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Preface

There was a topologist, who
said, “I cannot reverse CP2!”
By a most intense stare
at the cup product square,

he found this is perfectly true.

Like many other topologists, I learned in my undergraduate studies about the

complex projective spaces, and that CP2 is not oriented diffeomorphic to −CP2.

My surprise over this fact abated over the time, but some of the initial air of

mystery always stuck to the “chiral” manifolds. The idea for the topic of this

thesis later came from the paper [Freedman et al.], where the authors consider

formal linear combinations ∑i aiMi of (diffeomorphism classes of) manifolds

Mi . Thinking about CP2, I wondered whether some manifolds appear twice

in the index set and others only once. This led me to the question in which

dimensions all manifolds have an orientation-reversing diffeomorphism.

In chemistry, a molecule is called chiral if it cannot be superimposed on its

mirror image [Römpp]. Another definition which captures the properties of

flexible and topologically complex molecules better is given by [Flapan]: A mo-

lecule “that can chemically change itself into its mirror image” is called achiral

and chiral if it cannot. Chiral molecules have the same physical properties like

melting and boiling points but they behave optically and chemically differently.

With the analogy to chiral molecules in mind, it seems a very natural ques-

tion to ask whether an orientable manifold with its two orientations yields

“the same” or “different” objects. Indeed, this analogy (not really a strong

connection, though) to molecular chirality generated some of my motivation

for this thesis.

Studying the chirality of manifolds, I was in the pleasant situation that my

questions appealed to others as well, and referring to chiral molecules, I could

also give non-mathematicians, in particular biologists, a taste of what I was

doing. I hope that also the readers will discover their own liking for the topic

in this thesis.
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1
Introduction

In this work, the phenomenon of orientation reversal of manifolds is stud-

ied. We call an orientable manifold amphicheiral if it admits an orientation-

reversing self-map and chiral if it does not. Below, this definition is extended

by attributes, e. g. “topologically chiral” or “smoothly amphicheiral” that express

various degrees of restriction on the orientation-reversing map. Many familiar

manifolds like spheres or orientable surfaces are amphicheiral: in these cases

mirror-symmetric embeddings into Rn exist, and reflection at the “equatorial”

hyperplane reverses orientation. On the other hand, examples of chiral mani-

folds have been known for many decades, e. g. the complex projective spaces

CP2k or some lens spaces in dimensions congruent 3 mod 4. However, this

phenomenon has not been studied systematically.

In the next chapter, we start with a survey of known results and examples of

chiral manifolds. This cannot encompass every result which is related to chiral-

ity and amphicheirality of manifolds. Still we try to give a broad overview, state

the most important results in this context and give reasons why the problems

that are dealt with in the following chapters are relevant.

A fundamental question is in which dimensions there are chiral manifolds.

The solution to this problem is the first main result of this work and the content

of Chapter 3:

Theorem A

A single point, considered as an orientable 0-dimensional manifold, is chiral.
In dimensions 1 and 2, every closed, orientable, smooth manifold admits
an orientation-reversing diffeomorphism. In every dimension ≥ 3, there is
a closed, connected, orientable, smooth manifold which does not admit a
continuous map to itself with degree −1, i. e. it is chiral.

The construction of these chiral manifolds is divided into even and odd

dimensions. First we construct odd-dimensional chiral manifolds in every

dimension n ≥ 3 as mapping tori of (n − 1)-dimensional tori Tn−1. The fun-

damental group of the total space is a semidirect product of abelian groups.

If we restrict the monodromy maps H1(Tn−1) → H1(Tn−1) to certain maps,

the effect of endomorphisms of the fundamental group on the orientation of

1



2 1 Introduction

the total space is easily controllable. This reduces the problem to an algeb-

raic problem on the non-existence of solutions of certain matrix equations

(Lemma 29) depending on the monodromy. A family of appropriate matrices

for the monodromy is presented, and we prove the non-existence of solutions

mostly by linear algebra and comparing eigenvalues but also by appealing in

one step to the fundamental theorem of Galois theory.

Examples of chiral manifolds in even dimensions are then obtained by

cartesian products of odd-dimensional chiral manifolds. Apart from the cup

product structure in cohomology, we use a theorem by Hopf on the Umkehr

homomorphism and Betti numbers to exclude degree −1 for all self-maps.

The odd-dimensional examples in Theorem A are Eilenberg-MacLane spaces,

and the proof of chirality uses as a substantial ingredient that the effect of a

self-map on homology is completely determined by the induced map on the

fundamental group. Therefore, we next ask for obstructions other than the

fundamental group und restrict the analysis to simply-connected manifolds.

In Chapter 4, it is shown that in dimensions 3, 5 and 6, a nontrivial funda-

mental group is a necessary characteristic of chiral manifolds. From dimension

7 on, we prove that there exist simply-connected chiral manifolds in every

dimension:

Theorem B

In dimensions 3, 5 and 6, every simply-connected, closed smooth (or PL or
topological) manifold is amphicheiral in the respective category. A closed,
simply-connected, topological 4-manifold admits an orientation-reversing
homeomorphism if its signature is zero. If the signature is nonzero, the
orientation cannot even be reversed by a continuous map of degree −1.
In every dimension ≥ 7 there is a closed, simply-connected, chiral smooth

manifold.

The results in dimension 3 to 5 are obtained almost immediately from the

powerful classification theorems for simply-connected manifolds in these di-

mension. The classification of simply-connected 6-manifolds needs more com-

plicated invariants. We provide the necessary details on the invariants from

the proof of the classification [Zhubr] and complete the argument by analysing

the homology of the first Postnikov stage of the manifolds in question and the

effect of automorphisms of the first Postnikov approximation.

For the evidence of simply-connected chiral manifolds in dimensions ≥ 7,

examples in all dimensions except 9, 10, 13 and 17 can be constructed with

methods used already in the previous chapters. Since simply-connected chiral

manifolds in the remaining dimensions are more difficult to obtain, we split

the proof of existence into two parts: (1) find a mechanism or an obstruction to

orientation reversal in the partial homotopy type and (2) realise the obstruction

by a simply-connected manifold.
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The first step is done with the help of the Postnikov tower: In every instance,

we construct an appropriate finite tower of principal K(π, n)-fibrations (or

simply a single stage) and fix an element in the integral homology of one of the

stages that is to be the image of the fundamental class of the manifold. Then

we prove that (by the mechanism that lies in the particular construction) this

homology class can never be mapped to its negative under any self-map of a

single Postnikov stage or of the partial Postnikov tower.

In the second step, the obstruction is realised by proving that there is indeed

a manifold with the correct partial homotopy type and the correct image of the

fundamental class in the Postnikov approximation. This step involves bordism

computations and surgery techniques.

For simply-connected chiral manifolds in dimensions 10 and 17, is is sufficient

to construct a single Postnikov stage. The obstruction is manifest in the mod 3

Steenrod algebra in the cohomology of Eilenberg-MacLane spaces. The bordism

computation in the second step is done in this and all further proofs with the

help of the Atiyah-Hirzebruch spectral sequence. For the surgery step, we use

the surgery theory of Kreck [Kreck99].

The examples in dimensions 9 and 13 require a more complicated setup

of the Postnikov tower. Here, we construct a three-stage Postnikov tower

by appropriate k-invariants. Together with the construction, we analyse the

possible automorphisms of this Postnikov tower in each step. The analysis is

made possible by rational homotopy theory. However, the information which

is obtained from the rational homotopy type is not enough in our case, and we

also include information about the automorphisms of the integral Postnikov

tower.

Again, the Atiyah-Hirzebruch spectral sequence and Kreck’s surgery theory

are applied for the realisation part of the proof. Here, we extend a proposition

in [Kreck99] in order to prove that surgery in rational homology in the middle

dimension is possible in our setting.

