n = 2, namely

H.(SPZy(Y = B H.(SP Zy(Y)r, SP Zy(Y)r—1; Za).
r>1

This filtration quotient on the right hand side can be described as follows. For a compact manifold Y
with base point x,

Dy SPZy(Y) = SPZy(Y )1/ SP Zy(Y )1 = (CF(Y, %) /CF (Y, %))*°,
the one-point compactification of the filtration quotient of the relative configuration space.

And since SP Zs represents the mod -2 homology theory, there is a similar Dold-Thom theorem for
SP Zs.

Theorem 3.4.6. ([BCM], Theorem 2.6.) If Y is a based, locally finite CW-complex, then
SP Zy(Y HK (Y Zs),1).
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3.5 Splitting of SPZ

Now we consider the example SP Z(X), which is the group completion of SPN(X). First note that an
element =Yg, -z; € SPZ(X) can be written as § = Xg; - z; + Xg - x;, where g; > 0, g/ <0, and z; # ;.

Define a double-filtration SPZ(X), 4 by
SPZ(X)pq = { g; - xi + Xgj - x; € SPZ(X) ‘ Yg; <p, 2|9} < q, 7 # x; }

Let the m-th filtration of SPZ(X) be

SPZ(X)m = |J SPZ(X)p,q
p+q<m

and the double filtration quotient be
D, SPZ(X) :=SPZ(X)p,q/(SPZ(X)p—1,§ USPZ(X)p q—1)-
So we have the m-th filtration quotient

Dy SPZ(X) := SPZ(X)m/SPZ(X)m-—12= \/ Dp4SPZ(X).

ptg=m
Then in a similar way, we have a self-splitting of SP Z(X).

Theorem 3.5.1. There is a weak homotopy equivalence

SP Z(SP Z(X)) ~ SPZ(\/ Dy SPZ(X)).
E>1

Proof. Similar as in Theorem 3.4.2., we first construct a map restricting to the m-th filtration,

Rk : SPZ(X)m, — SPZ(Dy SPZ(X)) = H SPZ(D, ,SPZ(X))
ptg=k

Sl e Y

Lij (%) ()

Here ¢;; = (Zgé) (ZIZ;‘/‘). And (% means the formal sum of all a;z; such that 0 < a; < ¢} and Xa; = p.

Also ¥ means the formal sum of all a;z; such that g7 < a; <0 and Xla;| = ¢.

(%)
All the hy,  together induces a map h : SPZ(X) — SPZ(\/;—, Dy SP Z(X)).

Then one can extend this map to h:

¢ SPZ(X) — = SPZ(\/3°, Dy SPZ(X))
[ ]
1-¢ SPZ(SPZ(X))

h:¥izi - & — Tizi - h(&) = Bizi - (Sgtij - §) = Bi%5(zitij) - G5,

25



where h(fz) = Ejtij . Cj-
And this extension gives us the following commutative diagram

SP Z(D,, SP Z(X)) === SP Z(D,, SP Z(X))

| |

SP Z(SP Z(X )) —" > SPZ(\/™, Dy, SP Z(X))

. |

hwn—l
SPZ(SP Z(X )m—1) —= SP Z(\/}";' Dy SPZ(X))

Again we prove by induction and the five-lemma, passing to the homotopy groups we get the required

weak homotopy equivalences.
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Chapter 4

Configuration Spaces and Stable
Homotopy Theory

4.1 Properties of Configurations and Examples

Definition 4.1.1. The ordered configuration space of a space M is C'"(M) ={(z1, - ,zn) € M"|z; # x5
for i # j}. It is an open subspace of the cartesian product. The unordered configuration space C™(M) :=
C™(M)/%, is the quotient space of C™ (M) by the action of the symmetric group 3,,.

Example 4.1.2. Here are some well known examples which have some nice homotopy types (see for

example [Kal], 3.1.1.).

(1) C™(RY) = C™(]0,1[) = ][, A" has n! contractible component, one for each permutation of ¥, i.e.
each o € X, defines a component containing the configuration (o(1),-- - ,o(n)), and obviously C™(R') ~ x.

(2) The map C?*(R*) — R™ x (R\ {0}) : (z1,22) — (1 + 22,21 — x2) is a homeomorphism, hence
C?(R"™) ~ §"! and C?(R") ~ RP" 1,

(3) C3(S™) can be identified with the unit tangent bundle 7S™ of S”. There is a deformation retract of
C3(S™) into the subspace consisting of configurations (x1, —x1,22) with 21 # —x1 # 22. Then one can
fix x1, and project x3 stereographically from x; onto the tangent plane of —x;.

(4) If G is a (Lie)-group, acting transitively on itself, then the map

C™(G) — G x C" M G\{1}) : (g1, »gn) = (91, (91 "92.++ ».91 "gn))

is a homeomorphism, for example C" (R™) 2 R™ x C"~1(R™ \ {0}), and C"(S') = §* x C"~1(S1\ {1}),
thus C™(S') has (n — 1)! contractible components all of the form S x C"~1(]0,1[), one also obtains
C3(R?) ~ St x (ST v §1).

(5) C?(RP™) = {(¢1,05)| distinct lines in R"*1}  there is a fibration of C?(RP™) into the Grassmanian
Gra(R™1), namely the fibration

C%(RP"™) — Gra(R" ) : (£1,45) — (€1,05) = 2-plane spanned by 1, lo
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with fibre homeomorphic to C?(RP1) ~ S1.

4.2 Braid Groups

Theorem 4.2.1. (Fadell-Neuwirth Theorem) Let M be a connected manifold of dimension at least 2,
and let Q, = {x1,--- ,2,} be any set of r distinct points of M. Then for r < n, there are fibrations

" (M\Qy) — C"(M) & CT(M),
where 7 is any coordinate projection.

Take M to be a connected surface, one can iterate this construction as follows:

C" (M) <=——C" 1 (M\Q1) =—— C" 2(M\Q2) =— -+ =— C*(M\Qn—2) =<— M\Qn—1

| | | |

M M\Q1 M\Q- M\Qn—2

Then use the fact that m,(M\Q,) = 0, for n > 2,7 > 1 (note if M # S? RP?, then 7,(M\Q,) = 0, for
n > 2,7 > 0) and that M\Q, has as fundamental group a free group F on r generators. It follows that
the fibration M\Q,,_1 — C"(M) — C"~1(M) yields a short exact sequence

0 — F — PBr, (M) := m (C"(M)) — PBr,_1(M) — 0

and we have the following proposition

Proposition 4.2.2. If M is a surface without boundary and # S2,RP?, then C™(M) is an Eilenberg-
MacLane space of type K (m;C™(M),1). O

Note when M = R?, Br(n) := mC™(R?) is the classical Artin’s braid group and PBr(n) := m C™(R?)
the pure braid group.

There is a natural fibration from ordered into unordered configurations,

¥, — C"(M) — C"(M)

Now we focus on the cases M = R™, which derives the Barratt-Quillen-Priddy Theorem ([Kal]|, Lemma
3.23.).

Lemma 4.2.3. For n > 2,k > 1, we have

Yk, n>2

k(mn)) —
m(CHR™) = {Br(k), n=2

where Br(k) is Artin’s braid group on k-strings. In particular,

C*(R*) = BY;, and C*(R?) = BBr(k)
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Proof. Note that when n > 2, 7;C* (R™) = 0 and more generally
mC*(R") = 0,7 <n —2. (4.2.1)

This is because C*(R™) is the complement of the fat diagonal of codimension n in R*". Then one gets
that for n > 3, C¥(R™) is a universal cover of C*(R") with fundamental group ¥;. We have the short
exact sequence

0 — Xy — PBr(k) —» Br(k) —» 0

where X acts by permuting the end points of strings. When n = oo, it follows from (4.2.1) that
WTCW“(]ROO) = 0, for all r, hence contractible. Since the permutation action by Xj is free we therefore
obtain that C*(R*) is a model for BY, and C*(R>®) = EX. O

4.3 Snaith Splitting and Stable Homotopy Theory

In this section we show that one can stably split the labeled configuration space C'(M, My; X) ([B61],
[BCT)).

Definition 4.3.1. Let M be a manifold with My a closed submanifold, X a space with base point zg,
the labeled configuration space of manifold M is

O, My X) = ] €7 (M) x5, X"/ (~)
n=0

where ~ is generated by

(Zla"' yAny L1y 7xn):(zla"' yRiy RNy Lyt s Tyt 7xn) le,L'GM(), or r; = Zo-.

There is a natural filtration of C'(M, My; X) by the closed subspaces:

Con (M, Mo; X) := ]_[ CH(M) x5, X*/(~)
k=0

Denote the filtration quotient by
Dn(M, Mo,X) = On(M, Mo;X)/Onfl(M, Mo,X)
for example Do = %, Dy = (M/Mp)4 A X, Dp(R®; X) = C"(R®), Ay, X'\

In the case My = (), X = S™ we have the following geometric description of Dy (M; X) (|BCT]|, 1.6., |[Kal]).
Consider the bundle projection
Tt C¥(M) x5, (R™) — C*(M)

with fibre R"*. By construction 7, is the n-fold Whitney sum 7{°". It turns out that Dy (M;S™) is the
Thom space of the vector bundle 7,.

By the Thom isomorphism,

Corollary 4.3.2. If 7,, is an orientable vector bundle, H;(Dy(M;S™);Z) = H;_j,(C*(M);Z); if 7, is
not orientable, the isomorphism still holds by replacing the coefficients to be Z/2. O
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Remark 4.3.3. This indicates one way to compute the homology of classical configuration space with
7/ 2-coefficients, that is
H,(C*(M);Z/2) = Hiy1n(Dr(M; S™); Z/2).

Theorem 4.3.4. ([B61], [McD]) Let M be a smooth compact manifold and let My and N be the smooth
compact submanifolds of M with codim N = 0. If N/MyN N or X is path-connected, then

C(N,NNMy;X)— C(M,My; X) — C(M,N U My; X)
is a quasifibration. [J
Let M be an m-dimensional manifold and let W be an m-dimensional manifold without boundary which
contains M, e.g. W = M if M is closed, or W = M UOM x [0,1) if M has boundary. Let £ be the
principal O(m)-bundle of the tangent bundle of W. Let ['¢igm x1(B, Bo) be the space of cross sections of
&[S™X] which are defined on B and take values at oo A X on By for each subspace pair (B, By) in W,
where £[S™ X] is the associated bundle and O(m) acts trivially on X and canonically on S =2 R™U {0},

i.e.

EI:§Xo(m)SmAX—>W.

Example 4.3.5. Assume W is parallizable, i.e. TW 2 W x R™ then £ 2 W xO(m) = EZ W x ¥™X,
which implies that

Tegsmx)(W — Mo, W — M) 2 Map(W — Mo, W — M; ™ X, 00).

Proposition 4.3.6. (|[BCT], 2.5.) Let M be a smooth compact manifold and let My be a smooth compact
submanifold of M. If M/M;, or X is path-connected, then there is a (weak) homotopy equivalence

C(M, Mo; X) — Tepgmx)(W — Mo, W — M).
O
Remark 4.3.7. (1) By Proposition 4.3.4, there is a homotopy equivalence
C((M, Mp;) x R"; X) ~ Q"C (M, My; S" X)
if M /My or X is path-connected.

(2) The interesting cases of Proposition 4.3.6 are:

i) the m-fold loop space of an m-fold suspension (take W = R™, M = D™, My = (), X path-connected)

([May]):
C(R™; X)—==Qmym X

ii) free loop space of a suspension(take W = M = S*, My = (), X path-connected) (|B&1]):
C(S'; X)—/—=A¥XX
The first example is called May-Milgram Model ([Kal], 3.6.1.), we can realize the map

am : CR™ X) - Q7YX
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as follows: a point [vy, -+ ,vp; 21, -+ ,2n] € C(R™; X) determines a map

p: STRMU{o0} — IMX = D™/AD™ A X
{Tvil(v) Nz, ifve Bl(’Ui)
v —

*, otherwise

where Bj(v;) C R™ denotes the ball of radius 1 centered at v;, and T, : D™ — Bj(v;) is the translation by
v;. Moreover x € D™ /0D™ A X is the basepoint. One can check that this map is well-defined and a weak
homotopy quivalence for path-connected X. This example is special and builds up other configuration
spaces in a natural way.

The first splitting result in the history was James unstable splitting [Ja] of QXX using the James model
J(X), the free non-commutative topological monoid generated by X modulo its base point zg. Its element
(z1,22,- - ,x,) are finite sequences of points in X with possible repetitions, 1 := % = base point of X and
order matters; the topology on J(X) is induced by the topology on X, and one can regard it equivalently
as a quotient space of cartesian product of X, namely

J(X) =[x/~
n>1
(zla"' 7xi71;j}’ia$i+1;“' 5$n) ~ (xlv"' s Lj—1y %y Ljf1, " 7$n)-

It was known that the James model J(X) — QXX is actually a weak homotopy equivalence, and Puppe
[Pu] showed that under certain conditions on X, they are genuinely homotopy equivalent. There is an
intermediate space C(R; X) between them making the diagram homotopy commutative,

BTy Ty e Wy * R, J(X)—i>QEX
J | A
§=2 0t coct, Lili CR; X)

Here w,, : I — XX, t — [t,2;]. The homotopy inverse of 7 is z1x9 - -z, +— E?:l ix;. And (&) =

’ .
Wy, * -+ *w, , where w, is defined by
n K

T xT

St2RU{0} — XX
t—ti ) 3 .
y { — Ny, ift € B(ty),

Wy, -

i

*, otherwise.

Here € := mini{%}, and Bc(t;) is the ball of radius e centered at ¢;,1 <i < n.

I. James [Ja] proved that there is an unstable splitting of this space, known as James splitting (see also
[Mil])

BJ(X) ~ 208X ~ % \/ X", (4.3.1)
k=1
Theorem 4.3.8. (Snaith-splitting, [Sn|, [B61]) There is a stable homotopy equivalence for any pair
(M, My) and X,
C(M, Mo; X) == \/ Dy(M, My; X)
k>1
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This theorem can be reformulated in the following equivalent statements:
Proposition 4.3.9. The following are equivalent:

(i) the suspension spectra are stably equivalent, i.e.

S®C(M, My; X) = 5 \/ Dy(M, Mo; X).
E>1

(ii) the infinite loop spaces are homotopy equivalent, i.e.

Q°N°C(M, Mo; X) ~ Q5> \/ Di(M, Mo; X).
E>1

(iii)
C(R>; C(M, My; X)) ~ C(R™; \/ Di(M, My; X)).
k>1

In the case M = R>, My = (, recall that C(R*>; X) ~ Q°°X°° X hence we obtain

Corollary 4.3.10. The configuration functor is self-splitting, namely

C(R*; C(R™; X)) ~ C(R™; \/ Di(R™; X)).
E>1

Or equivalently,

QQ(X) =~ Q(\/ Dr(R*; X)).

k>1

Therefore simultaneously we have,

TP QX = (P P (D (R X)).
E>1

Before proving the Snaith splitting Theorem 4.3.8., we introduce a notion of flag configuration space.
Definition 4.3.11. The flag configuration space is

C™E(M) = {(&,€') € C(M) x CH(M))|¢’ C &}

Proof. We demonstrate here an elegant proof, which is known to specialists of configuration spaces (|[Kal],
Theorem 3.74., [B61]).

Let & = ¥z;x; € C,(M, Mp; X) be a labeled configuration, denote by f_its image in Dy (M, My; X). We
divide the proof into several steps.