Next, in order to further characterise the properties of manifolds which

allow or prevent orientation reversal, we consider the question whether every

manifold is bordant to a chiral one. This allows also an approximation to the

(not mathematically precise) question “how many” manifolds are chiral or if

“the majority” of manifolds is chiral or amphicheiral. The following statement

is proved in Chapter 5.

Theorem C

In every dimension ≥ 3, every closed, smooth, oriented manifold is oriented
bordant to a manifold of this type which is connected and chiral.

Summarising, we prove this by showing that the existing obstructions in our

examples can be kept when we change the bordism class via connected sums of

manifolds. A special case, for which an entirely new example is necessary, are

nullbordant manifolds in dimension 4. We translate this problem into group
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homology and construct a series of finite groups G such that H4(G) contains
an element of order > 2 which is invariant under all automorphisms of G. The

proof is again completed by bordism and surgery arguments.

The majority of the theorems so far aimed at proving that certain manifolds

or families of manifolds are chiral. The opposite problem, however, namely

proving amphicheirality in nontrivial circumstances, is also an interesting ques-

tion. In general, this is even more challenging since not only one obstruction to

orientation reversal must be identified and realised but for the opposite direc-

tion every possible obstruction must vanish. Surgery theory is a framework for

comparing diffeomorphism classes of manifolds, and smooth amphicheirality

can be considered a showcase of surgery theory: Given the manifolds M and

−M it must be decided if M and −M are oriented diffeomorphic. Surgery

provides powerful theorems and some recipes for classification problems but

not a generally applicable algorithm, so that a particular problem must still

be solved individually. We carry out the surgery programme of [Kreck99] for

some products of 3-dimensional lens spaces. We prove the following theorem.

Theorem D

Let r1 and r2 be coprime odd integers and let L1 and L2 be (any) 3-dimen-
sional lens spaces with fundamental groups Z/r1 resp. Z/r2. Then the product
L1 × L2 admits an orientation-reversing self-diffeomorphism.

The question why these products constitute a relevant problem is discussed

in the introduction of Chapter 6. The proof is facilitated by the fact that the

products are known to be homotopically amphicheiral. This is not a necessary

input to Kreck’s surgery programme but we use it here since it simplifies the

first part of the proof. We then carry out the bordism computation in the

Atiyah-Hirzebruch spectral sequence. This uses the fact that we are dealing

with a product manifold to a great extent, and we employ the module structure

of the spectral sequence heavily. In the final surgery step, it is not necessary

to analyse individual surgery obstructions, but we show that the obstruction

group vanishes, using results by [Bak] and from the book [Oliver].

In Chapter 7, we add a new facet to the results of the previous chapters by

showing that the order of an orientation-reversing map can be relevant. From

the literature, we present examples of manifolds which admit an orientation-

reversing diffeomorphism but none of finite order. We complement this with

manifolds where the minimal order of an orientation-reversing map is finite:

Theorem E

For every positive integer k, there are infinitely many lens spaces which admit
an orientation-reversing diffeomorphism of order 2k but no orientation-
reversing self-map of smaller order.

The nonexistence of orientation-reversing maps of smaller order is shown

by a well-known formula for the degree of maps between lens spaces. Lens
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spaces with an orientation-reversing map of the desired order in infinitely many

dimensions are given explicitly, and the map itself can be written by a simple

formula in complex coordinates in the universal covering.

1.1 Conventions and notation

Throughout this work, all manifolds are compact and orientable. Also, bound-

aryless manifolds are understood without further notice (except for bounding

manifolds in a bordism, but this will be clear from the context). With the

exception of links (in the context of knot theory) and manifolds in the oriented

bordism groups, every manifold is connected. Unless indicated otherwise,

we consider smooth (i. e. differentiable of class C∞) manifolds. Finally, all

manifolds are required to be second-countable Hausdorff spaces.

The following list clarifies some notations, which otherwise follow common

practice.

• If M is an oriented manifold, the same manifold with the opposite ori-

entation is denoted −M (as in bordism theory, not M̅ as in algebraic

geometry). Often, the initial orientation does not matter, and we speak

of M and −M for orientable manifolds, meaning that an arbitrary ori-

entation for M is fixed.

• Care has been taken in using the equal sign. Often in mathematics,

when this detail is not important, not only equal objects are related by =

but also isomorphic objects. Since naturality is a crucial detail in some

proofs, the equal sign is reserved in this text to correspondences which

are canonical (i. e. do not depend on choices) or natural (i. e. functorial).

Otherwise, isomorphisms are denoted as usual by ≅.

• An arrow with a tilde ∼Ð→ also denotes an isomorphism. This is a little

less standard notation than ↪ for injective and ↠ for surjective maps

but there is no danger of confusion since weak equivalences in model

categories, for which the symbol ∼Ð→ is also used, do not occur in this

text.

• Coefficients in homology and cohomology are always the integers Z if

not stated otherwise. In order to distinguish relative (co-)homology from

the notation with coefficient groups, the coefficient are separated by a

semicolon (compare H∗(A, B) and H∗(A;Q)).
In the (co-)homology of Eilenberg-MacLane spaces, the “K” is often

omitted. Thus, H∗(Z/3, 3;Z/3) denotes the integral homology of an

Eilenberg-MacLane space K(Z/3, 3) with Z/3-coefficients.

• As a general rule, abelian groups are written additively and arbitrary

groups multiplicatively. Thus, the trivial group is either denoted 0 or 1,
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depending on the context. The neutral element is written 0, 1 or e.
Sometimes, it is preferable to write cyclic groups multiplicatively, hence

there are two notations (Z/n,+) and (Cn , ⋅).

• Even though the cartesian product of oriented manifolds is not com-

mutative, we keep the notation ∏n
i=1 Mi for the product M1 × . . . ×Mn,

taking care of the order of the factors.

References in the text often do not give credit to the original author of a

proof but point to a source which is more accessible to non-experts or gives

an overview over a certain topic.

1.2 Why the name “chiral manifold”?

Three distinct adjectives have been used in the literature to describe manifolds

whose orientation can be reversed: “symmetric” ([Rueff, p. 162], [Kirby, Prob-

lem 1.23]), “amphicheiral” ([Siebenmann] and [Saveliev02] for 3-manifolds) and

“reversible” ([Hirsch, 9.1.3, p. 190] for surfaces).

The term “symmetric manifold” does not seem to be a good choice to the

author: It would easily be confused with the concept of a symmetric space,

which by definition always is a Riemannian manifold. In a symmetric space,

the symmetry maps reverse all geodesics through a given fixed point, so the

symmetry maps do not reverse orientation if the symmetric space has even

dimension. Besides, the converse “asymmetric manifold” is nowadays reserved

for manifolds on which no finite group can act effectively [Puppe].

The attribute “amphicheiral”, on the other hand, is perfectly legitimate for 3-

manifolds: It is already used for knots and links, and the analogy to 3-manifold

topology is even twofold because there are two different constructions that yield

amphicheiral manifolds when applied to amphicheiral links. Firstly, when a

3-manifold admits a cyclic branched covering to an amphicheiral link in S3, the
manifold is amphicheiral. Secondly, when a 3-manifold is formed by surgery

on a framed link, the manifold with the opposite orientation is obtained by

surgery on the mirror image of this link, with the negative framing. Thus,

surgery on an amphicheiral link with an appropriate framing yields an amphi-

cheiral 3-manifold. Both relations between 3-manifolds (branched coverings

and surgery) are discussed in more detail in Section 2.7.1.

Other possible expressions are “reversible” as in [Hirsch] or “invertible”.

However, the parallels to knot theory would be rather misleading in this case,

as is also explained in Section 2.7.1.

For these reasons, the author chose to use the attribute “amphicheiral” for

manifolds which admit an orientation-reversing self-map and the opposite

“chiral” for those which do not.
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1.3 Chirality in various categories

Requiring that a manifold admits a self-map of degree −1 is only a very weak

form of amphicheirality. One can also ask for orientation-reversing self-homo-

topy equivalences or homeomorphisms. If smooth manifolds are dealt with,

one can require an orientation-reversing diffeomorphism. The following figure

lists all the types of maps that we consider, together with their interrelations.

or. rev.

diffeomorphism
⇒

or. rev.

homeomorphism
⇒

or. rev. homotopy

equivalence
⇒

self map of

degree −1

⇓ ⇔

for 1-conn. manifoldsbordism

M ∼ −M

The double arrows indicate that, e. g., an orientation-reversing homoeo-

morphism is automatically a homotopy equivalence, and likewise for the other

types of maps. The bordism question is solved completely (the final step is due

to Wall [Wall60]): A closed, smooth, oriented manifold is oriented bordant to

its negative if and only if all its Pontrjagin numbers vanish.

In the following, we indicate the category of maps which are considered by

attributes like “topologically chiral”, “homotopically amphicheiral” etc. The no-

tions are self-explanatory. A “smoothly chiral manifold”, e. g., is a differentiable

manifold that does not admit an orientation-reversing diffeomorphism (but

possibly an orientation-reversing homeomorphism).

The figure above indicated that there is no difference between orientation-

reversing self-homotopy equivalences and maps of degree −1 for simply-con-

nected manifolds. This is in fact the conclusion of the following lemma.

Lemma 1

A self-map f ∶ M → M of a simply-connected, closed manifold M with degree
±1 is a homotopy equivalence.

Proof. Let f u ∶ H∗(M) → H∗(M) be the Umkehr map, defined by the induced

map f ∗ ∶ H∗(M) → H∗(M) on cohomology and Poincaré duality on M. Let n
be the dimension of M. The map f∗ ○ f u ∶ H∗(M) → H∗(M) is multiplication

by the degree of f , as can be seen from the following commutative diagram:

Hn−k(M)

∩[M] ≅

Hn−k(M)

∩ f∗[M]

f ∗

Hk(M) f∗
Hk(M)

Hk(M) ⋅deg f

∩[M]
≅

f u
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Since deg f = ±1, we have f u ○ f∗ = f∗ ○ f u = ±id. Hence, the map f in-

duces an isomorphism in homology. Since M is simply-connected and has

the homotopy type of a CW-complex [Milnor59, Cor. 1], f is a homotopy

equivalence by the Whitehead theorem for simply-connected CW-complexes

[Bredon, Cor. 11.15].

A general goal of this work is to prove chirality and amphicheirality in

the strongest possible sense. If chiral manifolds are produced, the aim is to

exclude maps of degree −1 (or equivalently, orientation-reversing homotopy

equivalences in the simply-connected case). In Chapter 6, when we prove

that many products of 3-dimensional lens spaces are amphicheiral, we prove

smooth amphicheirality. The various notions of chirality do not coincide, and

in Chapter 2 we present (previously known) examples which are amphicheiral

with respect to one type but chiral with respect to another category of maps.



2
Known examples and obstructions

In this chapter, we give an overview over the basic facts and most important

results that exist about orientation reversal. Along with known examples of

chiral manifolds, we collect the mechanisms which cause chirality. This yields

a list of “obstructions” (in an informal sense) to orientation reversal, which will

be extended by novel obstructions in subsequent chapters. We do not consider

the items in this collection to be obstructions in a mathematically rigid sense,

like certain cohomology classes in obstruction theory. The phenomenon of

orientation reversal is too complex and heterogeneous for such an approach.

Nevertheless, we find it useful to keep a list of topological concepts which are

related to chirality. Moreover, not every hypothetical “obstruction” is admitted

to the list but it must be proved to be “realised” by a chiral manifold.

We first review the straightforward results in dimension 0 to 2: A single

point is chiral, and every 1- and 2-dimensional manifold is amphicheiral. The

simplest chiral manifolds other than the point are detected by the intersection

and linking forms. Their naturality properties can exclude orientation-reversing

maps in dimensions congruent 0 and 3 mod 4, and we argue why the forms

are not useful in dimensions congruent 1 and 2 mod 4.

Lens spaces play a prominent role in this work since we use them in many

instances to prove and illustrate various results about chirality. Their oriented

homotopy, homeomorphism and diffeomorphism classifications are reviewed.

Subsequently, we deal with characteristic numbers since the Pontrjagin numbers

are an obstruction to smooth amphicheirality and they give a complete answer

to the question of chirality up to bordism. After this, we touch upon exotic

spheres since they provide important examples for the distinction between the

smooth and the topological category in Section 1.3.

A comparatively large part of this chapter is dedicated to 3-manifolds since

the terms chiral and amphicheiral are adopted from this field. Since 3-manifolds

are a subject of its own, we cannot provide a comprehensive summary of all

tools and results. We mention briefly the Casson invariant and homology

bordism but otherwise concentrate on the relations between amphicheiral links

and amphicheiral 3-manifolds.

Another field of its own is the topology of 4-manifolds. Although there

are results concerning smooth chirality and amphicheirality of 4-manifolds,

9



10 2 Known examples and obstructions

especially the subject of smooth structures on 4-manifold is a highly specialised

field of work, which goes beyond the scope of this thesis. Results on simply-

connected 4-manifolds will be discussed later in Section 4.1.2.

2.1 Dimensions 0 to 2

A single point, considered as an orientable 0-dimensional manifold is chiral.

This is an exceptional case because the tangent bundle is 0-dimensional and

cannot be given an orientation. However, the following approach makes sense:

Since H0(pt) = H0(pt,∅) ≅ Z, a fundamental class can be assigned to the point.

The group H0(pt) has a preferred generator which is represented by the map

from the 0-simplex to the point. We call an oriented point the positive point if
its fundamental class is this generator and the negative point if the fundamental

class is the negative of the preferred generator. The orientation cannot be

changed by a self-map pt→ pt because the induced map on H0(pt) is always

the identity.

Every closed, connected 1-dimensional manifold is homeomorphic to the

circle S1, which is clearly orientable and smoothly amphicheiral: simply con-

sider the standard embedding as the unit circle in R2 and mirror the circle at

any diameter. This obviously generalises to higher-dimensional spheres, where

reflection at the equator reverses the orientation.

Recall that there is no difference between topological, piecewise linear (PL-)

and smooth manifolds in dimensions up to three. More precisely, every topolo-

gical manifold in these dimensions has a PL-structure, and every PL-manifold

has a smooth structure. Furthermore, the refined structures are unique in

the oriented sense: If two oriented PL-manifolds are oriented homeomorphic,

they are even oriented PL-isomorphic, likewise for smooth manifolds and

diffeomorphisms.

The diffeomorphism classes of closed, connected 2-manifolds are the con-

nected sums of k tori (k ≥ 0, the case k = 0 is the 2-sphere). All of these are

smoothly amphicheiral because they can be embedded mirror-symmetrically

into R3, as Figure 2.1 illustrates.

2.2 The cup product and the intersection form

The simplest examples of chiral manifolds in nonzero dimensions are given by

the complex projective spaces CP2n. Their cohomology ring is the truncated

polynomial ring Z[t]/t2n+1 with one generator t in degree 2. Since the funda-

mental class [CP2n] is a generator of H2n(CP
2n), we have ⟨t2n , [CP2n]⟩ = ±1.
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Reflect at the equator:

Similarly

and

Figure 2.1: Mirror-symmetric embeddings of oriented surfaces.

The sign depends on the orientation of CP2n but not on the choice of t since
t is raised to an even power. With the preferred orientation on CP2n, which

is induced by the complex structure, the value is in fact +1 [MS, Thm. 14.1,

Thm. 14.10, p. 170].

Suppose an orientation-preserving homotopy equivalence f ∶ CP2n → −CP2n

would exist. Since f ∗(t) is again a generator, we have f ∗(t) = ±t and by the

naturality of the Kronecker product

⟨t2n , [CP2n]⟩ = ⟨( f ∗t)2n , [CP2n]⟩ = ⟨t2n , [−CP2n]⟩ = −⟨t2n , [CP2n]⟩,

which is impossible. Thus, the complex projective spaces CP2n in dimensions

4k are homotopically chiral. On the other hand, CP2n+1 is smoothly amphi-

cheiral. The orientation is reversed by the map that conjugates the homogeneous

coordinates.