First step: We define a "power" map h as follows:

h: C(M, Mg; X) — C(R*; \/ Di(M, My; X))
k

Set I = {1,---,n}, and for each subset J C I with §(J) =k, welet {5 = >, ; zix; € Cp(M, Mo; X) be
the corresponding subterms, and £ its image under the composition

C(M, Mo; X) — Dy(M, My; X) — \/ Di(M, My; X).
k
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Note that the flag configuration space is an (}})-fold covering space of C" (M), namely C™*(M) — C™(M) :
(€.¢)—¢

We write ¢ := (21, -, 2,). Choosing J means to pick a (s := {z]i € J C I} € C*(M), then ((,(y) €
C™*(M). By summing over all subsets J C I, we construct a map

C(M, My; X) — C(T] C*(M); \/ Di(M, Mo; X)).
k k

Second step: Since for each k > 0, C*(M) is a finite dimensional manifold, [], C*(M) can be embedded
into R*°. Pick any embedding e : [], C*(M) — R>. We obtain a map by compositions

hy, - Cn(M, My; X) —— C(R*; \/, Di.(M, My; X))

£= Eiel 2iTi ———> >k Zﬁ({]gik(e(g]); £r)-
Note that the following diagram is commutative

hn n
Cy (M, My; X) C(R*;\/ )y Di(M, My; X))

i |

hnf —
Cpo1(M, Mo; X) ——> C(R>; \/'Z1 Dy (M, My; X))

where ¢(£) has one particle z, € My or z,, = x9. Now for J C I ={1,--- ,n} with §(J) = k there are only
two possibilities:

(i) n ¢ J = then ex(¢s) and &; agree on level n— 1 and level n(here ey, is the restriction of e on C*(M)).
(ii) n € J = the {; is the base point in Dy (M, Mo; X) C \/,, De(M, Mo; X).

Thus we get the map
h: C(M, Mo; X) — C(R®; \/ Dy.(M, Mo; X)).
k

This map is well-defined (disjointness, equivariance and base point conditions are preserved).

Third step: extend this map to A,

ac C(M, My; X)) —2—> C(R*; \/,, Dx(M, My; X))
7

l |

(0;a) € C(R>*;C(M, Mo; X))

Given (21, -+ ,zp;a1, "+ ,a,) € C(R*; C(M, Mp; X)), we write

h(al) = (lea' o azlzl;blla' o 7b121)7

h(an) = (ana' o 7ann;bn17"' 7bnln)7
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then we define

B(Zziai) = ((211721),"' ,(21£1721),"' 7(anuzn)7"' 7(Zn€nuzn);

bll;"' 7b1217”' 7bn17"' 7bnln)
Oune remark is that here one uses (z, z;) € R® x {z;} C R® x R>® = R,

Fourth step: We will show that h is a weak homotopy equivalence, Prove it by induction, to this end, we
consider the commutative square for each n,

C(R™; Do(M, My; X)) ——= C(R™; Do (M, My; X))

| |

C(R>; C,y (M, My; X)) —2s C(R; \/2_, Dy(M, My; X))

I |

hp—1 _
C(R*; Cym1 (M, Mo; X)) ——= C(R*; \/7_ D(M, My; X))

where h,, is just the restriction of h on C, (M, My; X).
Since for n = 1, C1(M, My; X) = D1(M, Mo; X) = (M/My)+ A X, e1 : M = C*(M) — R*, we have that

Ci(M, Mo; X) —  C(R*; D1(M, Mo; X))
&= (m;x) —  (e1(m);&).

- ——mp,_1C(R*>°; D,,) mpC(R>®; Cp_1) mpC(R>; Cy)

l;ln* lhnl* lhn* lﬁn*

+o == mp 1 C(R™; D) —— 1, C(R*; V"' Dy) —— mpC(R™; V" Dyp) ——= mpC(R>; D) —— -+

It follows that hy ~ id. Also on the top arrow, a similar computation shows that Ry ~ id, for each n.
Then a theorem of Bodigheimer [Bo1] says that C has the property converting the cofibrations to quasi-

fibrations, and since

C(R>*;C—1) — C(R*; C,) — C(R*®; D,,)
CR>; \/ Di)—CR>; \ Di)— CR>;D,)

1<k<n—1 1<k<n

are cofibrations, we obtain the long exact sequences
For brevity, we omit (M, My; X) in the notation of this diagram.
By the induction and 5-lemma, it follows that A is a weak homotopy equivalence, which finishes the proof.

O

We remark in the end that the splitting functor for the configuration space C'(R*; X)) is not unique. The
infinite symmetric product SP is also a splitting functor for C. Tts proof is left to the reader. Moreover,
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we have a commutative diagrams of these two splittings

C(R>*; C(R*>; X)) —> C(R>; Vi Di(R*; X))

hur l l hur

SP*(C(R™; X)) —= SP™(V/;, D(R>; X))

given by the Hurewicz map:

hur:(Zh”' 7277,;617"' 7671) Hglgn

We call it so because the induced map in homotopy groups is the Hurewicz homomorphism

hur, : 7P C(R>; X) — H,(C(R™®; X); Z).

4.4 T-spaces arising from C(R™)

Denote

Cc(1):= ] C"(R>) = C(R™).

n>0

It has a partial monoid structure: call & € C(1) composable, if they are disjoint, then declare the
disjoint union £ LU ¢’ to be their "composition".

Define
C(k) ::{ (€1 &) € CF | &N& =0 in R for i # j }

We have a composition

)
=& U U&.

Note that this U is associative, and the unique point § € C(0) = C’(R‘X’)O is the neutral element.

A map o : m — n in T induces a map

Oy C(m) — C(n)
(517"' 7€m) — (l—le(x*l(l)é-ju"' 7|—|j6a*1(n)§j)'

We claim that the natural inclusion py : C'(k) — C(1)* is a homotopy equivalence by using the following
trick: endow R*® with the weak topology, then we have a homeomorphism
h: R* x R — R
((xl7"'7xn7"')7y) = (y,$1,$2,"').
Also for i = £1 there is a homeomorphism R>® — R*® x {i}, (z1, -+ ,Zpn, ) — (4,21, ,&p, -+ ). They

induce a homeomorphism C(R*) = C'(R* x {i}). Given an arbitrary configuration £ € C'(R>), we denote
its image under this homeomorphism by &;.
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It suffices to look at the ps:

(& ¢)e C(R*®) x C(R®) = C(1)2
(§-1,841) € C(R™ x {~1}) x C(R*® x {+1}) C C(R™ x R)?
—[ l lh*xh*
(A(€-1), 1)) € C(2) - C(R>)?

One can show that this compostion is homotopy inverse to the inclusion, which implies that the functor
C is a I'-space. To compare its extension

= H C(k) xY"r)/
with the original configuration space
CR*;Y) = ([T C*®R>) x5, Y*)/ ~
k

one can see directly that C(Y) is just a reformulation of C(R*°;Y). Namely in the second case, its
elements are distinct points 1, - - ,z, in R* with labels y1, -+ ,y, in Y. And in C(Y) its elements are
points y1,- - ,Ym in Y with configurations &, -+, &, in C(m) as coefficients of each y;. The natural
filtration of C(R*,Y") gives rise to a filtration of C'(Y). Namely, denote by |&;| the sum of cardinalities
of all the configurations represented by &;, and define

Culk) == { (61, &) € Ch) | S,l&l <n }.

The filtration

HC k) x YE/(~)

corresponds to

Y) =[] CF®R™) xz, Y¥/(~).

k<n

Remark 4.4.1. For an arbitrary manifold M, the configuration functor C(M x R*°; —) is a I'-space as
well, the proof is similar.
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Chapter 5

Grassmannians and Connective
K-Theory

In this chapter following an idea of G. Segal [Se3| we introduce a I'-space K, built out of Grassmannians,
and use it to model connective K O-theory. We then exhibit a functor B which splits K in the sense of the
introduction (1.0.9). This functor B relates to the work of [GMTW] and [RW] and represents the infinite
loop space of the Thom spectrum MO. Whereas in previous chapters we have split spaces with discrete
labels, the main novelty here is that the splitting "space" is not a finite discrete set but a topological

space. We will have a space of choices of the splitting "space".

5.1 Connective K-Homology Theory

Let Gry(R*>) = colim,, Gry(R") denote the Grassmannian of k-planes in R and Gr(R>) =[], 5, Gry(R>)
the disjoint union of all these Grassmannians. This is a partial abelian monoid under direct sum.

Define a functor K : I' — Top, as follows:

K(0) = x,

K(1) = Gr(R*>), and in general

Km)={ (i, . Va) e KA | Vi LV, ifi#] }.

Lemma 5.1.1. K is a Segal I'-space.

Proof. We need to show that the inclusion K(n) — K(1)" is a homotopy equivalence. We prove this for
n = 2. Let an arbitrary (V1,V2) € K(1) x K(1) be given. For each i = 1,2, let p; be the composite
pi: Vi = R® 5 R® x R® 5 R,

where ¢; : R® — R* x R* is the inclusion into the i-th factor. And 7 is defined by

7:R¥® xR*® — ]Rooa((xlax27' ")7 (y17y27' )) = ($17y17$27y27' ) (511)
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Obviously p1(V1) L pa(Va) because their inner product is 0. So we obtain a map

p:K(1) x K1) — K(2),(V1,V2) = (p1(V1), p2(V2)).

1 is a homotopy inverse to the inclusion. To see this, we are going to construct a homotopy rotating p; (V1)
continuously into Vi. In order to get the general formula, we first show what we do at time ¢ € [0, %]
Denote an arbitrary element of R* by (z1, 22,3, --). We define a rotation map pa 3 : R* x [0, %] — R
which exchanges x2, z3 and keeps the other vectors fixed.

1 1
p2,3((x1, 22,3, ),t) = (1,22 cos(g -2t) 43 sin(g -2t), T2 cos(g 2(5 —t))+x;3 sin(g-2(§ —t)),24,...)

At time t € [%, %], we can apply p3 5 (resp. p24) to exchange z3 and x5 (resp. x2 and x4). So a general
formula for the i-th step pit1,2i41 : R x [1 — 2%1,1 i] — R*° will be

— 1
T 1
pit12i+1(( o Tig1, @241, ), ) = (0 L T COS(§ 2t -1+ F)H—
- 1 - 1 . 1
Taasin(G - 2t = 1 5)), o s cos( - 21— o = 6)) + e sin(5 - 21— 5 = 1), ).
(5.1.2)
The composition of all the p;y1,2i41’s defines a continuous homotopy
1
Podd : R x I — R, ((z1, 22,23, ),t) = pit1,2i+1((w1, 02,23, +),t) for t € [1 — 2T 1- 5] (5.1.3)

which moves all the odd-indexed vectors forwards. One needs to do infinite many rotations in this process,
but since all the vector spaces are of finite dimensions, so for ¢ big enough, ;41 = x2;41 = 0. Therefore
Pit+1,2i+1 = id, as i > 0. In particular, after finitely many rotations, p;(V7) is mapped into V;. One can
define a similar function p; 2; to exchanges x; and x9; at each step and fix other vectors, therefore pa(V2)
is sent to V5. So this proves that K is a I'-space. O

Let X be well pointed in the sense that the inclusion from the base point zg < X is a cofibration. The
extended I'-space K has the following form:

K(X)=(]] K(n) xs, X")/ ~

where

(V17"';‘/i7"';Vn;xla"';I’L';"'vxn)N(‘/l;"'7‘/’i;"';Vn;xla"'wfh"'vxn); lfI’L:IOa
and
(...,‘/i’...,‘/j,...;...7xi7...7xj,...)r\;(...7‘/i®‘/j...7‘/]-7...;...,I',L-,...7$j7...), lfl‘l:z]

As usual, we write an equivalence class £ = [V4,-- , V2, -+ 2] € K(X) as £ = X;Via,.

Segal ([Se3]) described this model and proved that the functor K converts cofibrations into quasifibrations.
In the case X = S°,

K(S%) = [] BO(m) = [ Grm(R>) = Gr(R™).

m>0
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Define the m-th filtration of K(X) to be

Kn(X) = { S Ve € K(X) | SdimV; <m }

We now assume given £ = [Vq,--+ , V521, -+, 2] € Ky (X) with Y00, dimV; = ¢ < m — 1. There is a
natural inclusion

tm—1: Km—1(X) = Kin(X),E = &+ (Vig1, 20)

with some V,.y1 such that V,..; is the orthogonal complement of V4 @ --- @ V,. in R™, where m is the
smallest k with V; @ --- @V, C R,

Define K,,(n) :={(Vi,---,V,) € K(n)|Y_,dimV; < m}.
Lemma 5.1.2. Let X be well pointed, then t,,—1 : K;,,—1(X) — K,,(X) is a cofibration.
Proof. Let o4 the natural inclusion

Oq: X X" (g, ) (2, L Lg—1,%0, Tqy* " s Ln—1)-
So we have a push out diagrams with X"~ = UZ;OIU(IX”A:

Km(n) X5, O'Xn_l E—— m—l(X) = Hn Km_l(n) in X"/ ~

|

Km(n) xg, X" ———— Kn(X) =1, Km(n) x5, X"/ ~

Since X is well pointed and the left inclusion in this diagram is a cofibration, so is the right map, because
push out preserves cofibrations. O

Remark 5.1.3. There is a natural map
K(X) — SP*(X) : XV,z; — 3(dim V;)z;. (5.1.4)
It induces the Hurewicz map 7. K (X) — 7, SP*(X).

A theorem of Segal asserts that

Theorem 5.1.4. ([Se3]) If X is connected, then , (K (X)) 2 ko, (X). O

Here ko, is the connective K-homology theory associated to periodic real K-theory KO,. The following is
a table of the Q-spectrum KO, where BO, BSp are the classifying spaces of the orthogonal group O and
the sympletic group Sp. KO fulfills Bott periodicity: KO,, = KO,,4s.

gmods| o | 1 | 2 | 3 | 4 | 5 | 6 | 7
KO, |BOxZ | Q®*BSp | 2BSp | @BSp | BSpxZ | @*BO | Q*BO | @BO

By definition,
KO' (X) = [X, BO x7Z] = KO(X),
KO~ %(X) = KO(2X) = [£9X, KO = [X, Q7KOo] = [X,KO_,].
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The spectrum ko is connective means there is a natural transformation ko, — KO, such that ko, (pt) —
KO, (pt) is an isomorphism for ¢ > 0, and kog(X) = 0 for all X when ¢ < 0. More precisely, the g-th
space in the spectrum ko is the following

K < 0;
kOq:{ Oq q_07

KO, <¢> ¢>0.

KO, < ¢ > is the (¢ — 1)-fold connective cover of KOy, that is

] 0 1 < q;
mi(KOg < g¢>) = { w(KO,) i>q.

However KO, is fully determined by ko, because KO, (X) is the direct limit of the sequence kog(X) —
kog+8(X) — kog416(X) — - -+, here the maps are Bott periodicity. In the case X = pt, we have
— ko (pt) —— kog48(pt) —— kog16(pt) —— -

q<0 =

q+82>0 ml

~

0 0 KOg+s(pt) —=KOg416(pt) — -+~

Let X be a connected space, we recall how to get the connective cover of X via the Postnikov towers.
Denote Ky = K(ms(X), s), we have a tower of the form

X X X3 X4
lfl lfz lfs lle
K K> K3 Ky

fs is a map inducing an isomorphism in the bottom homotopy group. X4 is the fiber of fs, and X4
is the s-th connective cover of X.

Take BO for example. We have two coverings Z/2 — SO — O and Z/2 — Spin — SO. Note that
m1(SO(k)) = Z/2,k > 3 and Spin(k) is simply connected for k¥ > 3. So Spin is the universal cover
of SO, which implies that B Spin is the 2-connective cover of BSO. We can identify B Spin with the
total space of the fibration over B SO induced from the path-loop fibration over K(Z/2,2) via the map
f:BSO — K(Z/2,2) realizing we € H?(B SO;Z/2), the second Stiefel-Whitney class.

K(Z/2,1) —== QK(Z,/2,2)

| |

BSpin —— PK(Z/2,2)

o,

BSO ——— K(Z/2,2)

We obtain an interesting tower of fibrations

BO<———BSO=BO<2><—BSpin=BO0<4><—B0O<8>

l ] |

K(Z/2,1) = RP® K(Z/2,2) K(Z,4)
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Here f’ realizes p; € H*(B Spin; Z), the first Pontrjagin class.