Another point of view is the intersection form on middle cohomology. The

element tn ∈ H2n(CP2n) intersects with itself with intersection number 1 since

⟨tn ∪ tn , [CP2n]⟩ = 1. In the following, we recall the definition and the main

properties of the intersection form.

Denote the torsion subgroup of an abelian group A by TorA ∶= Tor(A,Q/Z).
Moreover, let Afree ∶= A/TorA. (We use this only for finitely generated abelian

groups so that Afree is indeed a free abelian group, not only torsion-free.)

Theorem 2

The intersection form on a closed, oriented 2k-dimensional manifold

Q ∶ Hk(M) ×Hk(M) → Z, Q(a, b) ∶= ⟨a ∪ b, [M]⟩

is a (−1)k-symmetric bilinear form (i. e. it is symmetric if k is even and
antisymmetric if k is odd). Since every homomorphism from a torsion group
to Z is trivial, the intersection form is well-defined on the free quotient
Hk(M)free. This bilinear form is unimodular.
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If f ∶ M → N is a continuous map, we have

Q( f ∗a, f ∗b) = deg( f ) ⋅ Q(a, b)

for all a, b ∈ Hk(N).

Proof. See e. g. [HatcherAT, Section 3.3, p. 249 ff.]. The naturality statement

follows from the naturality properties of the cup product and the Kronecker

pairing.

Theorem 2 implies that a manifold is homotopically chiral if its intersection

form Q is not isomorphic to its negative −Q. If k is odd, the intersection form

on A ∶= Hk(M)free is an antisymmetric bilinear form on a finitely generated

free abelian group. By [MH, Cor. 3.5], A has even rank and there is a basis

(e1, . . . , e2m) of A such that Q has the form

(
0 Im
−Im 0

) ,

where Im denotes the identity matrix of size m. The base change ei ↦ −ei
for all i ≤ m changes this matrix to its negative. Thus, if the dimension of a

manifold is congruent 2 mod 4, the intersection form is always isomorphic to

its negative and cannot provide an obstruction to amphicheirality.

If k is even, the intersection form is symmetric. Unlike the antisymmetric

case, symmetric unimodular bilinear forms over Z have not been classified.

In particular, the number of positive (or equivalently, negative) definite forms

grows rapidly with the rank [MH, p. 28]. Fortunately, this does not cause

complications for the question of chirality because a definite form is never

isomorphic to its negative. Indefinite symmetric unimodular form over Z are

distinguished by their rank, signature and type [MH, Thm. 5.3]. Since the rank

and the type of a form and its negative are the same, the signature is the only

invariant which can distinguish a form Q from −Q. Summarising, we have

Proposition 3: [MH]

Let Q ∶ A× A→ Z be a symmetric unimodular bilinear form on a finitely
generated free abelian group A. Then Q is isomorphic to −Q if and only if
its signature is zero.

The signature of an oriented manifold can be defined as the signature of

its intersection form if the dimension is a multiple of 4. Otherwise, the sig-

nature is set to zero. Since a self-map of degree ±1 induces an isomorphism

in cohomology (see the proof of Lemma 1 and convert it from homology to

cohomology), we have the following statement:

Corollary 4

A manifold with nonzero signature admits no self-map of degree −1.
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Corollary 5

A 4k-dimensional manifold with odd (2k)-th Betti number b2k admits no
self-map of degree −1.

Proof. Since the rank of the middle homology group is odd and the intersection

form is symmetric in the present case, the signature must be nonzero.

The observations in the two preceding lemmas and similar statements for

the linking form were already made in 1938 by Rueff [Rueff].

We point out that by Proposition 3 the signature is the only algebraic ob-

struction to orientation reversal which can be obtained from the intersection

form. This is not a mathematically rigid statement since the term “obstruction

to amphicheirality” has not been given a mathematically well-defined meaning.

Nevertheless, it should be clear what is meant by this statement: There might be

chiral manifolds with signature 0 (in fact, there are), but there must be charac-

teristics of these manifolds other than the intersection form that cause chirality.

In conclusion, we want to record the obstructions to orientation reversal

from this section. Most generally, the cup product structure can be made re-

sponsible in the case of CP2n since an even power of a cohomology element

t that generates a cohomology group of rank 1 evaluates nontrivially on the

fundamental class. More specifically, the signature of manifold is a homotopy-

invariant obstruction. The point of view of the signature as a characteristic

number will be taken up in Section 2.5.

2.3 The linking form

For odd-dimensional manifolds, the linking form is the analogue to the inter-

section form.

Theorem 6

Let M be a closed, oriented topological manifold of odd dimension 2k − 1.
Then there is a nondegenerate, (−1)k-symmetric bilinear form

L ∶ TorHk(X) × TorHk(X) → Q/Z,

which is called the linking form. Furthermore, if f ∶ N → M is a continuous
map then L( f ∗a, f ∗b) = deg( f ) ⋅ L(a, b).

Although this theorem is well-known, a proof of all properties in one piece

is given in Appendix A.1. The cohomological version of the linking form is

preferred because naturality can be handled more easily in this setting. A

definition of the homological version can be found in [Ranicki, Ex. 12.44 (i)].
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If the dimension of the manifold is congruent 1 mod 4, the linking form is

antisymmetric. In analogy to the intersection form, an antisymmetric linking

form is isomorphic to its negative. The proof is a little more complicated due

to fact that there can be elements x ∈ TorHk(X) with L(x , x) = 1

2
.

Proposition 7

Let L ∶ G ×G → Q/Z be a nondegenerate, antisymmetric bilinear form on a
finite abelian group G. Then there is an isomorphism f ∶ G → G such that
L( f (x), f (y)) = −L(x , y) for all x , y ∈ G.

Proof. According to [Wall62, Lemma 4(ii)], G is the direct sum of groups

Gi ≅ Z/θ i ⊕Z/θ i with generators xi , yi and possibly a single direct summand

Z/2 with generator z. These summands are orthogonal with respect to L, i. e. we
have L(a, b) = 0 for elements a and b of different summands.∗ Furthermore,

L(z, z) = 1

2
, and L has a matrix of the form

(
0 1/θ i
−1/θ i 0

) or (
0 1/θ i
−1/θ i 1/2

)

on the summands Gi . In either case, the form on Gi is reversed by the base

change xi ↦ −xi , yi ↦ yi .

Therefore, in analogy to the intersection form, we have the imprecise state-

ment that the linking form cannot provide an algebraic obstruction to orient-

ation reversal in dimensions congruent 1 mod 4. In dimensions congruent 3

mod 4, however, the linking form can be used to prove chirality, as in the

following exemplary statement.

Lemma 8

Let M be a closed, oriented topological manifold of dimension 4k + 3. Sup-
pose that TorH2k+2(M) ≅ Z/n and −1 is not a quadratic residue modulo
n. Then M does not admit a self-map of degree −1.

Proof. Choose a generator α ∈ TorH2k+2(M) and suppose f ∶ M → M reverses

orientation. Let f ∗α = qα with q ∈ Z/n. Then

−L(α, α) = L( f ∗α, f ∗α) = L(qα, qα) = q2L(α, α) ∈ Q/Z.

Since the linking pairing is nondegenerate, L(a, a) has order n in Q/Z. So

q2 ≡ −1 mod n, a contradiction.

An application of this lemma is given by lens spaces: Every lens space in

dimension 4k + 3 whose order of the (cyclic) fundamental group contains a

∗ Wall does not state that the Z/2-summand is orthogonal to the others but this follows from

the proof.
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factor 4 or a prime congruent 3 mod 4 is chiral in the strongest sense. We can

thus add the linking form to our list of obstructions to orientation reversal.

2.4 Lens spaces

Lens spaces form a very important class of manifolds for this work. They

appear in many different situations, both in proofs and as illustrations of various

aspects of chirality. Since the conventions about the parameters in lens spaces

differ between sources, they are defined here.

Choose integers n ≥ 2 and t ≥ 1 and parameters k1, . . . , kn ∈ (Z/t)×. The lens

space Lt(k1, . . . , kn) is defined as the quotient of the unit sphere S2n−1 ⊂ Cn

under the free action of {γ ∣ γt = 1} ≅ Z/t by γ(c1, . . . , cn) = (ξk1 c1, . . . , ξkn cn).
Here, ξ denotes the t-th root of unity e2πi/t .

This lens space is a (2n − 1)-dimensional closed, orientable, smooth, con-

nected manifold with fundamental group Z/t. It has a preferred orientation

induced from the canonical orientation on Cn and the outer normal vector

field of S2n−1. Furthermore, its fundamental group has a preferred generator γ
(if the fundamental group is nontrivial, i. e. if t > 1). The preferred generator

of the fundamental group is given by the covering translation γ; alternatively,
it can be described by any path from a basepoint x0 to γ(x0) in S2n−1. The

choice of x0 is irrelevant since the fundamental group is abelian.

The notation Lt(k1, . . . , kn) implies that the parameters ki are relatively prime

to t. This will be implicitly assumed in all statements in this work.

In some definitions, instead of the ki their multiplicative inverses modulo t
are used, e. g. [Milnor66, §12]. The classification theorems below are literally

the same for both conventions, but the notation matters of course if individual

lens spaces are identified.

The orientation of a lens space can be reversed by multiplying one of its

parameters by −1; this corresponds to complex conjugation in the respective

coordinate of Cn and preserves the preferred generator of the fundamental

group. More precisely, write L ∶= Lt(k1, . . . , kn) and L′ ∶= Lt(l1, . . . , ln) and
let li = −ki for exactly one i, otherwise li = ki . Then there is an orientation-

reversing diffeomorphism L → L′ which maps the preferred generator of π1(L)
to the preferred generator of π1(L′).

Lens spaces are classified (besides other concepts like simple homotopy type)

up to oriented homotopy equivalence, homeomorphism and diffeomorphism.

Theorem 9: homotopy classification [Milnor66, 12.1], [Lück, Thm. 2.31]

The lens spaces Lt(k1, . . . , kn) and Lt′(l1, . . . , ln) are orientation-preserving
homotopy equivalent if and only if t = t′ and there is e ∈ (Z/t)× such that
∏n

i=1 ki = e
n ⋅ ∏n

i=1 li in (Z/t)
×. The same conditions apply for a map of

degree 1 between the two lens spaces.
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Corollary 10

Let L be a lens space of dimension 2n − 1 with fundamental group of order
t. The following conditions are equivalent:

(a) L is homotopically amphicheiral.

(b) L admits a self-map of degree −1.

(c) −1 is an n-th power modulo t.

Note that the last condition is always fulfilled if n is odd. Hence, all lens

spaces whose dimension is congruent 1 mod 4 are homotopically amphicheiral.

In dimensions congruent 3 mod 4, if the order t of the fundamental group

contains the factor 4 or a prime congruent 3 mod 4, −1 is not even a square

mod t, so the lens space does not admit a self-map of degree −1.

The homeomorphism and diffeomorphism classifications of lens spaces agree,

hence they also coincide with the PL classification.

Theorem 11: [Milnor66, Thm. 12.7]

Let L ∶= Lt(k1, . . . , kn) and L′ ∶= Lt(l1, . . . , ln) be two (2n − 1)-dimensional
lens spaces with the same order of the fundamental group. The following
statements are equivalent:

(a) L and L′ are oriented homeomorphic.

(b) L and L′ are oriented diffeomorphic.

(c) The sequences of parameters (k1, . . . , kn) and (l1, . . . , ln) can be
converted into each other by the following operations:

(1) For a k ∈ (Z/t)×, replace each ki by kki .

(2) Permute the ki .

(3) Replace an even number of the ki by their negatives −ki .

This theorem is proved with the Reidemeister-Franz-torsion. There exist sev-

eral flavours of this torsion with values in different rings, see [Milnor66, §12],

[Lück, Ch. 2.4] and [Ranicki97]. Milnor proves in fact only the classification

up to oriented diffeomorphism. See [Lück, Thm. 2.1] and [Ranicki97] for com-

ments on the homeomorphism invariance of the torsion, which was proved

by Chapman [Chapman73], [Chapman74] after Milnor’s paper. Alternatively,

Lück’s proof of the unoriented homeomorphism classification can be modified

to yield the oriented statement. (The idea is to restrict the diffeomorphisms

to those which preserve the preferred generator of the fundamental group;

set α = id in [Lück, Thm. 2.37] for this. Then combine this with the homo-

topy classification [Milnor66, 12.1], which also considers the generator of the

fundamental group.)
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Example 12

The lens space L5(1, 2) is smoothly amphicheiral. The lens space L5(1, 1) is
smoothly chiral but homotopically amphicheiral.

Proof. The first lens space is smoothly amphicheiral since the parameters can

be changed in the following way:

(1, 2)
operation (1)

mult. by 2
(2, 4)

congruence

mod 5
(2,−1)

operation (2)

transposition
(−1, 2)

The lens space L5(1, 1) is homotopically amphicheiral by Theorem 9 since

22 ≡ −1 mod 5. Since the two parameters are equal and all three operations (1),

(2) and (3) produce again a pair of equal parameters, they cannot be converted

to (−1, 1).

The lens space L5(1, 1) is an example where the categories in Section 1.3 differ

because the orientation can be reversed by a homotopy equivalence but not by

a homeomorphism.

At least in the types of torsion which Lück, Milnor and Ranicki describe,

the Reidemeister-Franz-torsion is the same for a lens space and its negative.

However, information about the preferred generator of the fundamental group

can be recovered from the torsion. Together with the oriented homotopy

classification [Milnor66, 12.1], this suffices to obtain the oriented homeomorph-

ism classification. Therefore, we add to our informal list of obstructions to

orientation reversal not the Reidemeister-Franz-torsion itself but suggest the

item “Reidemeister-Franz-torsion plus the oriented homotopy type”. This is an

obstruction to topological amphicheirality.

2.5 Characteristic numbers

In this section we review which characteristic numbers can distinguish between

oppositely oriented manifolds. The overall reference for this section is [MS].

The Pontrjagin classes of a manifold pi(M) ∈ H4i(M) are independent of

the orientation because they are defined as Chern classes of the complexified

tangent bundle. The complexified bundle has a canonical orientation which is

determined by the complex structure and independent of the orientation of the

underlying real bundle.

Therefore, the Pontrjagin numbers of a 4n-dimensional manifold

pI(M) ∶= ⟨pi1 ∪ . . . ∪ pir , [M]⟩ for a partition I = (i1, . . . , ir) of n

reverse their sign with the orientation of M. The Pontrjagin numbers are

homeomorphism invariants of the manifold since the rational Pontrjagin classes
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in H4i(M;Q) are homeomorphism invariants [Novikov]. Hence, if a 4n-
dimensional manifold has a nonzero Pontrjagin number, it is topologically

chiral.

Pontrjagin numbers can be extended to comprise rational linear combina-

tions of the numbers above. An exceptional rational Pontrjagin number is the

signature as a homotopy invariant (see Section 2.2), which can be expressed

by Hirzebruch’s signature theorem both as a Pontrjagin number and as the

signature of the intersection form.

The Euler characteristic, the characteristic number corresponding to the Euler

class, is independent of the orientation since it is the alternating sum of the

Betti numbers. Stiefel-Whitney numbers (with values in Z/2) are unoriented

bordism invariants and thus independent of the orientation.