This tower characterizes different group structures (O, SO, Spin) on manifolds, hence it gives a correspond-
ing Thom spectra MO < 8 > — MSpin — MSO — MO.

The significance of Theorem 5.1.4. and the description of ko in terms of labeled configurations is that it
yields an obvious Hurewicz homomorphism between connective K-theory and singular homology theory
by the map (5.1.1). Passing to homotopy groups of this map yields a map

ko, (X) — H.(X;Z).

5.2 The Sheaf of Parameterized Embeddings

5.2.1 Topology on the Sheaf B;(—;Y)

The flavor of the topology defined here is due to Galatius [Ga] and Randal-Williams [RW] presented in
the cases of graphs and manifolds with tangential structures. We applied their ideas and generalized it to
the case of manifolds with labels.

Let M be an n-dimensional manifold (possibly with boundary), and Y a connected space with base point
x. We define a class F; of manifolds F' which are smooth d-dimensional manifolds without boundary
(not necessarily compact or connected). Note that the dimension n is arbitrarily large and n > d. Let
Emb(F, M) be the space of all smooth embeddings € : F' < M of a manifold F' € F; into M with closed
image in M. And €(F) needs to be disjoint from OM if OM # (.

We then define a sheaf of sets of equivalence classes on M by setting for any open U C M,

Ba(U;Y) := ( || BEmb(F,U) xpig(r) Map(F,Y))/ ~ (5.2.1)
FeFq

Denote at moment elements of By(U;Y) by (¢, F, ) with € : F — U an embedding and ¢ : F — Y
continuous. We say (e, F, ) is equivalent to (¢/, F',¢'), if F = F'UF", p(F") = % and there is a

commutative diagram:

U<<OF _®. Y

U @i/ L> Y
Denote by £ = [¢, F, ] the equivalence class of (¢, F, ¢).
Let V C U be open subsets of M. There exists a restriction map rest : B4(U;Y) — By(V;Y) that we
shall explain later in Lemma 5.2.8.. We wish to assign a topology to the sheaf making these restriction
maps continuous. Throughout this section we will use dashed arrows for partially defined maps. That is,

the notation f : X --» Y means that f is a function f : U — Y for some subset U C X. The following
notion of morphisms between elements of By(U;Y") is important for defining the topology on B4(U;Y).
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Definition 5.2.1. For £ = [¢, F\, @], &' = [¢/, F', ¢'] € B4(U;Y), a morphism is a triple
A=(L,L',D):§--¢

where

(i) L C F is an open subset that is the interior of its compact closure L in F, where F is the minimal
representative, i.e. no component has the constant trivial label. And L’ similarly for F”.

(#i) D : L — L’ is a smooth embedding.
Definition 5.2.2. Given a § = [e, F, ¢|, we say a quintuple a = (K, L, W, N, Q) is &-allowable if

i) K is a compact subset of U.
i1) L C F is as above, ¢(F)N K C ¢(L).

(

(

(#i7) W C Emb(L,U) is a neighborhood of €|, in the strong C*°-topology.
(iv) N C Map(L,Y) is a neighborhood of ¢|;, in the compact-open topology.
(

v) @ C Y is a neighborhood of the base point .

Definition 5.2.3. For a £-allowable quintuple o, we say a morphism A = (L, L/, D) is a-small if
() {(F)NK C (L),

(i) L Lo <y s i W

i) L2 9% v isin N

(iv) ¢'(L'\D(L)) € Q.

Definition 5.2.4. Given a £-allowable a, define a subset N, (§) C B4(U;Y) by
Ny (€)= { &=, F' ¢ € By(U;Y) ‘ there exists an o — small morphism A : £ --» ¢’ } .

We use the collection

N(§) = { No(€) ‘ a is € — allowable }
to generate the topology of By(U;Y).

Lemma 5.2.5. For a fixed £ = [¢, F, ¢|, the collection N'(£) forms a neighborhood basis at &.

Proof. We shall show the 3 axioms a neighborhood basis needs to satisfy.

1) Note that & € N, (&) because (L, L,id) is a-small for all a.

2) Forany a = (K, L,W,N,Q)and 8 = (K,L,W,N,Q),let N' = {(¢' : L' = Y) e NNN| ¢/ (L'\D(L)) C
QNQtand N'={(¢': L' = Y) e NNN| ¢'(L'\D(L)) CQNQ}. Writey=(KUK,LUL,WNW,N'N
N, QN Q). We claim that N, (£) C N, (§) N N3(€). Assume given any &' = [¢/, F/, '] € N, (), in other
words (LN L, L', D) : € —» € is y-small. That is, ¢(F')N (K UK) C €(L/), LUL & L' % U is in
WWw, LuL & 1 5 Yisin NAN, o (\D(LUL)) € QN Q. So it implies that ¢(F))N K C ¢(L'),
Lo LUl S vismw. Lo Lul &1 2 yisin N, J(I\D(L)) C Q, thus € € Na(£).
Similarly we can show & € Ng(&). So N (€) € Na(§) NN3(8).
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3) Let & € N,(£). Then this consists of the following data: D : L < L’ is an embedding, ¢(F) N K C
e(L),e(FYNK C (L), ¢ (L/\D(L)) C Q. So D induces a continuous map

D* : Emb(L',U) x Map(L',Y) — Emb(L,U) x Map(L,Y)

’
€ [

ey o g2yl pdyy)

The map D* sends (€¢/|1/,¢|1/) to an element which lies in W x N. Thus W’ x N’ := D* (W x N) is
an open neighborhood of (¢'|1/, ¢'|L/).

Denote by W’ := {(¢ : L' — U) € W/|(I'\D(L)) € W} € W' and N' := {(¢ : L' — Y) €
N'|(L"\D(L)) € Q} € N".

Let o/ = (K,L',W',N',Q) and & = [¢",F",¢"] € Nw(£'), so we get D' : L' < L” is an embedding,
€'(F"YNK C€¢'(L"). Cousider the composite

(L,L",D'oD): € --»¢".

The pair

e\

D D’ D D’ Lp”‘LN
L=L <L U, LI SL' "5 Y
| ——
ew’ en’

is in the image of W x N’ under D*, so in W x N and ¢"(L"\D' o D(L)) C Q.

Thus the composite morphism (L, L”, D’ o D) is a-small, so £” € N, (€). In particular, if we take &' = ¢,
it follows that
Na’(é) - Na(&)

is a subneighborhood of £&. Moreover, for any £’ € N/ (€), we claim Ny (§) € N(¢”). Take an arbitrary
€ =1[6F, 3 € No(€), we need to show that A : & --» £ is o/-small. Since £ € No (), so we have
EF)NK Cé&L), L — L — Uisin W' Since & € No(€), s0 L — L" — U is also in W’. Tt implies
that L” < L — U is in W’. Similarly we have L” < L — Y is in N’ and @(L\D(L")) C Q. Thus
No (€) € N(€"). Hence the result follows. O

Example 5.2.6. This topology is easily understood in the case d = 0. In chapter 4 we explained the
relative configuration space C(M, My;Y') with labels in Y. Let V. C U C M be open subsets, we claim
that Bo(U;Y) = C(M, M\U;Y) and the diagram is commutative (The map rest will be defined below in
Lemma 5.2.8.):

Bo(U;Y) — = By(V;Y)

P

C(M, M\U;Y) —= C(M, M\V;Y).

Proof of the claim. Given an arbitrary £ = [21,22, * ,2n; Y1, Y2, ,Yn] € C(M,M\U;Y). The map
f:Bo(U;Y) = C(M,M\U;Y) : £ — £ as a map of sets is an isomorphism. We assume it is a minimal
representative, which means there is no z; € M\U and no y; = *. Recall that a neighborhood basis at £
was indexed by a natural number k and p = (Wh,--- , W, Wo; N1, -+, Ny, Np) such that W; N W; = 0,
where W; C M is a neighborhood of z;, Wy C M is a neighborhood of M\U, N; C Y is a neighborhood
of y; and Ny C Y is a neighborhood of the base point .
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Write 2/ = (21, , 20,5 20 ) ¥ = Wl W Yhgn) - Set W u(€) ==

(z';y') € C™HR(M) x Y™tk | either 2/ € Wy x ---W,, x M* y/ € Ny x N,, x N§;
OI‘ZIEWlX"'WnXWO,y/EleNnXYk '

Then the family {Wj, ,(€)} is a neighborhood basis at £&. Let K C M\W, be a compact subset of U
containing z1, 292, ,2,. Take L = n,e € Emb(L, M) is the map assigning each i to z;. Actually we
can identify e with (z1,--,2,) and set W = Wy x --- x W,, N = Ny x --- X N,,,Q = Ny. Denote
a = (K,L,W,N,Q), then f(Ny(&)) C Wi,(§). Tt follows that f is continuous. Vice versa, given a
neighborhood N, (§) of € € Bo(U;Y) with o = (K,L,W,N,Q). Write L = n, then W C Emb(n,U)
is a neighborhood of €|,,. That is, W is a neighborhood of (z1,---,2,) € C™(U) where z; = €(i). So
there exists a neighborhood Wy X -+ x W,, € W of (21, -+ ,2,) such that W; is a neighborhood of
z;. By choosing each W; small enough, we can assume that W; N W, = (). Similarly, N C Map(n,Y)
is a neighborhood of ¢|,. That is, N is a neighborhood of (y1,---,y,) € Y™ where y; = p(i). So
there exists a neighborhood Ny x --- x N, C N of (y1, -+ ,yn). Let Wy = M\K, Ny = Q and write
=Wy, Wy, Wo; Nq,---,Np, No), then W, () is a neighborhood of § in C(M, M\U;Y'). Moreover
T W 1(€)) C No(€),which implies that f~! is continuous. Thus the homeomorphism follows. The
commutativity of the diagram is left to the reader. O

Example 5.2.7. The base point in B4(U;Y) is represented by
=020 Y] =[U—F — 4,
where * is the base point in Y and F” is arbitrarily chosen. We discuss this example which will illustrate

the role of the compact set K in its neighborhood basis.

Any morphism (L, L', D) : [¢, F, ¢] --+ [eg, 0, pop] must have L = L’ = () because L' C@and D: L — L' is
a smooth embedding. Then W = (), N = §). A neighborhood of &y is indexed by a compact set K. And
the morphism (L, L', D) is K-small if and only if ¢(F) N K = (. That is,

Nk (&) = {[¢, F, ]|[¢, F, ¢] is the minimal representative and ¢(F) N K = 0}.
In particular
e If X is a topological space and a map f : X — By(U;Y) is continuous at a point x € X with

f(z) = & if and only if for all compact subsets K C U there exists a neighborhood H C X of z
such that e(F) N K = () for all y € H, where f(y) = [¢, F, ¢] is the minimal representative.

o If (& )nen is a sequence of elements of By(U;Y) with &, = [en, Fn, ¢n], then &, — & if and only if

for all compact subsets K C U, there exists Ny € N such that €,(F,) N K = ) for all n > Ny.

Lemma 5.2.8. Let V C U C M be open subsets. Then the restriction map

rest : B4(U;Y) — By(V;Y) (5.2.2)
[e, F, o] — [e], e L(e(F)NV), ¢l (5.2.3)

is continuous (For reasons of brevity, we write €| for the map e restricted on e~ *(e(F), that is €le=1(e(r)nvy
e Ye(F)NV) — V. And similarly for ¢|).

Proof. Given an arbitrary £ = [, F, o] € B4(U;Y), denote its image [e|,e 2 (e(F) N'V), p|] by rest(€). Let
Ny (rest(€)) be an open neighborhood of rest(§) with a = (K, L, W, N, Q). It consists of the following
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data: K C V is compact, L C e *(e(F)NV) is an open subset, (e(F)NV)NK C (L), W C Emb(L,V) is
a neighborhood of €|, N C Map(L,Y) is a neighborhood of ¢|r,, and @ is a neighborhood of *. Choose
a metric on U, let § := dist(e(L),U\V) > 0. There is a neighborhood W of €|z, in Emb(L, U) such that

— 1
eeW = e(z) —elx) [|< 55, for all x € L.

then it follows that e(L) C V.
So we have a continuous map 6 : W — Emb(L,V),e + e. Denote by W’ := §~1(W), it is an open
neighborhood of €|, in Emb(L,U).

Set o/ = (K,L,W' /N,Q), and take an arbitrary &' = [¢/, F', ¢'] € Nu (§). There exists the following data

)

(i) D: L — L' C F’is an embedding,

(i) €(F)N K C €(L),

(#i1) L Sy f—/‘> U is in W, in particular ¢ o D(L) C V
constituting an o’-small morphism A = (L, L', D) : £ --» £’. Thus we obtain € (L") C €/(F) NV, which
implies that L' C ¢~ 1(¢(F)N V). And L& I/ &V is in W, /(I\D(L)) € Q.
This gives an a-small morphism in By(V;Y)

(L,L', D) : rest(€') ~— rest(¢),

which implies rest sends Ny (§) into N, (rest(€)). O

The sheaf property of By(—;Y) means that the continuity of a map f: X — By(U;Y) is local in X x U
in the following sense. Let U, be a cover of U, and let T'= [[, Uy and T' = ]_[Oq,éﬁ Ua NUg. There are
two maps T’ — T given by inclusion into the first and second terms of each intersection

T/L>T
-
T——U

and U is the pushout of this diagram. Applying the sheaf B;(—;Y) we get two restriction maps
By(T;Y) — B4(T’;Y) and a pullback diagram

Bq(U;Y) — Ba(T;Y)

-k

l lZI
%
12

Ba(T;Y) — Bq(T";Y).

In this diagram all the maps involved are restrictions and so are continuous.

Thus if we have a map f : X — By(U;Y) such that for any point u € U there is a neighborhood U, CU

such that X % B4(U;Y) — B4(U,;Y) is continuous, then taking {U,} as the cover we have a continuous
map from X to the diagram By(T;Y) — By(T’;Y) and so a continuous map to the pullback. This map
must be the original f, thus f is continuous. In other words, f is continuous if for each z € X and u € U
there is a neighborhood V,, x U, C X x U such that the composition

Ve - X— o By(U; Y) "% By(U,: V)
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is continuous. In particular, U — Map(X, B4(U;Y")) is a sheaf for every space X.

The sheaf By(—;Y) is an example of an equivariant, quasi-continuous sheaf explained in the Appendix A.
This means that Bg(—;Y") is continuously functorial with respect to embeddings (not just inclusions) of
open subsets of M.

Theorem 5.2.9. Let V' C U be open subsets of M and Emb(V,U) the space of embeddings of V' into U
with weak C'*°-topology, then the action map

fv :Emb(V,U) x B4(U;Y) — Ba(V;Y) (5.2.4)
(e:V—=Ule,Fp) — [etoel,e  (e(F)ne(V)),¢l] (5.2.5)

is continuous.

Proof. We only need to show the continuity of fy being local in V' x Emb(V,U) x By4(U;Y’). The proof
is almost the same as in Theorem 2.4.5. of [RW].

Choose a point (z € Vie : V < U, ¢, F, ¢]) and a neighborhood V! of x that is a coordinate patch, and
that we shall identify V/ = R™. Tt has a proper subneighborhood V, C V/ such that V, C V/. Thus
e(Vy) C e(Ve) Ce(V)) and e(V,,) is compact because V. is closed and bounded.

Define U’ := e(V)) =2 R", K’ := V, = D" which is the closed disk in R®. There exists an open set
M(K’,U’) in the weak topology consisting of smooth maps sending the compact K’ into the open U’.
M(K',U’) is an open neighborhood of e. For any ¢ € M(K',U"), (V) C ¢(K') Cc U’'. So M(K',U’) C
Emb(V,,U’). The following diagram commutes.

MK, U") x Ba(U:Y) — = By(V;Y)

\L g \L rest
v

Emb(V,,U’) x B4(U";Y) ——= By4(V,;Y)

The horizontal maps fx+, fy, are actions maps as in (5.2.4). And g is induced by the inclusion of M (K, U’)
and the restriction. Then fx is continuous if and only if rest ofx is continuous for any x € V| thus if
and only if fy, o g is continuous. Since restrictions are continuous by Lemma 5.2.6., the vertical maps are
continuous. Thus fx will be continuous if fy, is continuous for any x € V. Therefore we reduce to the
case where U and V are diffeomorphic to R”.