This is also the place for a comment on the difference between orientability

and amphicheirality. A manifold is orientable if and only if its first Stiefel-

Whitney class w1(M) ∈ H1(M;Z/2) is zero. This can be thought of as the

answer to the “existence question for orientations”. The “uniqueness question”

has traditionally the answer that an orientable manifold has always two possible

orientations. Another point of view is to ask not only about the orientation but

about the orientable manifolds themselves. An amphicheiral orientable mani-

fold defines a unique oriented manifold (unique up to orientation-preserving

diffeomorphism, homeomorphism, . . .), whereas there are two possibilities for

a chiral manifold. While the existence question has a simple, definite answer,

the uniqueness problem in this sense is apparently much more complicated,

and the content of this thesis can be regarded as its fundamentals.

Two (oriented, closed, smooth) manifolds are oriented bordant if and only

if they have the same Stiefel-Whitney and Pontrjagin numbers [Wall60]. A

manifold with zero Pontrjagin numbers is nullbordant or an element of order

2 in the oriented bordism group. Thus, a manifold is oriented bordant to its

negative if and only if all its Pontrjagin numbers vanish, as was remarked in

Chapter 1. See also the stronger statement in Theorem 69.

An almost complex manifold has a canonical orientation given by the com-

plex structure on its tangent bundle. Let τ denote the tangent bundle of an

almost complex manifold M, equipped with a complex structure. If the dimen-

sion of M is 4n + 2, the conjugate bundle τ̅ has the same underlying real bundle

with the opposite orientation, so that τ̅ defines an almost complex structure on

the manifold −M. If the manifold has moreover a complex structure, the entire

complex structure can be conjugated by conjugating each local chart in each

local coordinate. This also reverses the orientation if the complex dimension is

odd. By the identity for Chern classes (for any complex vector bundle ω)

ck(ω̅) = (−1)kck(ω),

the Chern numbers cI of M coincide with those of −M. Indeed, there are

2n + 2 minus signs in the formula

cI(M) ∶= ⟨ci1 ∪ . . . ∪ cir , [M
4n+2]⟩ for a partition I = (i1, . . . , ir) of 2n + 1,
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namely 2n + 1 from the Chern classes and one from the fundamental class.

Therefore, the Chern classes of an almost complex, 4n + 2-dimensional manifold

cannot distinguish the orientations.

Given an almost complex manifold M of dimension 4n, there is not necessar-
ily an almost complex structure on −M. Thus, even the existence of an almost

complex structure is an obstruction to smooth amphicheirality. E. g., the mani-

fold −CP2 does not have an almost complex structure. For the corresponding

problem in the domain of complex manifolds, see [Beauville], [Kotschick92]

and [Kotschick97]. We state one exemplary fact here.

Theorem 13: Part of [Kotschick97, Thm. 2]

Let X be a compact complex surface admitting a complex structure for −X.
Then the signature of X vanishes.

The last theorem does not contribute anything new to our analysis of chirality

since the signature is already an obstruction to self-maps of degree −1. However,

Kotschick’s work on complex structures on manifolds with opposite orientations

provided a smoothly chiral, simply-connected 4-manifold with signature 0, see

Theorem 44.

Summarising, we have seen that the Pontrjagin numbers are obstructions

to smooth amphicheirality. The Euler characteristic, Stiefel-Whitney numbers

and Chern numbers in dimensions congruent 2 mod 4 do not detect chiral

manifolds. In dimensions congruent 0 mod 4, even the existence of a complex
or almost complex structure can be a distinguishing feature for the orientation

of smooth manifolds.

2.6 Exotic spheres

Exotic spheres are examples of manifolds whose differentiable structure forbids

orientation reversal but which are topologically amphicheiral. By a homotopy

n-sphere, we denote in the following always an oriented manifold. The starting

point for this section is the following theorem by Kervaire and Milnor.

Theorem 14: [KM, Thm. 1.1]

The h-cobordism classes of homotopy n-spheres form an abelian group θn
under the connected sum operation.

By the generalised Poincaré conjecture, all homotopy spheres are homeo-

morphic to the standard sphere (the work of Perelman, Freedman and Smale).

Moreover, the h-cobordism theorem says that in dimension ≥ 5, h-cobordism

classes of simply-connected manifolds coincide with oriented diffeomorphism

classes. Thus, Theorem 14 can be formulated as follows.
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Theorem 15

The oriented diffeomorphism classes of manifolds which are homeomorphic
to the standard n-sphere (“exotic spheres”) form an abelian group θn under
the connected sum operation for n ≥ 5.

The inverse of an element Σ ∈ θn is given by the manifold Σ with the opposite

orientation [KM, Lemma 2.4]. Thus, the notation −Σ for both the oppositely

oriented manifold and the negative element in the group θn does not cause

problems.

In dimensions ≤ 3 there are no exotic spheres, and the situation in dimension

4 is unknown. The groups θn in dimensions ≤ 17 are stated in Table 2.1.

Of course, all exotic spheres are topologically amphicheiral since they are

homeomorphic to the standard sphere. However, Table 2.1 yields, e. g. that

there are 13 different pairs of smoothly chiral 7-spheres (Σ,−Σ). The standard

sphere S7 (the zero element in θ7) is clearly smoothly amphicheiral, as well as

the exotic sphere which has order 2 in θ7 ≅ Z/28. In some dimensions (8, 9,

14, 16, 17 in Table 2.1) there exist exotic spheres but all are amphicheiral. In

dimensions n ≡ 3 mod 4, θn contains a large cyclic subgroup, yielding many

chiral homotopy spheres. This is due to the following fact.

Theorem 16: [Levine, §3, especially Cor. 3.20]

For n ≥ 2, the subgroup of all diffeomorphism classes of exotic (4n − 1)-
spheres which bound parallelisable 4n-manifolds is a cyclic group of order

an ⋅ 22n−2(22n−1 − 1) ⋅ (numerator of Bn
4n ) ,

where an = 1 if n is even and an = 2 if n is odd. The symbol Bn denotes the
n-th Bernoulli number (B2 = −

1

30
, B3 =

1

42
, B4 = −

1

30
, B5 =

5

66
, . . .).

Besides lens spaces, exotic spheres are another instance where the categories

of orientation-reversing maps in Section 1.3 differ. For the list of obstructions,

we note therefore that the smooth structure can be an obstruction to smooth

amphicheirality, even if the manifolds are topologically amphicheiral.

2.7 3-manifolds

Among the many specialised tools and results that exist for 3-manifolds we

present two which immediately detect chirality: the Casson invariant and homo-
logy bordism. We add them straight away to the list of obstructions.

The Casson invariant is a Z-valued homeomorphism invariant for oriented

integral homology 3-spheres [Saveliev99, esp. Ch. 12]. Its sign reverses with

the orientation. Thus, if an integral homology sphere has Casson invariant ≠ 0,
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n θn

≤ 6 0

7 Z/28

8 Z/2

9 (Z/2)3

10 Z/6

11 Z/992

12 0

13 Z/3

14 Z/2

15 Z/8128⊕Z/2

16 Z/2

17 (Z/2)4

Table 2.1: The groups of homotopy spheres in dimensions ≤ 17 [KM], [Levine].

it must be topologically chiral. The most prominent example for a manifold

whose chirality is detected by the Casson invariant is the Poincaré homology
sphere. There are many descriptions for this 3-manifold. It can be obtained, e. g.,

by identifying opposite faces of a solid dodecahedron in the appropriate way or

by 1-surgery on the right-handed trefoil knot (see the section “Surgery” below).

The Casson invariant is normed so that the value of the Poincaré homology

sphere is −1 [Saveliev99, Ch. 17.5].

Another concept, which produces chiral 3-manifolds in abundance, is homo-

logy bordism. We quote from [Saveliev99, Ch. 11.4]: Two oriented integral

homology 3-spheres are called homology cobordant “if there exists a smooth

compact oriented 4-manifold W with boundary ∂W = −Σ0 ∪ Σ1 such that the

inclusion induced homomorphisms H∗(Σi) → H∗(W) are isomorphisms.” The

homology cobordism group, denoted Θ3
Z, has the connected sum as group oper-

ation and S3 as the neutral element. The Poincaré homology sphere has infinite

order in Θ3
Z. Even more, it is known that Θ3

Z contains a free abelian group of

infinite rank. This provides us with a countable infinite number of homology

3-spheres, all of which are topologically chiral.