Let (e,€) € Emb(V,U)x By(U;Y) with &€ = [¢, F, ¢|. Its image is fv (e, &) = [e"toe|, e L(e(F)Ne(V)), ¢|] €
Ba(V;Y). Let Na(fv(e,§)) be a neighborhood of fy (e, &) with f = (K, L,W,N,Q). This means the
following data is given:

(i) K CV is compact;

(i) L Cel(e(F)ne(V)) C F is an open subset that is the interior of its compact closure
L of e Y(e(F)Nne(V));

(iii) e He(F)Ne(V)NK Ce te(L);

(iv) W C Emb(L,V);

(v) N CMap(L,Y);

(vi) Q is a neighborhood of .
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The standard metric on R" gives a metric on U. Use e to determine a metric on V such that e is an isometry.
Choose a compact ball C C V such that K Ue ! oe(L) C C and dist(K Ue o e(L), V\C) =: a; > 0.

It follows that
dist(e(K Ue (e(L))),U\e(C)) = a1 > 0.

Soe He(F)Ne(V))NK C e Y(e(L)) CV is a compact subset of an open set.
Define

K*9:={veV| 3k € K, such that ||v — k|| < 6} D K, it is an open neighborhood of K,
L7 :={lC e e(F)ne(V))[for any z € e L (e(F)Ne(V)\L, ||l — || > 6} C L, a closed subset of L.

Since L9 is a compact subset of an open set L, there exists as > 0 such that if § < a, then
e He(F)ne(V)N KT Ce He(L70)).

Let @ = min(ay, o), then

W=

e(KT3%) Ne(F) = e(KT35% Ne  Ye(F) Ne(V))) C e(L75%).
Take an open neighborhood N’ C Emb(V,U) of e such that for any ¢ € N,

(i) $(K) C e(K)*5* C e(C),

(ii) e(C) 5% C $(C) C e(C) 5.

Let W; be a strong neighborhood of € in Emb(L, U) such that

1
¢ e Wi = [le() = )] < 3a

Then ¢/ (L) C e(C)~ 3% C e(C)~3°.

For ¢ € N' and ¢’ € Wy, note that ¢/(L) C e(C)~3% C ¢(V). Since e(C)~3* = ¢(C~3%) C U a compact
submanifold of U, we can apply Lemma 2.4.4. in [RW] to obtain the inverse of ¢ over e(C’)*%O‘. So the
map I : N’ — Emb(e(C) ™3, V), ¢ — ¢|e(0)*%"‘ defined in Lemma 2.4.4. of [RW] is continuous.

Now consider the composite

comp : Wi x N2 Wy x Emb(e(C)™5%,V) > Emb(L, V), (5.2.6)

which is a composition of continuous maps so continuous.

Denote W’ x W := comp™ " (W) € Wy x N’. Let ' = (e(C), L, W', N, Q), we claim that W x N () is

3

sent under the action map fy into Ng(fv (e, €)).

Let ¢ € W and ¢ = [¢/, F', ¢'] € Nz (€), then we have an embedding L o C F’ such that
e o d(F)NC Celod (L),
L2 0 Ui w c Wy C Emb(L,U).

In particular ¢'(L") C ¢(V).

Now consider - , .
LD D) L o7 (L) =V,
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which is obtained by applying comp in (5.2.2) to (€' 0D, ¢) € W’ x W. And the map comp sends (¢ o D, ¢)
into W.
KEN¢™H (' (F) = ¢~ (oK) NE(F) S o (e(C)Ne(F)) S ¢~ (e (F).

Denote fy(¢,&") = [~ Lo €|, (' (F') N@(V)),¢'|]. Tt follows that (L, L', D) is a $-small morphism in
By (V;Y)

fv(e,&) - fv(9,€),
which finishes the proof. O

Lemma 5.2.10. If h: Y x I — Y is a homotopy, then the induced map
H:By(U;Y)xI — ByU;Y)
([e. Foolit) = e, F ho (o x{t})]

is continuous. Therefore By(U;Y) is homotopy invariant of Y.

Proof. Let Nyle, F,ho (¢ x {t})] be an open neighborhood of [¢, F, ho (¢ x {t})] with a = (K, L, W, N, Q).
Thus K C U is compact, L C F is an open subset, e(F) N K C ¢(L), W C Emb(L, U) is a neighborhood
of €], N C Map(L,Y) is a neighborhood of ho (¢ x {t}). Let K’ be a compact subset of L, and let O’
be an open subset of Y, such that ho (¢ x {t})(K’) C O’. There is an open set M(K’, O’) consisting of
continuous maps in N sending the compact set K’ into the open set O'. So ho(px {t}) € M(K’,0’) C N.
Since h is continuous, there exists an open subset O’ x I C Y x I, such that h(O’ x I) € O'. Then for
any (¢/,t') € M(K',0') x I, we have

K/CLﬁYx{t/}tixI_h>YDo/-

Thus ho (¢ x {t'}) € N.

Let 8 = (K, L, W, M(K',0),Q), then Nj[e, F, 0] x I is sent under H into Ny e, F, ho (¢ x {t})]. Therefore
H is continuous. O

The topology we defined on By(U;Y) is notationally complex. If we consider the space Y, =Y U+, the
disjoint union of a space Y and a discrete base point, the topology on By(U;Y,) in Definition 5.2.1. can
be simplified by @ = {+} and the map d : L — L’ is a diffeomorphism. One can ignore the effect of
Q. Since there are no restrictions of the connectivity of Y, all the results in this section also work for
By(M;Y,). We shall describe the homotopy type of By(M;Y,) in section 5.2.3.

Lemma 5.2.11. If Y is connected, then By(R™;Y,) is path connected.

Proof. Let £ = [e, F,¢| € By(U;Y,) be a given minimal representative. We are going to construct an

explicit path from ¢ to the base point & = [U <> § % Y.

Choose a point p € R™\e(F') and associate the label + to p. Let 6; : R™ — R™, ¢ € [0, 1] be the map given
by 0:(x) = (1 —t)x + tp. Then 6; is a diffeomorphism for ¢ < 1 and 6 (x) = p for all z. We can identify
[e, F, @] with [inc,e(F),p oe 1]. That is, regard ¢(F) as a submanifold of R” and the embeddings will
always be inclusions. Let Fy = 6; (e(F)) and ¢; be the composite ¢y : F} N e(F) woe) Y. This defines
a map t — [inc, Fy, p¢] € Bg(R™;Y,). By Theorem 5.2.8. this map is continuous on [0,1). Continuity at
1 can be seen as follows. We need to use the neighborhood of £y as explained in Example 5.2.6.. For a
given compact K C R™, choose § > 0 such that K C Bs-1(p), then F;, N K ={ for all t > 1 — 4. O
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5.2.2 Section Space Secty(M;Y,)

Let A be an m—dimensional real vector space. Define Vi (A) (1 < k < m) to be the Stiefel manifold of
k-frames in A, i.e.

Vi(A) := {(v1,--- ,vx) € A¥| vy, -+, v are linearly independent } 2 LinEmb(R*, A).

LinEmb(RF, A) denotes the space of linear embeddings of R* into A with the compact-open topology.
The homeomorphism is given by f +— (f(e1),-- -, f(ex)), where e; is the i-th standard basis vector of R™.
In the case k = m, V,,(A) = Linlsom(R™, A) 2 LinIsom(R™, R™) = GL(R™).

What we did for a single vector space A, can be generalized to an m-dimensional vector bundle A — E 5
B. Define Vi (7)(1 < k < m) to be the space of k-frames in a fibre, i.e.

Vi(m) == { (b;v1,-++ ,v5) € B x E¥ ‘ (v1,--+ ,v) is a k-frame in the fibre 771(b) }

Remark 5.2.12. We obtain a new vector bundle called the frame bundle Vi (7) — B. The total space
Vi(7) can be described as the space of bundle maps of the trivial bundle R¥ into 7, namely Vj(7) =
Emb(R¥, 7).

Example 5.2.13. (i) k = 1, Vi(7) = E\Ep, where Ej is the zero section;

(#3) Vin(m) = Prin(n), the principal bundle of 7 with structure group O(m).

Assume W is an n-dimensional manifold without boundary and containing M. For example, W = M if
M is closed, or W = M U (OM x [0,1)) if M has boundary.

Let Grg(R"*9) be the Grassmannian of d-dimensional vector spaces in R"*9. We are interested in the

orthogonal complement of the tautological bundle Uy ,, — Grg(R™"*?), namely

Ut = {(V,v) € Grg(R") x R™| V L v},

The direct sum Uy, @ Uy, is the trivial bundle Grg(R™"4) x R"*4. Since Ug,, |, restricts over Grg(R"+)

to the direct sum of Uin and a trivial line bundle R!, there is an induced map

Th(Ug,) A S" — Th(Ug 1) (5.2.7)

For a fixed d, the Thom spaces Th(Ujjn) define a spectrum MTOQy, where the n-th space is Th(Ujjn). The
associated infinite loop space is
Q> MTO4 = colim Q" Th(Ug,,),

where the maps in the colimit

are the n-fold loops of the adjoint of (5.2.7). Note that our notation is different from those in [GMTW],
where they denote the Thom spectrum to be MTO(d) and the (n + d)-th space in MTO(d) is Th(Uin).

Let V,,(TW) be the frame bundle of W. Replace the fibre O(n) by Th(Uj:n). We obtain a new bundle
over W, namely

Eq(W) := Vo (TW) X o(m) Th(Ug,,) —— W. (5.2.8)
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The action of O(n) on the new fibre Th(Uj:n) has a fixed point, namely the infinite section so : M —
E4(M) sending w € W to oo in the fibre Th(Uin) over w.

Define Sectq(W, W\ M) to be the space of sections s : W — E4(W) such that s agrees with so, on W\ M.
This section space has the compact-open topology.

Example 5.2.14. Assume W is parallalizable, i.e. TW =2 W x R™. Then V,,(TW) 2 W x O(n) and
E;(W)2W x Th(Uin). Therefore, Sectq(W, W\M) = Map, (W, W\ M; Th(Uin), 00).

Next we want to amplify this construction by a label space Y. Let Y be a connected space. We replace
the fibre of V,,(TW) — W by Th(Ug,,) AY,. The action of O(n) on Y} is trivial. Denote this new bundle
by

Eq(W;Yy) = Vo (TW) Xo(n) (Th(Ug,,) AYy) 5 W. (5.2.9)

Define Sectq(W, W\M;Y,) := Sectq(Eq(W; Y, ), M), space of sections of the fiber bundle E4(W;Y,) —
w.

In the next sections we are mainly focusing on the case that M is open and has no boundary. In this case
W = M. So we shall abbreviate Sectq(W, W\M;Y,) by Sectq(M;Y,).

5.2.3 A Scanning Construction for the Thom Spectrum MTO,

There exists a map
v : Ba(M;Y}) — Sectq(M;Y,).

This map is the so called "scanning map" introduced by G. Segal. It appears in some other forms as well
as in the h-principle construction of Gromov. We indicate the construction of this map:

(i) Assume M has a Riemannian metric. Given & = [e, F,¢] € Bg(M;Y) with M<~2F—25Y  take
an "observer" z € M. Let D(TM,) be the unit disc in the tangent space TM, to M at z. Suppose that
p > 0 is small enough so that for each z € M the exponential map exp, : D(TM.) — B,(z) = {#' :
d(z,2") < p} € M is a diffeomorphism. We "scan" with respect to this chosen family of neighborhoods
B,(z) in the ground manifold M as follows.

(i) Write N = {z € M|B,(z) Ne(F) # (0}, it is a tubular neighborhood of €(F'). Identify N with the
normal bundle v(e(F)) of e(F). If the point z lies in N, it is mapped to the corresponding point in v(e(F)),
denote this point again by z. Let v(z) be the image of z under the bundle projection v : v(e(F)) — e(F).
If z is outside of N, it is mapped to co € Th(Uin).

We first choose a frame ¥ = (vy,--- ,v,) C T(M),. Then define the section v(£) by the formula:
YE(2) = [(v1/p(2), - vn/p(2); (Tyay (e(F)), v (v(2))) Aple™ (v(2))]-

~(§) is continuous, because the exponential map exp is continuous on D(T'(M),). And ~ is continuous as
well, because its adjoint
v By(M;Yy) x M — Eg(M;Y,)

is the Thom-Pontrjagin construction, which is continuous.
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Figure 5.1: scanning

Proposition 5.2.15. Let M be a n-dimensional open manifold (i.e. no component of M is compact)
n > d, then

v : Ba(M;Y}) — Sectq(M;Y,)

is a weak homotopy equivalence.

The rest of this section is dedicated to the proof of Proposition 5.2.15.. First we do not claim any originality
for this proof. The main work has been done in [RW] by Randal-Williams in the case Y = pt and in
[Ga] by Galatius in the case of graph spaces. We applied their ideas and generalized it to an arbitrary
space Y,. We use the h-principle as stated in Appendix A. Namely we need to show B§(M x R+ Y.)is
both Diff (M x R4*1)-invariant and microflexible. That BS(M x R¥+1;Y.) is Diff(M x R4*!) -invariant
is implied by Theorem 5.2.9.. So it remains only to show the sheaf is microflexible. The proof is based on
the following lemmas and propositions.

Lemma 5.2.16. Let U C V be an open subset of V, let X be a smooth k-dimensional manifold and Y} a
topological space with discrete base point +. For a smooth (d + k)-dimensional submanifold ' C X x U,
closed as a subspace, consider the smooth projection 71 : I' — X and a continuous map ¢ : I' — Y,.
Set T'p = I'\¢~!(+) and assume that 71|, is a submersion. Then there is a continuous map f : X —
B4(U;Y4) such that T is the adjoint graph I'y of f, i.e. Ty = {(z,u) € X x Ulu € e¢(F) if f(z) =
[e, F, ¢] the minimal representative}.

Proof. Note that [e, F, ] and [inc, e(F), ¢ o e !] represent the same equivalence class, where inc means
the inclusions and €(F') is a submanifold of U. We shall not distinguish them. Now define

f: X — BuU;Y;})
xr [U;m—(’:AJC%Y_F]

where A, := ;' (2) T C {x} x U. We identify {z} x U with U and regard A, as a submanifold of U.

We need to show that f is continuous. Let an arbitrary (z,u) € I'o € X x U be given, by locality, we
only need to show f is continuous at (z,u) . Since I'y is a manifold and m : I'y — X is a submersion,

o1



there are neighborhoods V,, C X of x and U, C U of u such that
| :ToN (Ve xUy) — V, (5.2.10)

has fibers diffeomorphic to R¢, and it is surjective. We may assume V, is contractible. Like in Lemma
4.2.5. of [RW|, we know that 71| in (5.2.10) is a trivial vector bundle. Choose a bundle diffeomorphism
D:Ton(Vy xUy,) — V, x RY

Consider
inc|

€=[Un < A, NToNU, 2 V4] € Ba(Uu: Yy ),
and let NV, (€) be a neighborhood of ¢ with o = (K, L, W, N). The trivilization D gives a diffeomorphism
ty: A, NToNU, = A, NTyNU,, forall y € V,.
Since L C A, NTy NU, is an open subset, we may restrict ¢, to L and obtain ¢, : L — ¢,(L) — U,.

Therefore we have a continuous map ¢ : V,, — Emb(L, U,,).

Since W C Emb(L, U,) is a neighborhood of inc |, let Wy :=¢t=1(W) C V,.. There is a subneighborhood

le
Wy C V;, of x such that A,Ninc™*(K) C t,(L). For each y € V;,, we also obtain a map L — t,(L) Pl Y,.

Thus we obtain a continuous map s : V, — Map(L, Y}).