2.7.1 Knots and links

In this section, we review the connections between knot theory and the topo-

logy of 3-mainfolds. There are two different constructions to obtain 3-manifolds

from a link in S3: branched coverings and surgery. Both constructions jus-

tify the naming “amphicheiral” for manifolds with an orientation-reversing

self-map. In the following, we deal only with tame knots, i. e. topological
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embeddings S1 → S3 which are ambient isotopic∗ to a simple closed polygonal

curve in S3 ≅ R3 ∪ {∞}.

The following definitions are standard in knot theory and can be found, e. g.,

in [BZ, Def. 2.1], [CF, Ch. I.4], [Conway, §5], and [HTW, p. 37]. A knot K ⊂ S3

is called amphicheiral if there is an orientation-reversing homeomorphism of S3

mapping the knot to itself. If this is not possible, the knot is called chiral. The

same concept applies to links. A knot K is called reversible or invertible if, having
fixed an orientation of the knot, there is a homeomorphism (S3,K) → (S3,K)
which preserves the orientation of S3 but reverses the orientation of K. A knot

without this property is called irreversible.
There are different concepts for equivalence of knots but they effect the same

equivalence relation:

Theorem 17: [BZ, Thm. 1.10, Cor. 3.16]

Let k0 and k1 be PL-knots in S3. The following assertions are equivalent:

(a) There is an orientation-preserving homeomorphism f ∶ S3 → S3

such that f (k0) = k1.

(b) k0 and k1 are ambient isotopic.

(c) k0 and k1 are ambient PL-isotopic.

The second relation matches the picture of pulling a string through 3-dimen-

sional space but the first relation is used above for the definition of chirality

and is more useful, e. g., in the proof of Proposition 19.

There are obvious refinements and combinations of the symmetry concepts

like (+)-amphicheiral (if every homeomorphism of (S3,K) preserves the orient-
ation on K), (−)-amphicheiral (if the orientations of S3 and K can be reversed

together but not one at a time) and fully amphicheiral for amphicheiral, re-

versible knots. In the present work, however, it is sufficient to stay with the

separate concepts of chirality and reversibility as defined above.

Branched coverings of the 3-sphere
Though “reversible” and “invertible” refer to orientation reversal of the knot

itself, the orientation of the knot is irrelevant for surgery and branched cover-

ings.

We use the definition of branched coverings in the PL-category. Let M, N
be triangulated 3-manifolds and let L be a one-dimensional subcomplex in N .

According to [PS, §22], a branched covering with covering manifold M, base N
and branching set L is a continuous map p ∶ M → N such that K ∶= p−1(L) is a
one-dimensional subcomplex in M and the restriction p∣M∖K ∶ M ∖ K → N ∖ L
is a covering map. Although the branching set of a branched covering can be

∗ Two embeddings f0 , f1 ∶ X → Y are called ambient isotopic if there is a homeomorphism

F ∶ X × I → Y × I such that pr
2
○F = idI , pr1 ○F∣t=0 = f0 and pr

1
○F∣t=1 = f1. The analogous

definition is valid in the PL-category.
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an arbitrary 1-dimensional subcomplex, for the following definition of a cyclic

branched covering it is required that L is a closed submanifold. A branched

covering is k-fold cyclic if the restriction p∣K ∶ K → L is a homeomorphism,

and for every point x ∈ K, there are neighbourhoods U ⊂ M of x and V ⊂ N
of p(x) such that the projection is homeomorphic to an interval times the

standard k-fold covering z ↦ zk in the complex numbers. More precisely, let

Br ⊂ C be the open disk of radius r, then U and V are required to fit into the

following diagram:

U

p

homeomorph.
(−1, 1) × B1 (x , z)

V
homeomorph.

(−1, 1) × B1 (x , zk)

(1)

The horizontal homeomorphisms are required to map K ∩ U and L ∩ U to

(−1, 1) × {0}.

Lemma 18

Let p ∶ M → N be a cyclic branched covering with branching set L ⊂ N.
Every homeomorphism f ∶ (N , L) → (N , L) is covered by a homeomorphism
f̅ ∶ M → M.

Proof. Since p ∶ M ∖ K → N ∖ L is a covering in the ordinary sense, the homeo-

morphism f on N ∖ L lifts to a homeomorphism f̅1 of M ∖K. Since p∣K ∶ K → L
is a homeomorphism, we can define f̅2 ∶ K → K simply by p−1 ○ f∣L ○ p.

M ∖ K
f̅1

covering map

M ∖ K

p

K

homeomorphism p

f̅2 K

p

N ∖ L
f
∣N∖L

N ∖ L L
f
∣L

L

The maps f̅1 and f̅2 glue together to a continuous map f̅ ∶ M → M. Indeed,

continuity has to be checked only at points x ∈ K. In a neighbourhood of

every point in K, the topology is induced from the standard metric on R ×C

via the homeomorphisms in (1). By the pictures in (1) it is clear that the ε-δ-
criterion for f “lifts” to f̅ (in the appropriate sense), hence f̅ is continuous

everywhere.

Proposition 19

Let the closed 3-manifold M have a map to S3 which is a cyclic branched
covering over an amphicheiral link. Then M is amphicheiral (by a diffeo-
morphism).
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Proof. Let L denote the link and let f ∶ (S3, L) → (S3, L) be an orientation-

reversing homeomorphism. By Lemma 18, f is covered by a homeomorphism

f̅ ∶ M → M which clearly reverses the orientation outside the preimage of the

branching set L. Since this submanifold has codimension 2, the orientation re-

versal on the open manifold M ∖ p−1(L) implies that the orientation is reversed

on M. In dimensions ≤ 3, every homeomorphism can be smoothed (preserving

the degree), so there is actually an orientation-reversing diffeomorphism.

The condition “cyclic” in Proposition 19 is necessary: Hilden, Lozano and

Montesinos showed that every closed, orientable 3-manifold can be obtained as

a branched covering over S3, branched over the figure-eight knot [HLM]. (The

figure-eight knot is called “universal” because of this property.) Since chiral

3-manifolds exist and the figure-eight knot is clearly amphicheiral (Figure 2.2),

Proposition 19 cannot hold for arbitrary branched coverings of S3.

Rotate by 180°

in the plane

of the paper

Ð→

Pull the long arc

over the knot

Mirror images

Figure 2.2: The figure-eight knot is amphicheiral [Flapan, p. 22].

Given a link L in S3, a cyclic k-fold covering which is branched over L can be

constructed as follows (for a more detailed description see [Flapan, p. 85 ff.]).

Let V be a tubular neighbourhood of L, thus V is a union of solid tori with

core L. Denote the complement S3 ∖ V by Z. Let S be a Seifert surface for L.
Cut Z open along the surface S ∩ Z and glue k copies of the result together

along the cut surface. This is possible since a Seifert surface is oriented, so

there are two disjoint copies of the surface in the cut open manifold. The

result X is a compact 3-manifold with a union of tori as boundary. We have

a k-fold cyclic unbranched covering X → Z, where the projection ∂X → ∂Z
is the covering induced by meridional rotation about 2π/k on the tori in ∂X.
On the other hand, we have the standard k-fold cyclic covering of the tubular

neighbourhood V , whose branching set is the link L. This can be pictured

again by the cylinders in diagram (1). (Close the cylinder to a solid torus,

possibly with a Dehn twist. The spokes of the “wheel” in (1) correspond to a

collar of the link in the Seifert surface.) The cyclic covering on the boundary

corresponds to the covering ∂X → ∂Z on the boundary of X, so we can glue

the solid tori back on X and obtain the desired closed 3-manifold.
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We point out that this construction does not depend on an orientation of

the link. The orientation of the constructed manifold is determined by an

orientation on S3.
In general, a branched cyclic covering is not uniquely determined by its base,

the branching set and the branching index, but for a branched double covering

of S3, the result is unique up to fibre-preserving homeomorphism ([Flapan,

p. 78], see also [Rolfsen, 10.F.5–10.F.6]; for the way in which an orientation of

the link L influences a branched cyclic covering, but not the orientation and

not for double coverings, see [Rolfsen, 10.C.2]). We can therefore speak of the

branched double covering of a link in S3 without ambiguity.