Note that N C Map(L,Y,) is an open neighborhood of ¢|7, denote Ny := s~ }(N) C V, and W :=

WinNWaNN;. Soify € W, thent, : L — t,(L) C A,NToNU, and inc(A,) N K C inc(L),inc(A,) NK C
inc(ty (L)), L — t,(L) — U, isin W, L —% t,(L) — Y, is in N. So it implies that

inc | @l

U, — A,N(ToNU,) — Yi] € Nay(§).

which means f(W) C NV, (¢). Thus we have continuity at (z,u). O

We should remind the reader, if space Y has a non-discrete base point, this lemma will not be true. It
might happen that 71| : TNV, x U, — V. is not a vector bundle. The advantage of a discrete base point
+ is that if any point of a component in I" has the trivial label 4, then the entire component must have
the trivial label 4. So we can remove this entire component. The resulting submanifold of I'y can be
described as an adjoint-graph of some function f.

We collect some definitions from [RW].

Definition 5.2.17. For a smooth manifold X, we say a continuous map f : X — By(U;Y}) is smooth
near (x,u) if there are neighborhoods = € V,, C X and v € U,, C U such that the composite

Ve = X L By(U; v, ) =% By(UL; Yy)

has a T' that satisfies the conditions of Lemma 5.2.15: T' is a smooth (k + d)-dimensional manifold,
w1 : I' = X is smooth, I'g — X is a submersion and ¢ : I' — Y is continuous.

For a closed submanifold A C X x U, we say f is smooth near A if it is smooth near each point of A.

Our fundamental problem is to find conditions when one can deform this adjoint-graph and still obtain
an adjoint-graph of a new function.

Let 7: X xU — [0,1] and F; : [0,1] X X x U x Y, — [0,1] x X x U x Y, (t,2,u,y) — (t7(z,u), z,u,y).
If f:100,1] x X — By(U;Y;) is a homotopy, then I'y C [0,1] x X x U x Y;. Let T' := F-1(T'y) C
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[0,1] x X x U x Y;. There exists a map ¢y : I' — Y, induced by f and F;. Because f and F, are

continuous, so is @y.

The following lemma gives a criterion for I'g = F\w?l (+) to be the adjoint-graph I'y_ for some continuous
map fr:[0,1] x X — By(U;Y,).

Lemma 5.2.18. I'g is the adjoint graph I'¢_ for f., if one of the two conditions holds

i) 7 is independent of u, or

ii) f is smooth and Fr|(4)xxxuxy, is transversal to I'y for all ¢.

Proof. In case i), write 7(z,u) = o(z). Define
Fri]0,1] x X —[0,1] x X L By(U;Yy).

where the first map is (¢, z) — (to(x),x). Note for each [e, F, 9] € B4(U;Y,}), we identify F' with ¢(F) as
a submanifold of U and the embedding to be inclusion since F' and e(F) are of the same diffeomorphism
type. Let (¢t,z,u) € T'g and ¢;(t,z,u) =y, so (to(z),z,u,y) € Iy, thus (u,y) € f(to(x),z). It implies
that (u,y) € fr(¢,x), so (t,z,u,y) € I';.. The reverse inclusion holds similarly.

In case ii), by transversality, F-1(I't) = I'¢ is a smooth manifold. T’y can be identified with the core
manifolds of I'y, that is, all the manifolds without the trivial label +. This completely characterizes the
map f. So we can identify I'g with I'y via F;. And I’y — [0,1] x X is also a submersion. I' — Y} is given
by the composition I' = I'y — Y, , thus I'o =Ty, . O

Proposition 5.2.19. Let K C U be compact and P be a polyhedron. Let f:[0,1] x P — B4(U;Y}) be
continuous. Then there exists an € > 0 and a continuous map g : [0,¢] x P — Bg(U;Y,) such that

i) flo,qxp agrees with g on a neighborhood of K. Namely, f = g : [0,(] x P — By(U;Y}) —
BN (K): V7).

ii) g|{0}><P = f|{0}xP;

iii) there exists a compact subset C' C U such that

[0,€] x P —L By(U;Yy) =% By(U\C; YY)
factors through the projection pr: [0,€] x P — P, i.e. the following diagram commutes

{0} x P

prT \

[0, €] x P — By(U3Y;) === Ba(U\C;Y3).

Proof. Choose 7: P x U — [0, 1] with compact support and constant to 1 on a neighborhood P x B of
P x K. Let A CU\K be a closed set such that 7 is locally constant on P x (U\A). Assume B C U\A is
a closed neighborhood of K. By lemma 4.2.8. in [RW], we may assume that f is smooth near P x A and
unchanged near P x B.

Let Fr : [0,1] x PxU xYy — [0,1] x PxU x Yy, (¢,p,u,y) — (¢t7(p,u),p,u,y). The transversality
condition is satisfied on P x A at t = 0, and so it is satisfied for ¢ € [0, €] for some € > 0, as transversality
is an open condition. On P x (U\A), 7 is locally constant, so the first condition of Lemma 5.2.19. is

satisfied. Thus (F;l(l"f)\@;l(—i—)) N[0,e] x Px U x Y, =Ty for continuous f-.
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Choose g = f; : [0,¢] Xx P — By(U;Y,). Part i) is satisfied since 7(p,u) = 1, for all (p,u) € P x B. Tt
follows that F-|[o1]x pxBxy, = id, 50 flj0,qxp and f; agree on B 2 K.

Part ii) is also true, because F;(0,p,u,y) = (0,p,u,y), 50 flioyxp = 9l10yxp-

For part iii), take C' to be such that supp(7) € P x C, then 7|py ¢y = 0. For any u ¢ C, F-(t,p,u,y) =
(0,p,u,y),so ', N([0,e] x P x (U\C) xYy)=[0,€] X'y (0puy) so the factorization is satisfied. O

Microflexibility. Let K/ C K C V be compact subsets of V. A sheaf on a closed set is defined by
B4(K;Yy}) := colimgcy Bg(U; Y, ), the colimit is taken over all open sets containing K, partially ordered
by inclusion.

It suffices to show that for all open sets U D K,U’ D K’ with U’ C U and for all the squares of the form

(0} x P—""~ By(U;Y,)
>

—
—
—
S rest
—
—

0,6] x PC—=[0,1] x P —L= By(U";Yy)

there is an € > 0, and a lifting £ : [0,¢] x P — B4(U; Y, ) extending ho over h|jg qx p-

Since K’ C U’ is compact and h : [0,1] x P — By(U’; Y, ) is continuous, there is an € > 0 and a continuous
map g : [0,€] x P — By(U’; Y, ) satisfying the properties of Proposition 5.2.20.. Let C C U’ be the compact
set given in this proposition. We have the commutative diagram

{0} x P —"% By(U; Yy ) —— Ba(U\C; Yy)

7 |
¢ -
PYT - | \chst
-
~ A

[0,¢] x P— By(U';Yy) == By(U'\C; Yy)

Regard B4(U;Y) as the pull back of By(U';Yy) — Ba(U\C;Y,) «— Ba(U\C;Y,) in the diagram. By
universal property, we obtain a continuous map ¢ : [0,¢] x P — By(U;Y,) and its restriction to U’ is g.
Since g agrees with hlj ¢« p near K’, we can pass to a smaller K’ C U’ c U’ on which they agree. Then
¢ is a lifting extending ho and covering [0, €] x P — Bg(U’;Y}) — Ba(U";Y,).

We are interested in manifolds of the form M x R¥*!. We will see that the homotopy type of Bq(M x
R4+1. Y') is connected to the Thom spectrum MTO,.

Let p: E — M x R%*! be a fiber bundle with a "zero" element in each fiber, so we can define the support
of sections. If a section s : M x R¥t! — E is supported in K x R4+ for some compact K C M, then its
restriction i*(s) : M x {0} — *(F) is supported in K.

| lp

M x {0};1') M x Ri+1

Thus the map Sectq(M X Rd“) “, Sectq(M) is a homotopy equivalence. A homotopy inverse is induced
by the projection to the center.
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Let M be an arbitrary (n — 1)-dimensional manifold, n > d, let BS(M x R¥1;Y,) C By(M x RFL Y, )
consist of those d-dimensional submanifolds such that the projection to R?*! is proper, i.e.

BE xR Y, ) — { (M x RS F 2 Y, ) € Bg(M x RHLY,)

there exists a compact set K C M
such that ¢(F) C K x R+1 '

Let SectG(M x R4+ Y, ) C Secty(M x RI*1;Y,) consist of all the compactly-supported sections, i.e.

Sect§(M x R y,) = { s M — Eq(M x RTTL YY)

s agrees with so, on M\ K for a
compact subset K ¢ M '

Corollary 5.2.20. The scanning map
BS(M x R v,) — Sect§(M x R Y,)
is a weak homotopy equivalence. [

Here we write B5(M x M’;Y}) and Secti(M x M’;Y}) to mean that the compactness condition only
refers to the first variable M. If we take M = R"~!, we have

Corollary 5.2.21. 7 : B{(R" ! xRV, ) — Sectg(R"~! x RV, ) ~ Q"= HTh(Ug,, ) AY, ) is a weak
homotopy equivalence. [

The natural inclusions R”~! < R"™ induce maps

BS(R™! x R¥™ Y, ) — BS(R™ x R4TLY,).

We define the colimit of this sequence to be
B5(R®™1 x RTL Y, ) = 1i£nB;(R”*1 x R v,
By corollary 5.2.21. we obtain
B5(R®™1 x RV, ) ~ Sect§ (R x RITL Y, ) ~ Q®~ ! MTO4 AY,

which is the infinite loop space of the Thom spectrum MTOg4 AYS .

5.3 Splitting of the Functor K

5.3.1 Homotopy Type of the Splitting Space B(Y,)

[GMTW] identifies the homotopy type of the cobodism category for a fixed d. We are interested in
understanding some further properties as d varies. Namely, in our case, the dimension d is not fixed and
can tend to infinity.

We now collect some facts from section 3.1 in [GMTW]. For two vector bundles E; and Es over the same
base space X, let p : S(F2) — X be the bundle projection of the unit sphere bundle. There is a cofiber
sequence
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Apply this to X = Grg(R¥*"), B = Uj:n, Ey = Ug,,. Then the cofiber sequence induces a direct system
of spectra

MTOg — MTO; — --- — MTO4_1 — MTO4 — - -- (5.3.2)
whose direct limit MTO is weakly equivalent to the Thom spectrum MO, because UdJ:'n, = U,,q and the

following diagram is commutative:

Grg(R™+9) — = > Gr, (Rn+d)

| |

Grd(RnerJrl) i> Grn+1(Rn+d+l)

The direct system can be thought of as a filtration of MTO, with filtration quotient the suspension
spectrum ¥(X4BO(d) ). In particular, the maps in the direct system induce an isomorphism, namely
the homotopy groups 7, MTO,4 can be computed by the homotopy groups of MO, the unoriented bordism
ring Q. That is, m, MTO4 = Q9, for x < d.

Recall that the Pontrjagin-Thom construction gives a geometric description of the homotopy groups
7 MTOyq4, which agrees with 7, (2°° MTOy), for n > 0. And 7, MTOy is isomorphic to the group of the
bordism classes of pairs (M, ¢), where M is a closed smooth (n — d)-dimensional manifold, ¢ is a map of
stable vector bundles

¢
VM4>UdL*

|

M —— GTd (Rd+*).

Let E, ={FEy C E1 C ---} be a sequence of topological spaces and E, — B, be a stable vector bundle of
dimension d, i.e. a sequence E,, — B,, of real vector bundles of dimension n+d together with isomorphisms
€n: B, ®R = E, 11|, . The stable normal bundle vy of a closed m-dimensional manifold is an example.

Oun the other hand, the sequence (5.3.2) induces a sequence of infinite loop spaces

Q"I MTOy — Q° I MTO; — -+ — Q¥ I MTOy — Q®° ' MTO441 — - - (5.3.3)

We would like to understand this sequence in the geometric point of view.

An element of Q*°~1MTO, is represented by some loop w : S"~! x R¥*1 — Th(Uz,). Note that
w is homotopic to a map that is transverse to the zero section; denote this loop again by w. And
F? = w1 (Grqg(R"9)) c "1 x R4 is a submanifold of codimension n. So we have the following

commutative diagram

Fic §n—1 x R+ —2— Th(Ug,) oV (5.3.4)
FéxRC S x Ri+2 —— Th(Ugy, ) SVaR.

Therefore we obtain the following geometric stabilization
BS(R™' xRL YY) — B (RT xR YL (5.3.5)

€ ’
Roo-‘rd P Fd ﬁ) Y+ s ROO+d+1 - Fd % Rl ¥ Y+.
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where ¢’ : F x RY — Y (f,t) — o(f).

This stabilization is compatible with its algebraic correspondence. Namely for d > 0, (5.3.4) and (5.3.5)
combined together, we obtain a commutative diagram

BS(R®™! x RFL Y, ) —— BS  (R®7! x RT2,Y,) (5.3.6)

| |

QI MTOyAYy —— QL MTO441 AY,.
Define
B(Y.) i= colim B§R®"! x RH1;Y,),
Sect(Yy) := cogm SectG(R™®~1 x R4*+LY,).

Consequently it follows that there is an induced map B(Y,) — Sect(Y,) ~ Q®°~' MO AYy,

B§(R™"! x R; Y;) B5(R®~1 x R4HL Y, ) I B(YL)
Sect§(R®™1 x R; Y, ) —— - -+ —— Sect$(R¥~! x R4TLY,) ... —colim Sect(Y7)
Q=~1MTOg AYy . Q=1 MTOy AY, co Ll Qoo MO AY.

The levelwise weak equivalences imply that the induced map on colimits is a weak equivalence.

Proposition 5.3.1. B(Y,) ~ Sect(Y,) ~ Q®°~' MO AY,.

5.3.2 Proof of the Main Theorem

Our goal in this section is to define a splitting of the Grassmannian functor K. This asserts that the
functor B we constructed in the last section splits K. The proof may shed light on the understanding of
the splitting problem for arbitrary I'-spaces.

Definition 5.3.2. We call a topological space Z a B-module if there exists a collection of maps
pr : Emb(F,R®) x ZF' — Z
such that

e 1) for any F’, F lie in some Fy and any diffeomorphism s : F' — F’, the diagram

Emb(F,R*) x 2F £~ 7

s*Xs*T /

Emb(F’,R®) x ZF'

commutes.
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e 2) in the case F' = {pt}, the diagram

Emb(pt, R®) x ZPt > 7 |

commutes.

There exists a natural inclusion ¢ : Y3 — B(Y,) by taking F' to be the one-point space {*}, namely

L Y+ — B(Y+)

. (Roo — [+ - Y+>'

0 i x =y

One can see directly ¢ is well-defined and continuous.

Lemma 5.3.3. Let Y be an arbitrary space and Z a B-module. Then any map f : Y, — Z can be
extended to a map f : B(Y,) — Z making the following diagram homotopy commutative.

v, 1 .z (5.3.7)
7
Ve

L .

| i

B(Y;)

Proof. Given [e, F, ] with R°< <O F— >V, Fis defined by f(e, F,¢]) = pr(e, f o). This map is
well-defined because of the first condition in Definition 5.3.2. and therefore also continuous. The second
condition implies the homotopy commutativity. O

Lemma 5.3.4. B(W,) is a B-module.

Proof. Define Eq(W, ) := ([ per, Emb(F,R®~" x RH) X iy Map(F, W) x F)/ ~ .
Two elements

M~ 2. Ww L 2) ~ M<2L0op Zow %
+ +

)

are equivalent, if F = Fy U Fy, p(F2) = + and z = 2’ € F;. One can analogously define a subspace
ES(W4) C Eq(W4) by considering all the embeddings € : F — R>®~! x R such that ¢(F) C K x R4*!
for some compact subset K ¢ R>®~1,

Similar to B(W,.), we denote E(W,) := cobim ES(R~1 x R4 W, ), define the map
C:EWL) = B(Wy),[e, Frp, 2] = [6, F, o).

For the given continuous map 6 : F/ — B(W,.), let F be the pull-back of the diagram

F—=EMWy)

|,k

F—=B(Wy)
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By composing with the evaluation map ev : E(W;) — W4, [e, F, ¢, z] — ©(z), we obtain a continuous
map ¢ : F' — W,. Set Fy := F\¢~'(+). Note that Fy — F’ is a locally trivial fibre bundle, since ¢ in
the right column is so. Thus each component of Fy is a manifold. The embedding is given by

é: £y < R® x R® =5 R®

(67 €F; PF, Z) = (eF/ (f)v GF(Z))

Here the second homeomorphism is

7:R® X R® = R*®, (1,22, ), (Y1,92, ) — (T1,Y1, T2, Y2, " ). (5.3.8)

The restriction gives the morphism

¢| : Fg — W+
(K,EF,QDF,Z) = SDF(Z)

We can now define pp: to be

Emb(F',R®) x Map(F/,B(Wy)) “= B(W,)
(ep : F' = R® | 0:F SBW,) w— [R>S E 2w,

It is well-defined, since if given an « € Diff (F'), write i = (¢, er, oF, ), then

Q
~~
sy

)= (Leroa™lproat a(2)),

which implies that

The composite f o : Y, — B(W,) is homotopic to f. Because for any y € Y, assume we can write
f(y) = [, F,¢] for some € : F < R>. By construction f o (y) = [¢/, F x {0},¢'] with ¢ : F x {0} —
R xR*>® — R*°. Since all the F" are of finite dimensions, we can use the homotopy poqq defined in section
5.1 to rotate € (F x {0}) by an isotopy into €(F), because podq is also smooth. So the triangle (5.3.7) is
homotopy commutative. O

Corollary 5.3.5. B(V,;>, DK (X)) is a B-module. O

We can now state the main theorem of this chapter.

Theorem 5.3.6. There is a weak homotopy equivalence

B(K (X)1) ~B(\/ DeK(X)).
k>0

Proof. For each m, k, recall first the m-th filtration K,,(X) := {&;Viz; € K(X)|2dimV; < m}. Now we
construct the map

Ym : Km(X)y — B(\/ DK (X)),
k=0
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Given £ = Y"1, Viz; € K, (X) 4, we set
Fe= J[ Gre(Vi)x-- x Grg, (), (5.3.9)

(K1, k)

with the disjoint union ranging over all ordered partitions of k of any length » > 1. Note that different
components of F¢r may have different dimensions. We want to thicken those components with dimensions
lower than the maximal one such that all the components of F¢ have the same dimension.

Let
d:= " ma)i )dil(n(Grl“}€1 (Vl) X - X Gry, (Vr))a
Lo dom
Foi= [ Gri (Vi) s x Gy, (V) x RO,
(K1, 5kr)
where
a(kh S 7]gr) = d— dim(GI‘kl (V1) X X Grkr(vr))

d—J] ki x (dimV; — k;).
i=1

This new manifold 1:"5 has only finitely many components. We now fix an embedding

e: [T TI JIGrs@®®)x- - x Gry, (R®) x R — R™.

ko (ki k) L

Define

v (f): R*> - Hkﬁ‘ﬁ - V;cn:ODkK(X)
" E(Wl,"' 7WT7t) «— (le"' aWT;t) = EWZI’L .
Here W; € Gry, (V;) C Gry, (R®), t € RE (k) and we denote the quotient map by
—: Kip(X) » Dy K(X), SWiz; — YW,
Furthermore we have a commutative square

TYm—1

Ky -1(X) 4 ——B(V;Z, DiK (X))
o
Kon(X)s — BV, DLK(X)).
Here ty—1 : Kin—1(X)4+ — K (X)4 has been defined in Section 5.1 .

Thus all v, together induce a map

v:K(X)y = B(\/ DK (X)).
k>0

Notice that we have already defined the inclusion ¢ : K(X); — B(K(X)4+) in Lemma 5.3.3. And
B(\/, DK (X)) being a B-module by Corollary 5.3.7. implies that there exists an extension 7 of 7:

K(X)+ — B(\/kzo DK (X))
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And this 7 also preserves the filtration. We denote the following composite by

it B (X) 1) = BK(X)1) 2 B(\/ DI (X))
k=0

By construction, this composite factors through B(K,,(X);) — B(Vj—, DrK (X)), we will denote this
map by 7, as well.

Next we claim that the following diagram is weakly homotopy commutative (i.e. after applying ., it is

commutative):

Sect(D,, K (X)) Sect(D,, K (X)) (5.3.10)

o

Ym

B(Km (X)) ——B(Vilo DK (X))

-

Ym—1

B(Kpm-1(X)1) —— B(\/} DiK(X))

The map () is the composite B(K,,(X)+) — Sect(K,,(X)+) — Sect(D,, K(X)).

We should emphasize here we actually use the commutative diagram

Sect(Dy K (X)) === Sect(D,, K (X)) (5.3.11)

| |

Sect (K, (X)) — Sect(V o Di K (X))

| !

Sect(Kpm—1(X)4+) — Sect(\V,' DiK (X))

Using Proposition 5.3.1. we replace B(Y}) by Sect(Yy) and study instead the diagram (5.3.11) because
of the commutativity of the square

7y Sect( K (X)) — ms Sect (Vo DK (X)) (5.3.12)

]

'7771* m
7 B(K (X)) 7BV DK (X)),
We shall explain later there exists a splitting map on the top of this square similar to 7,, .

The possible partition (ki,--- , k,) C k fall into two cases:
(i) k» = 0, then 7,,—1 and 7, in (5.3.10) agree on the level m — 1 and m;

(ii) kr # 0, then for any (Wi,---,W,) € Gry, (V1) X -+ x Gry,(V;), by the construction of 5, >°!_; Wiz,
with a, = z¢ is trivial in DK (X), which implies that the lower square is commutative. For the upper
square, given a manifold F which embedds in R®+¢ F < R>*¢ one obtains a section by the scanning.
So we only need to check the commutativity in terms of the sections.

We assume given a compactly supported section s in Sect (K, (X))

s ROT — Th(Uf ) A K (X) 4.
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Then the composition
pryos : RT — Th(Uf ) A Km(X)+ — Th(Ug )

is continuous. And it is homotopic to a map which is transverse to the zero section. Without loss
of generality, we may assume s itself transverse to the zero section BO(d) C Th(Ud%OO). Let F :=
(pry 08)"1(BO(d)), then the projection FF — BO(d) A K (X )+ — Kp(X) is also continuous. This is
because BO(d) is the zero section of Th(Ugz ), it will not tend to the base point oo € Th(UjToo)- This
projection means that each point in F' corresponds to a label £ in K, (X)4.

Define the multiplication

onm t Th(UF ) ATh(UZ ) —  Th(Uata nin)
((V1,v1), (Va,v2)) — (V1@ Va,v1 o)

The family of all o,, ,,» induces a natural map
0 Th(Ugfoo) A Th(Ug o) — Th(Uify i soo0) = Th(Uar0)

The second map is induced by 7: R*® x R*® — R* which was defined in (5.3.8).
Since v(£) = s¢ : R4 Th(Ug o) A Vo DeE(X) is a section, we obtain a map Jp,:

(x,2) ¢ (pry os(x), se(2)) (5.3.13)

Roo+d % Roo-i—d’ _— Th(U(ioo) A Th(UdL’,oo) A \/kZO DkK(X)

lo/\id

Rootard — — 2 U ThUL L ) AV, DK (X)

IR

Then %,,(s) = * for s € Sect(K,,—1(X)+). And 9, makes the top square in (5.3.11) commutative.
The reason is as follows: assume given a section s € Sect(D,, K(z)), we write £ = XV;z; € D, K(X),
then ¥dimV; = m. In order to get a nontrivial element in D, K(X), the only choice of F is F =
Gri, (V1) x -+ x Gr,.(V,.) with k; = dim V;,which is a one-point space.

We should first understand the scanning map for a one-point space. This is essentially the embedding
t: K(X)1 — Sect(K(X)4).
We now identify SV = RY U {oo} and denote by D¥ the unit disc in RY. Then we define for each N a
section determined by £, namely
syt RN — Th(Ugy) AK(X) 2SSV AK(X)
—17'|Z|ZH NE z € DV
oo A, z € RN\DNV.

z [d

In the following diagram, the two vertical maps are the natural inclusions.

3

RN —~ > Th(Ug-y) A K (X) = SN A K(X)

¥ |

RN+ Th(Ug ) A K(X) = SV A K(X)
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The diagram is commutative, and we define ¢(§) = colimy sf\, Now we return to the map Sect(D,, K (X)) —
Sect(D,, K(X)) in (5.3.11). We claim that this map is the identity. Given s € Sect(D,, K (X)), let sy be
the composite of the following maps

(z, 2) (pry os(z),7(£)(2))

RN x R — Th(Ugn) A Th(Ugr o 4) AV sy DeK(X)

~ lo/\id

RN+oo N Th(Ug sosn—a) N Vi1 DK (X)

By construction of Sect(Ky, (X)) — Sect(V-, DpK (X)), the stabilization of sy is the image of s under
Am. Namely on the top 9, (s) = colimsy = s, therefore it is the identity. So the diagram (5.3.11) is
commutative, thus the top square in (5.3.10) is weakly homotopy commutative.

We prove by induction that ¥ is a weak equivalence. Note Ko(X)y = Ko(X) U +, DoK(X) =
Ko(X)/K-1(X) = Ko(X)U +. For m = 1, Ki(X) = D1K(X), the map y1 @ B(Ki(X)4) —
B(DoK (X) A D1 K(X)) is the identity. Namely, given

§:R® — Th(Ud%OO_d) ANK(X)y, 2 — pryos(z) A&
Write £ = (V, z), then dimV <1, F = P(V) = {x} the projective space of a line V, which is a one-point
space, 50 y(€) is the stable map of RN — Th(Uy y) A D1K(X).
Thus 71 (s) is the stabilization of RN — Th(Uz | y_4) A D1K(X), which is s.

Since B represents an infinite loop space of the Thom spectrum, which is a linear functor, so it converts
cofibrations into quasi-fibration, the assertion now follows by induction on m and the 5-lemma. o

Corollary 5.3.7. There is a weak homotopy equivalence

QT MOAK(X) ~Q* "MO A \/ DpK(X).
k>0

Remark 5.3.8. e In the construction of the map 5 : B(K(X)4+) — B(V; 5 DeK (X)), we can see
that the splitting 4 factors through

BK(X)y) = B([ [I JIGrs ®®)x:--xGri, (R®)xR: \/ DeK(X)) — BR™; \/ DK (X)).

k (k1 kr) £ k>0 k>0

Since we do not know the homotopy type of B([I; [, ... x.) LI Gre, (R™) x -+ x Gry, (R>) x
R Voo DK (X)), we replace it instead by B(R™;\/,+o DeK (X)) = B(V > DK (X))), whose
homotopy type is already studied in the last sections.

e This factorization phenomenon is already apparent in the case of configurations, namely in the proof
of the Snaith splitting we saw a factorization of the "power" map (in this case, with a non-discrete
base point it is possible to construct the splitting map).

C(R; O(R; X)) ——= C(UnC™ (R); .oy Di(R™; X)) —= C(R™; /o, Din(R; X).
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Also in this case we replace C'(UJ,,C™(R*°); —) by C(R>°; —) because the homotopy type of C'(R>; —)
is well understood.

e The proof indicates that if A(1) is well-behaved, for example it decomposes into manifolds of finite-
dimensions, the main theorem might be possibly generalized to an arbitrary I'-space A, namely there

is a weak equivalence
B(A(X)+) — B(\/ DiA(X)).

k>0

We shall explain this in the next chapter.
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Chapter 6
Splitting of Segal I'-Spaces

We have seen several examples of splittings of Segal I'-spaces. One might ask if there is a functor which
splits an arbitrary I'-space. From what we have done, one might get some sort of hint how to generalize
these results to an arbitrary one. In this chapter, we will work with arbitrary Segal I'-spaces and give an

answer in general.

6.1 Weight Filtration of A(X)

The configuration space C(M, My; X) has a natural filtration given by the closed subspaces
Cr(M, Mo; X) := (] C*(M) x5, X¥)/ ~ .
k=0

And K (X) has filtration given by

Kn(X) = {XViz; € K(X)|EdimV; < n}.

The filtration of these two examples can be generalized to an arbitrary Segal I'-space A. We construct a
weight filtration of A(X).

We assume that there exists a natural transformation ¢ between two Segal I'-spaces, ¥ : A — N, i.e. for
each n we have maps v, : A(n) — N” such that the following diagrams commutes,

N

A1)r — > Nn,

We call this ¥ the weight transformation. By convention, N° = 0, so A(0) has weight 0. For example in
the case when A = SP, ¢,, =id, and when A = K, ¢,,(V4,---,V,,) = (dim V4, --- ,dim V},).
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Note that all the ,, induce a map ¥,:
A(X) = (I, Aln) xs, X™)/ ~

SP(X):=([I,N(n) xs, X™)/ ~.

We take the inverse images of all the ordered partitions of k under 9., and define a subset of A(n)
consisting of all the elements of weight k,

Ap(n) = 11 O ket kn).

(K1, skn) EN" 0SSk, <k
So A(X) admits a k-th filtration
Ap(X) = ([T A(n) x5, X™)/ ~,
and the filtration quotient are denoted by
Dy (A(X)) = Ap(X)/Ap—1(X).

Take an arbitrary (a;z1, -+ ,z,) € Ar(X), so we have a € Ag(n). In the case k < n, the map ¥, :
Ak (n) — N™ has the form ¥, (a) = (k1,--- , ky). Since each k; > 0 and Xk; < k < n, so some k; must be
0. Assume then 9,,(a) = (kj,,--- ,k;,,0,---,0) with 3 k;, = ¢ < k. The projection to the first k elements
pr:n—kk>j— j,k <7~ 0 gives a commutative diagram

A(n) ——= N~
J{pr* lpr*
A(k) — NF.
Let o’ = pr,(a), then there exists (a;27,--- ,z},) € Ap(X), such that
Ap(n) xx, X" 3 (a;21,--+ ,x,) ~ (524, -, x}) € Ap(k) xx, XF.
This means in the case k < n we can always find a representative (a’;z},--- ,z},) in the same equivalence
class as (a;x1,- -+ , &), such that its length is not greater than its weight.

Before introducing the functor B, it is necessary to first give the sketch of the proof of Proposition 2.3.4.
in Chapter 2.

Proof of Proposition 2.3.4. (1) We denote by p the projection A(X) — A(X/Y), filter the base space
A(X/Y) by Py = Ap(X/Y) as above, and filter the total space A(X) by Qr = p~(Py). Let R be an open
neighborhood deformation retract of Y in X, i.e. r: X — X is a deformation leaving Y invariant and
retracting R into Y. It is clear X —Y can be identified with X/Y —x, so we have A (X —Y) = Ap(X/Y —x).

(2) For each k > 0, let

1, 1<

rn:n+k—omni—
PTy th= {O, > Mn.
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0 j < 0;
pr2:n+k—>k,j»—>{ X j,_ ’

j—mn, j>n.
They induce a homotopy equivalence pry, X pry, : A(n + k) — A(n) x A(k).
The fibre of p : A(X) — AX/Y) at ¢ = (d/;21, - ,2n) € A(X/Y) consists of all the elements
(@321, Tny Tpy1, o, Tugk) € A(n 4+ k) Xz, X"+k for some k > 0 such that pry,(a) = o’ and
Zpt1,  ,Znyk € Y. This fibre can be identified with the set of all (pry,(a);Tpi1, -, Znik) €
A(k) x5, X*, for all k> 0. That is, p~!(c) is homeomorphic to A(Y).
For each £ € Q. — Qr_1 = p ' (Py — Py_1), assume that ¢ is represented by [a; 21, , %4, Yivr1, -, Yn)
for some . Let pr; : m — 4,pry : n — m — t be the projections defined similarly as above. Observe
that the weight of a satisfies that ¢; o pry,(a) = (k1,--- ,k;) and k1 + --- + k; = k. For each k there is a

homeomorphism
T QK — Q-1 — (Pr — Pr—1) X A(Y)
;21 iy Yirr, - s yn] = (Pros(@);zn, - il [Prog(@); yias -+, ynl)-
The inverse of 7 is obtained by taking the homotopy inverse of pry, X pro, : A(n) — A(¢) x A(n — 7).

(3) Take U to be the set consisting of those points in A(X/Y) that have at least one label in R, then
define
U = {la;x1, -+ ,zn] € A,(X/Y)] at least one z; lies in R} C P,

for each k. This is a neighborhood of Py_; in Py, i.e. P,_1 C Uy C P;. Moreover, r induces a retraction
i p H(Ur) — p Y (Py_1) = Qr_1 and a retraction 7, : Uy — Pj_1 which satisfies p o 7, = ry o p.

(4) Let b = [a; 1, ,xpn) € Py with 21,--- ,2,, € X =Y. Then b € Uy, if at least one of the z; is in R.
Consider the restriction of 7 to the fibre:

eep (b)) — p7 (r(b))

we write b = [a; X1, , Tm, Zm41, 5 2n) € Uk such that zq,--+ ;2 € X — R and 241, ,2n, € R—Y.
Let w € p~1(b) be represented by

w = [a*(a’);xlv s Tmy EmAly s 2ns YL, 7ys]
for some s € N, y1,--+ ,ys € Y and a : n — n + s is the natural inclusion.
Tr(w) = [ax(a);r(z1), -+ ,r(21), - ,r(y1), -+ ,7(ys)] sending r(2;) in R to Y. Since 7 is homotopic to

the identity, when restricting to fibres, the induced map is also homotopic to identity. It follows that p is
a quasifibration. [J

6.2 Duality Theorem

Let A be a group complete Segal I'-space (i.e.mpA(1) is an abelian) and M be a compact parallelizable
n-dimensional manifold. Let us assume for now that OM # (. Assume W is an n-dimensional manifold
without boundary and containing M.

Define A(X,Y) := A(X/Y). We have known that h.(X, Xo;A) = 7. (A(X, X)) is a homology theory
for all topological pairs. And recall that the cohomology represented by A is given by h™(X, Xo; A) =
colimy [YF (X, Xo), A(S™HF)]. Tf A represents an (2-spectrum, then h" (X, Xo; A) = [(X, Xq), A(S™)].
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Theorem 6.2.1. Assume A is a group complete Segal I'-space, My C M C W are manifolds of dimension
m, M is compact and W has no boundary, then there is a homotopy equivalence

s: A(M, My) — Sect(W\ My, W\M; A(D™,oD™)).
Thus we have Poincaré duality:

Su t hy(M, Mo; A) 2 h™ P (W\ My, W\M; A).

This is a special case of Satz 4.5 in [B62]. The idea is as follows. Suppose that M has a Riemannian
metric d. If € > 0, we write

Ac(M, M) :={(a; 21, - ,x,) € A(M)| each z; is at least 2¢ away from the boundary My}.

By scanning M\ M, using discs of radius €, s(£) maps x to the base point for z sufficiently near M. This
gives rise to a map A (M, My) — Sect(W\ Moy, W\M; A(D™,9D™)). As € — 0, one obtains in the limit a
map s : A(M, My) — Sect(W\ My, W\M; A(D™, oD™)).

Since A converts cofibrations to quasi-fibrations, h.(X;A) := m.(A(X)) is a homology theory for any
connected X. By Theorem 2 in [McD], we have

A(M, My) = Sect(W\ Mo, W\M; A(D™, OD™)).

In the case W is parallelizable, the diagram is commutative, and we have the isomorphism

7oA (M, My) — 7, Map(W\ My, W\M; A(D™, JD™))

o

(S A (WA\Mo, WAM), A(S™)]

IR

o

h™ (5P A (WA\Mo, WA\M); A)

o

hy (M, Mo; A) ——=—s =2 (W\ My, W\ M; A).

Example 6.2.2.
1K (M) —== 7, Map(M, K(S™)) — [SP A M, K(5™)]

| ;

ko, (M) ko™ P(M)

IR

IR

The left hand side is the connective real K-homology theory, the right hand side is the real connective
K-cohomology theory.

6.3 Splitting Spaces

Consider the addition map p and the projection map p:
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#w:2—-1:0—~0,1—1,2—1;
§:2—-1:0—0,1—1,2+—0.

They induce the following maps p2, = s o A(u)™ o a5, Pon = s, 0 A(p)"™ o s, defined by the

n n
compositions in the diagrams

A(2n) fen A(n) A(2n) ben A(n)
A2) % x A2) 2D A1) x - x A1) AR) % x A2) 2 A1) x - x A1)

For each a € A(n), we define the splitting space of a to be spl(a) := uy,(a) € A(2n) and the projective
splitting space of a to be pspl(a) := pay, spl(a).

In case of A(2) = A(1) x A(1), for example when A is an abelian group, we have the equation

(a1, -+ ,ap)=a € A(n)
] -
((01,67), -+, (b, b)) = b € A(2n)
] -

(B, b)) =V € A(n)

where each a; can be regarded as the "sum" of b} and b}, particularly in most examples b} and b} are
uniquely determined by each other.

Example 6.3.1. Typical examples of this very good case are A = N or K. For A = K, given b =
(VL Vi), (V2 V) € spl(a), then a = u(b) = (V] @ V{',- -V, @ V) and b/ = (V.- , V).

n? n ) n

6.4 Splitting of Segal ['-Spaces

Let B be the functor defined in Chapter 5. Our main theorem in this chapter now goes as follows.

Theorem 6.4.1. Assume A(n) is a manifold for each n and pspl(a) C A(n) is a finite-dimensional
manifold for each a € A(n). Then for any connected space X, B splits the Segal T'-space A, i.e. there is
a weak homotopy equivalence

BAX)y) — \/ B(DLA(X)).

k>0

Proof. As before, we are going to construct the inclusion map ¢ and the "power" map f such that the
following diagram is homotopy commutative:

+—>B \/k oDkA( )

f 7
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First we have the inclusion

L: A(X)+ = B(A(X)4)
(@521, ,xn) +— RY = F={g = AWM.
s L1, ybn 0 P * — (a;xl,'--,xn)

We fix an embedding e : [], A(n) — R>. For each s, we define f; on the s-th filtration A4(X),

fs: Ay(X)4 N B(VZZO DiA(X))
@) e (BT I Vi DA,
e(a) <« a — (a’;m,"',iﬂn)

Here F varies over all the pspl(a) C Ai(n) C A(n) for all n. That is, F has weight k for 0 < k < s.
And (a/;21,- -+ ,xy,) is the image of (a’;z1,- -+ ,xy,) under the quotient Ap(X) — DiA(X). So all the f,
induces a map

fiAX)y —B(\/ DrA(X)).

k=0

To construct f: BA(X); — B(\j—, DiA(X)), we shall apply the similar idea as above to define

Fo t B(AL(X)+) — B(\/ DyAX)).
k=0

Assume given = (R®<<—F'— A (X)) € B(A4(X)). For the given continuous composition fs o ¢ :
F' — Ay(X) = B(Vj_o DrA(X), we let F' be the pull-back of the diagram

F——E(Vi—o DrA(X))

| |

F'——=B(V;—o DrA(X)).

Denote the composite map by ¢ : F' — E(\Vi_, DrA(X)) — Vi_, DrA(X), where the second map is the
evaluation map ev : E(\/;_, DrA(X)) — Vi_o DeA(X), [er, F, oF, 2] — @r(2). Set Fy := F\¢~ (+).
The morphisms are given by
fp) = [ REEREXR® & Fy Vi DrA(X)
) (G(K),EF(Z)) A (KaeFaFa @sz) = <PF(Z)

It is straightforward to check f, is a well-defined map and hence induces the required map f.

Consider the following homotopy commutative diagram

Sect(DpynA(X)) Sect(D, A(X))

]

B(Am(X)4) —12> B(VI™, DyA(X))

| |

.fm—l

B(Am-1(X)+) =BV} DrA(X))
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We claim that each f,, is a homotopy equivalence. When m = 1, the bottom map f; ~ id, since in this
case A;(X) = D1A(X), given

f=R®<—F—L=A1(X)s) € B(A1(X)4)

F o~ F'xR®xD1A(X), we write () = (a; 1, ,x,) € A (X), by construction, F' = pspl(a) C A (n).
For each (a;21,---,2n) € A1(X)4+, we know from the last section that there is an equivalence class
(a';2") € A1(X) of length 1. Therefore F' ~ pspl(a’) = o’ € A;(1) which is contractible, similar as the
proof in the last chapter, it follows that f; ~ id.

It is almost the same argument as in the proof of Theorem 5.3.6., so we skip the rest of the proof. o

Remark 6.4.2. (i) In the construction of the map f: BA(X)+ — B(\,—, DrA(X)), it is clear for each

m > 1, the composite BA,,(X); — BA(X); EA B(V o DeA(X)) factors up to homotopy through the
inclusion

B(\/ DyA(X)) = B(\/ DeA(X)).
k=0 k=0
This is equivalent to say that the composite is null-homotopic,

BA.,(X) — BA(X) L By (7 DRA(X)) — B( (7 DRA(X)).
k=1 k=m+1

(ii) If we denote fj the composite map
FEBAX) . — B(\/ DrA(X)) — BDRA(X),
k=0
where the second map is the projection onto the k-th wedge summand, then the composite BA; (X )4 —

£k
BA(X) N BD,A(X) is homotopic to the natural projection

BAK(X)4+ — B(AR(X)+/Ar-1(X)+) = BDeA(X).

6.5 Homotopy Calculus of Segal I'-Spaces

We generalize Segal I'-space and investigate Goodwillie’s Taylor tower of the generalized I'-spaces A : ' —
Top,. Note we denote its extension also by A : Top, — Top,. And we try to find examples of quadratic
I-functors. Recall that a functor is of degree n if it sends a strongly cocartesian (n+1)-cube to a cartesian
cube, more details see Appendix B.

Lemma 6.5.1. Segal I'-spaces are linear.

Proof. Regard I' as a subcategory of Top, and its objects as discrete spaces. For the original I" space, we
consider first the second cross effect craA,

A(nl V ’I’Lz) — A(’I’Ll)
craA(ny,ng) = thofib 1 !
Aln2)  —  A(0)
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Since A(0) ~ x, we have A(ny V n2) ~ A(ny) X A(ng). It implies that croA ~ %, and analogously
crA ~ %, for kK > 3. So we see that A is linear.

To show its extension A : Top, — Top, is linear corresponds to show that A(X) is of the form Q> (EA X)
for some spectrum E. From Proposition 1.3.4. in Chapter 1 we know that A(X) has the weak homotopy
type of QA(XX), which implies that A(X) ~ Q®A(Z®X) ~ Q> (A(S) A X). O

Note that this results only works for connected X or group complete A. Now we want to generalize Segal’s
notion of I'-spaces by removing from now on the condition A(n) ~ A(1)". Assume only that A is reduced,
namely A(0) ~ x. And assume the generalized I'-space A takes value in the category of spaces which have
the homotopy type of finite CW complexes and the my are groups. Then the following proposition tells
us the relationship between the degree of I'-spaces and that of their extensions generally, i.e. the above
lemma works as well for higher degrees of A.

Proposition 6.5.2. If A is a I'-space of degree k, its extension is also of degree k.

Proof. Assume deg(A) < k, it follows that crpA(nq,--- ,ng) : I'* — Top, is symmetric multi-linear.

In (|Wo]|, Theorem 1.5.), Woolfson proved that if X has the homotopy type of finite CW-complex, A(X) is
homeomorphic to A’(X), where A’(X) is the realization of the simplicial space whose space of k-simplices
is

TT A(So) x Mor(Sp, S1) x - -+ x Mor(Sk-1, Sk) x X**.

S;el’
By ([Wo|, Lemma 1.9.), if X is the simplicial space [k] — X} and A(X) the simplicial space [k] — A(X})
then A(|X]) = |A(X)].

3

Since A lands in the category of spaces with my being groups, A is a m,-Kan functor in the sense of Oats
(|0al, Definition 4.4., Lemma 4.8.), hence cry Ext A ~ Ext®(criA).

It follows that we can calculate the cross effects dimensionwise. By the co-end construction, the extension
of erA(ny, - -+ ,ny) on spaces has the form cryA : Top? — Top,:

(nl,---,nk)GFk
(.Xl,,Xk;)'_)/ CTkA(nl,,’l’Lk)X(X?IXX:k)

niel’ niel
:/ X;;kx..-/ crh(n, - mg) x X,

We first fix (Xo, -+, Xj), and let X; vary, then the n-fold integral can be written as the n-fold iteration
of a 1-fold integral. And since cryA(ng,- -+ ,ng) is multi-linear, in particular it is linear with respect to
n1, by the same trick as lemma 6.5.1., c¢rgA(Xq, -+, Xj) is linear with respect to X7, and analogously
for X;’s. Therefore criA(Xy,- -, X) is also symmetric multi-linear, which implies that the extension A
is of degree k. O
Example 6.5.3. Our motivating example derives from the generalization of configuration spaces. Define
T(0) := {+1,—1}, a single-point space of a pair,
T(1):= H C™(C?(R™)) = H C"(BY;), ordered configuration space of pairs in R,
n

n

T(k) = { (6 &) €T [ &g =0for i#] |.
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One can check this is a Segal I'-space and we claim that T is a polynomial functor of degree 2:

T(’l’Ll \Y ’I’Lz) — T(’l’Ll)
croT(ny,n2) = thofib 1 !
T(nz) — T(0)
is nontrivial, because the total homotopy fiber is equivalent to the configurations of all the pairs such that
the pair does not lie in the same T'(n;),i = 1,2.

crsT(ny, ng, ng) = thofib T(ny V ng V ng) T(ns V ng)
T(nyv n;)/ L T(ns)/
T(ny V ng) T'(n2)
— |
T(n1) 7(0) /

is trivial, since the configuration of pairs in T'(n1VnaVng) lies either in T'(n2Vng), T(n1Vns), T (n1Vnz)

or their common parts, so we see that the 3-cube is a homotopy pullback , which follows that deg(T") < 2,
and so is its extension.

The quadratic functor DoT(X) will have the form
DyT(X) = [[C"(X"? As, ESs,) < QS (X A X AESy, )5, = QFZ%(X A X)us,.

Example 6.5.4. Another example is a generalization of the infinite symmetric product. Let X be a
based connected space, define

Qu(X) := {{(xl,yl)w" (@0, yn)} € USP"(SPQ(X))} [~

{(‘Tlvyl)u e 7($nuyn)} ~ {(‘Tlvyl)u e 7($iuyi)u ce 7(xn7yn)}u if Xi = * O Y; = *.

It is straigtforward to check that Qu(x) = x and Qu(f) : Qu(X) — Qu(Y) is a homotopy equivalence if
f: X — Y isso. And in particular there is an isomorphism Qu(S°) = N which is given by the cardinality
of nonbasepoint elements.

Denote S°V SO = {*,u1,uz}, we then have the resulting map

Qu(S°Vv SY%) = N x N x N, ny(ur,ur) 4+ na(ur, uz) + n3(ug, ug) — (n1,na,n3).

It implies that Qu(X) is not linear, but a quadratic functor.
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Appendix A

Gromov’s h-principle

We will give an introduction and recall some results of Gromov [Gr] which will be necessary for the
understanding of the proof of Proposition 5.2.5.

In [Gr] Section 2.2 Gromov considered a general case, namely the set-theoretic sheaf. For a topological
sheaf, it is understandable that the restriction map induced by inclusions is continuous. For a set-theoretic
sheaf, there are no open sets, but still he can define the notion of quasi-continuous sheaves.

Recall that a sheaf over an n-dimensional manifold M, by definition, assigns a set ¥(U) to each open
subset U C M and a map ¥(:) : U(U) — ¥(U’) to each inclusion ¢ : U’ C U such that the following
axioms are satisfied.

(1) Functoriality. If / : U” C U" and ¢ : U’ C U are two inclusions, then ¥(r0¢/) = ¥(¢/) o U(1).

(2) Locality (Uniqueness). If two elements t; and 15 of ¥ over U are locally equal, then they are equal.
Here the local equality means that there exists a neighborhood U’ C U of every point u € U such that

Yilor = Yalur-
(27) Locality (Existence). If {U;} is an open covering of U, and if we have elements v; € ¥(U;) satisfying
Yilv.nu; = Yjlu,nu; for each i, j, then there exists an element 1) € W(U) such hat ¢|y = 4; for each i.

The axiom (2) and (2’) show that every sheaf ¥ is uniquely defined by ¥(U;) for any base of open subsets
U; C M. Next we can extend ¥ to non-open subsets C' C M. We define U(C) to be the direct limit of
U(U) over all neighborhoods U of C. In particular, one can also define the stalk ¥(v) for all v € M. Then
one can restrict ¥ to a sheaf over C, denoted by ¥|c and define (¥|¢)(D) to be the direct limit of ¥(O)
for all open subsets D C C and for O C M. Thus the sheaf ¥|c has the same stalks over the point ¢ € C
as W.

Definition A.0.5. (Spanier-Whitehead [SpWh], page 336; [Gr], page 36) Let A be any set. By a quasi-
topology on A we mean a rule which, for every topological space P, selects a class of functions P — A, to
be called quasi-continuous in [SpWh], subject to the following formal properties.

(i) If u : P — Ais quasi-continuous and ¢ : ) — P is a continuous map, then the composite pop : Q@ — A

is quasi-continuous. And every constant function P — A is quasi-continuous.

(ii) If a map p : P — A is locally quasi-continuous, then it is quasi-continuous. Locally quasi-continuous
means that for every point in P there exists a neighborhood U C P such that u|y : U — A is quasi-

continuous.
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(iii) Let P be covered by two closed (or two open) subsets P; and P,. If a map p is quasi-continuous
on P; and P;, then it is quasi-continuous on P. Therefore, if P = Ule P; is a covering of P by finitely

many closed (or open) subsets, then a map p: P — A is quasi-continuous if and only if u|p, : P, — A is

quasi-continuous for all i = 1,--- k.

In general, if A has a topology, by assigning the functions P — A to be the ordinary continuous maps,
we obtain a quasi-topology on A. It is a much weaker structure. A map between quasi-topological spaces
a: A — B is called quasi-continuous if « o : P — B is quasi-continuous for all quasi-continuous map

P — A from a topological spaces P.

Definition A.0.6. A set-valued sheaf ¥ on M is called quasi-continuous if every set W(U) for U C M is
endowed with a quasi-topology such that the restriction maps ¥(¢) induced by inclusions ¢ : U C V are
quasi-continuous maps ¥ (V) — ¥ (U).

Let Open(M) be the category of open submanifolds of M with inclusions as morphisms and QTOP be
the category of quasi-topological spaces with quasi-continuous maps as morphisms. Then we can regard a
quasi-continuous sheaf ¥ as a contravariant functor ¥ : Open(M) — QTOP. A homomorphism between
quasi-continuous sheaves over M, say a : & — ¥, is a collection of quasi-continuous maps ay : ®(U) —
U(U) for all open U C M which commute with the restriction maps, that is ay: o ®(:) = ¥(¢) o oy for all
¢:U" C U. Finally, one defines a subsheaf ¥’ C W by given a subset ¥/(U) C ¥(U) for all U C V such
that U’ satisfies (2) and (2’).

The standard definitions of homotopy theory (e.g. the weak homotopy equivalence) obviously generalize
to quasi-topological spaces.

We write Diff (M) for the pseudogroup of diffeomorphisms of M, which is the set A of triples (U, f,U’)
with U an open set of V and f : U — U’ a diffeomorphism. This pseudogroup A satisfies the following
properties:

(i) For every open set U in V, (U,id,U) is in A.

(ii) If (U, f,U’) is in A, then so is (U’, f~1,U).

(iii) If (U, f,U1) and (U’, f',U]) are in A, and the intersection U; N U’ is not empty, then the restricted
composition (f~H(Uy NU"), f' o f) with f'o f: f~H (U, NU’") — f(UyNU’") is in A.

By a Diff(M)-action on the sheaf ¥ we mean there is a family of morphisms {¥,}, where ¥, : ¥(U’') —

U(U). If all ¥ are homeomorphisms, we say U is Diff (M )-invariant, or equivariant. Note that if we take
U to be M itself, then the ordinary diffeomorphism group Diff (M) is a proper subset of Diff (M).

For any topological space P and a topological sheaf U we define a new quasi-continuous sheaf U* on
M x P, which we call the parametric sheaf: its elements are the continuous families of elements of ¥
parametrized by P. To give the definition we only need to specify ¥¥(U x R) for open sets U C M,
R C P. Set UP(U x R) := (¥(U))E, the set of quasi-continuous maps with the following quasi-topology:
amap Q — (¥(U))? is quasi-continuous if and only if the map Q x R — ¥(U) is continuous.

Next we apply this to P = M and restrict the parametric sheaf ¥™ over M x M to the diagonal
A C M x M. The resulting sheaf over A = M is denoted by ¥f. So U associates for each z € U a
germ 1, in the stalk ¥(z). Every element of ¥ corresponds to a unique constant family of elements with
the parameter space M. We obtain an injective homomorphism D : ¥ — W¥ which makes ¥ a subsheaf
D(¥) = ¥ in W
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For example, ¥(U) = ][ Emb(F,U)/Diff(F), where F varies over d-dimensional manifolds without
boundary. This sheaf has a topology defined in [RW]. Note that an element in W#(U) assigns to each
z € U a germ 1, of d-submanifolds in U. That is, 1, is represented by an equivalence class « € ¥(U),
where U is a neighborhood of z. The equivalence relation is as follows. Let U’ be another neighborhood
of z, then an element 3 € ¥(U’) is equivalent to « if there exists a neighborhood U” of z which lies in
U N U’ such that the restriction of a and 5 on U” are the same. For each z, we can choose a specific U,
which is under the exponential map the image of open disc D, U C T,U in the tangent space to z. This
neighborhood U = R"™ depends on the choice of the metric. Then W#(U) can be identified with the sheaf
of sections of certain bundle on U. The fibre over each z € U is the space of germs of submanifolds of R™
at 0, namely ¥(0 € R™). By definition, ¥(0 € R") = Og(l)]liclﬂgnlll(U). Since any e-neighborhood of 0 € R™
can be stretched to all of R™, the restriction map ¥(R"™) - ¥ (0 € R™) is a homotopy equivalence.

If E — X is an n-dimensional vector bundle and if ¥ is a topological sheaf, then there is an associated
fiber bundle WiP(E) — X whose fiber over z is W(E,) where E, is the fiber of 2 in the vector bundle
E — X. So we can apply this construction to the tangent bundle TM — M. Then WH(TM) can be
constructed by letting V,,(T'M) be the frame bundle of M, a principal GL,-bundle. Note that there
is a group homomorphism GL, — Diff(R") into the ordinary group of diffeomorphism and GL,, acts
continuously on ¥(R™) if ¥ is Diff (R™)-invariant. So we can form

U(TM) := V,,(TM) xqr, ¥(R™). (A.0.1)

Since W(R") ~ ¥(0 € R™), W¥(M) can be identified with the space of sections of the bundle WP (T'M)
obtained by applying ¥ to the tangent bundle. That is

WH(M) ~ Sect (WP (T M) — M).
The composition
(M) 2 (M) ~ Sect (TP (T M) — M) (A.0.2)
is homotopic to a "scanning map", more details are given in Chapter 5.
Definition A.0.7. A sheaf ¥ satisfies the h-principle if D : ¥ — W! is a weak homotopy equivalence.

Definition A.0.8. A topological sheaf U on M is called microfiexible if for each pair of compact sets
C’' C C'in M, the restriction map ¥(C) — ¥(C") is a microfibration.

A microfibration is a map p : E — B such that for each commutative right square in the diagram
with A a compact polyhedron, there is an € > 0 and a lifting L : A x [0,¢] — FE, such that po L =
H|axp0,q Llax oy = ¢ and the diagram commutes.

Ax{0}=—=Ax{0} —%F

- p

A X [0,e]—— A x [0,1]L>B.

Theorem A.0.9. (|Gr], section 2.2.2) D is a weak homotopy equivalence if M is open (i.e. no component
is compact), ¥ is Diff (M )-invariant and microflexible. [J

This theorem is crucial for the proof of our main result Theorem 5.3.6.
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Appendix B

Homotopy Calculus of Functors: an

Overview

The homotopy calculus of functors is a method of describing spaces up to weak homotopy equivalence
by using categories and functors (developed by T. Goodwillie). Namely, one obtains information about a
space by viewing the space as a special value of suitable functor, analyzes the functor using "calculus".
We give a brief summary of the homotopy calculus of functors which we used in Chapter 6. For a more
detailed discussion see [Gol],[Go2] and [Go3].

We assume given a homotopy functor F' : C — D between two nice topological model categories in which
one can do homotopy. One wishes to understand the homotopy type of F(X), perhaps for some particular
X € C. The idea is to use the functoriality as X varies, to construct a canonical polynomial "resolution"
of F(X) as a functor of X. In the ordinary differential calculus, the central idea is to approximate the
functions by linear functions, and here analogously, the central idea is to approximate functors by "linear"

functors.

A homotopy functor F is called linear if the following holds:
1) F takes homotopy pushout squares to homotopy pullback squares (call F' ezcisive);

2) F(x) — = is a weak homotopy equivalence (call F' reduced).

Each linear functor from Top, to Top, has the form L(X) = Q(C A X) for a spectrum C (it is called
the coefficient of the linear functor ).

There is a standard process, which is called the linearization, for turning a reduced functor F' into a linear
functor L. Roughly speaking, there is a natural map F(X) — QF(XX), and one iterates this process to
form the linearization, the homotopy colimit of Q" F(X"X) as n runs to infinity. If F' is linear then L is
equivalent to F'. We shall explain this linearization process in the next part.

One the other hand, one can view the excision condition as a property of functors defined on 2-dimensional
cubical diagrams. Generalizing this, we call a functor polynomial of degree at most n if it satisfies similar
condition on (n + 1)-dimensional cubical diagrams. And it turns out that for any F there is a universal
n-excisive functor under F. We denote this functor P, F and call it the n-th Taylor polynomial of F.
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We recall first the notion of cubical diagrams ([Go2], [Ku]). Let S be a finite pointed set. The poset of
pointed subsets of S is P(S) = {T' C S and T contains the base point}. It is a partially ordered set via
pointed inclusion, hence is a small category. Also, write Py(.S) for the full subcategory of all subsets T' of
S such that the complementary of the base point in T is nonempty, and P;(S) for the full subcategory of
all proper subsets of S. Often S is given by the concrete set n = {0,1,--- ,n} with 0 as base point.

Definition B.0.10. (1) An n-cube in C is a functor X : P(n) — C.

(2) An n-cube X is (homotopy) cartesian if the natural composition

X(0) — lim X(T)— holim X(T)
T€Po(n) T€Po(n)
is a weak equivalence. Dually we say that an n-cube in D is (homotopy) cocartesian if the natural
composition

hocolimX (T') — colim X(T') — X (n)
TP (n) TeP1(n)

is a weak equivalence.

(3)A strongly (homotopy) cocartesian n-cube X is one in which every 2-dimensional face is cocartesian.
(This definition implies that the n-cube itself as well as every face of dim > 2 is also cocartesian.)

Definition B.0.11. F' : C — D is called n-excisive (or polynomial of degree at most n) , denoted by
deg(F) < n) if, whenever X is a strongly cocartesian (n + 1)-cube in C, F(X) is a Cartesian cube in D.

Example B.0.12. F : C — D is l-excisive (linear) if and only if F' takes (homotopy) pushout squares to
(homotopy) pullback squares.

Excisive approximations are constructed by making for every X € C a "nice" strongly cocartesian n-cube
X(X) : P(n) — C and then investigating the resulting n-cubes F(X(X)). If all the cubes F(X (X)) are
Cartesian, then F is (n — 1)-excisive; otherwise F'(X (X)) gives rise to a new functor T,_1(F) which is
slightly closer to being Cartesian on X'(X).

We review the construction of Kuhn [Ku] and define the join of an object of C and a finite set.
Definition B.0.13. For X € ob(C) and T a finite set, define X % T, the join of X and T to be the
homotopy cofiber of the folding map X * T = hocof(][, X — X).

Note that for T" C n, the assignment 7' +— X % T defines a strongly cocartesian n-cube X. In the case
n = 2, we have the pushout square

X—CX
CX —=%¥X
Definition B.0.14. Define T;,_1F : C — D to be T,,_1 F(X) := Th(;;ir(n)F(X xT).
€Po(n
For example,
F(CX) *
1 1
T1F(X)) =holim | F(X£X) | ~holim | F(XX) | ~ QF(XX).
T
F(CX)
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There is a natural transformation ¢,_1(F) : F — T,,_1F. If F is (n — 1)-excisive, this is an equivalence.
If not, the (n — 1)-excisive approximation to F' is given by the homotopy colimit of the diagram

P, _1F :=hocolim {F — T, 1 F - T |F —---}.
From the last example we know that
P F(X) ~ hocolim,, Q"F(X"X).
In particular, if F is the identity functor id : Top, — Top,, it follows that
Pi(id)(X) =~ QXX = QX.
Since FF = T?_,F, the functor P,_1F comes equipped with a natural transformation FﬂPn_lF.

Furthermore, there are transformations T,,F — T,,_1F induced by the inclusion of categories Py(n) —
Po(n + 1), which extends to give a commutative diagram ([Go3])

t, F t,TnF t, T2F
F n TnF nin TgF n PnF
lQn,l lQn,Z lan
tn1F —1Th 1 E tn T2 4 F
—— T 11— 3_1F—>--- P,_1F.

Therefore it defines a natural transformation between the homotopy colimits ¢, F : P,F — P,_1F, since
all the ¢, ;F are the natural maps from the homotopy limit of a diagram to the homotopy limit of a
restriction of the diagram.

Theorem B.0.15. [Go3, Theorem1.13.] A homotopy functor F' : C — D determines a tower of functors
P,F : C — D with natural transformations p, I’ and ¢, F":

P,F<——D,F

qn F
Pk n—1l'<—— Dy 1 F
qn-1F
Pn—1H

p1F
q@F

poF P1F<—D1F

!

F

alF

POF:DOF

such that P, F are polynomial of degree n, for each X € C, the maps ¢, F(X) : P,F(X) — P,_1F(x) are
fibrations, the functors D, F := hofib(¢,F : P,F — P,_1F) are n-homogeneous ?. [J

2A functor is n-homogeneous if it is both polynomial of degree at most n and n-reduced, i.e. deg(DnF) < n and
Pp_1DnpF ~ *.
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If F is degree n, then the Goodwillie tower of F' is truncated, i.e. D,F is the largest nontrivial layer of
F and P F is equivalent to F for all k£ > n.

Definition B.0.16. Let F : C — D be a functor, we define ¢r,, F : C* — D, the n*"-cross effect of F, to
be the functor of n variables given by

WF) (X1, ,Xn) : = hofib{F(\/ X;) — holim F X;
(crn ) (X1 ) { (;/n )_>Te7>§% (ien_T )}

— thofib F(X(X1,--- , Xn)).
where the n-cube X (X1, -+, X,) : P(n) — C is given by

XXy, X)) :T— \/ X;
ien—T

with maps induced by the maps X; — .

The nth-cross effect measures the extent to which F fails to be degree n — 1. Furthermore, F is degree n if
and only if ¢r,, F' is linear in each variable. Analogously[Go3, Lemma 3.3], if F' is degree n, then criF ~
for every kK > n + 1.

Lemma B.0.17. ([Go2, Proposition 3.4]) if F: C™ — D is (z1,- - - , Tn)-excisive, then the diagonalization
functor A,, composed with F, namely A, F is (3 z;)-excisive. O
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