Using the contrapositive of Proposition 19, one can show that some knots

and links are chiral. The following exemplary facts are not at all new, but it

is interesting to see that chirality of knots and links can be proved without

any link invariants or link polynomials. These results of Rolfsen refer to an

appropriate orientation on S3, otherwise the negatively oriented manifolds are

obtained. The links in question are displayed in Figure 2.3.

• The twofold covering of S3 branched over the right-hand trefoil is the lens

space L3(1, 1) [Rolfsen, 10.D]. Since this lens space is chiral by Corollary

10, the trefoil knot must be, too.

• The twofold covering of S3 branched over Whitehead’s link is the lens

space L8(1, 5) [Rolfsen, 10.C.5]. Again, since this lens space is chiral,

Whitehead’s link must be, too.

Figure 2.3: The right-hand trefoil and Whitehead’s link.

We have seen that branched cyclic coverings over an amphicheiral link on S3

are always amphicheiral manifolds. In the opposite direction, however, chiral

knots or links do not necessarily produce chiral manifolds.

Theorem 20: [Kanenobu]

There exist chiral (even prime) knots whose 2-fold branched covering spaces
are diffeomorphically amphicheiral.

Surgery
The second construction of amphicheiral 3-manifolds from amphicheiral links

is by surgery. A reference for the following explanations is [Saveliev99], in

particular Ch. 2.2. For simplicity, the construction is described for a knot but
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can be extended to links in an obvious manner. Given a knot K in S3, let
V ≅ S1 × D2 be a tubular neighbourhood and Z ∶= S3 ∖ V . The result Q of

the surgery along K is obtained by gluing a solid torus S1 × D2 back to Z by

a homeomorphism of tori f ∶ ∂(S1 × D2) → ∂Z. The resulting manifold Q is

determined up to homeomorphism by the isotopy class of the unoriented curve

in ∂Z which is the image of a meridian {∗} × ∂D2. This curve is determined by

a pair of integers (p, q) as follows: A meridian m of V represents a generator of

H1(Z) ≅ Z, which is unique up to isotopy and is called the canonical meridian.
This is complemented by a second curve l , unique up to isotopy, such that

m and l generate H1(∂V) and l is the zero element in H1(Z). The curve l is
called the canonical longitude.

Furthermore, the curves m and l must be oriented, see [Saveliev99, Ch.2.2].

An orientation of Z is given by the standard orientation on S3 ≅ R3 ∪ {∞}. If

m and l intersect in a point c ∈ ∂Z, the orientations on m and l are chosen so

that the triple (orientation of m, orientation of l , normal vector on c pointing
inside Z) has the same orientation as K. The indeterminacy that (m, l) may

be replaced by (−m,−l) is irrelevant, see below.
The meridian {∗} × ∂D2 is now isotopic to a curve that winds p times

around m and q times around l for two relatively prime integers p, q. Since
(p, q) and (−p,−q) represent the same unoriented curve, the pair (p, q) can be

represented by a reduced fraction p/q ∈ Q∪ {∞}. In the special case p/q = 1/0,
the resulting manifold Q is the original sphere S3. Quoting Saveliev, “surgeries

of the type described are called rational. A surgery is called integral if q = ±1.”
In the diagrams below, the numbers on each link component designate

the winding number p/1 for integral surgery. Integral surgeries can also be

described by framed links, see [Saveliev99, Ch. 3.1].

By [Saveliev99, Ch. 3.4], if a manifold Q is obtained by rational surgery on

a link L, the manifold with the opposite orientation, −Q, is obtained from the

mirror image of the link with the negative surgery coefficients. (Saveliev writes

only about integral surgery since he deals with the linking form in the same

chapter. His arguments are nevertheless valid for rational surgery, too.) The

orientation on the link complement is reversed by a reflection, which turns the

link into its mirror image. The opposite orientation of the link complement

causes also the opposite orientation for the pairs (m, l) of meridian and lon-

gitude in the torus boundary components. Therefore, the surgery coefficients

change their sign on each link component.

Proposition 21

Consider a link where every component has been assigned a rational number
(the surgery coefficients). If the link is ambient isotopic to its mirror image
with the negative of all surgery coefficients, the resulting manifold is amphi-
cheiral. In particular, 0-surgery along an amphicheiral link always produces
an amphicheiral manifold.
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Example 22

The following link is ambient isotopic to its mirror image with all framing
coefficients reversed.

k −k

(k ∈ Z)

Therefore, surgery on this link must produce an amphicheiral manifold.
In fact, we obtain the lens space Lk2+1(1, k), which is amphicheiral because
k ⋅ (−k) ≡ 1 mod (k2 + 1). This is proved in [Saveliev99, 2.3]. In the special
case k = 0, we have L1(1, 0) = S3.

This example is in fact a special case of a chain of arbitrary length: Integral

surgery on the link

. . .

k1 k2 k3 kn−2 kn−1 kn

(ki ∈ Z)

gives the lens space Lp(1, q), where p ∶= εan/ gcd(an , bn), q ∶= εbn/ gcd(an , bn),
the sign ε = ±1 is chosen to make p ≥ 0 and an, bn are recursively defined by

a1 ∶= kn , b1 ∶= −1, ai ∶= ai−1kn−i+1 + bi−1, bi ∶= ai−1.

If one sets L0(1, q) ∶= S2 × S1, the formula above makes always sense, and the

proof in [Saveliev99, 2.3] can be read to encompass the special cases L0(1, q)
and L1(1, q), too. If ki = −kn−i+1 for all i, this construction yields more amphi-

cheiral lens spaces since the link above is then ambient isotopic to its mirror

image with all framing coefficients reversed.
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Examples in every dimension ≥ 3

In this chapter, we prove our first main result: In every dimension greater than

or equal to 3, there is a closed, orientable manifold that is chiral in the strongest

sense, i. e. it does not admit a continuous self-map of degree −1. Later, this

theorem will be extended, and the essential part is contained in Propositions 71

and 74, but for a clearer line of thought, we prove the basic statement now.

The theorem is proved in two steps: First, a series of examples in every odd

dimension is constructed (Section 3.1). Then we use cartesian products of chiral

manifolds to produce even-dimensional chiral manifolds in all dimensions

n ≡ 2 mod 4, n ≥ 6 (Section 3.2). In dimensions congruent 0 modulo 4, many

examples were already known, like the projective spaces CP2k or any other

manifold with nonzero signature.

Given these examples, the list of obstructions to orientation reversal can be

extended by novel entries. Since we search for manifolds which are chiral in the

strongest sense, the obstructions in this and in the subsequent chapters always

forbid orientation-reversing homotopy equivalences or even self-maps. Thus,

most of the obstructions will refer to properties which are already manifest in

the homotopy type of the manifolds involved.

The new examples in odd dimensions are Eilenberg-MacLane spaces. Con-

sider a self-map f ∶ X → X of an Eilenberg-MacLane space. Since the homo-

topy class of f and the effect of f on the homology depends only on the

endomorphism of the fundamental group f∗ ∶ π1(X , x0) → π1(X , x0), we can

add the fundamental group and its endomorphisms to the list of obstructions.

Another point of view is suggested by Lemma 28. The new examples are also

mapping tori F → X → S1 which are twisted in a way such that

• every self-map f of X is homotopic to a fibre-preserving map,

• the degree of f on X is given by the product of the degrees on the fibre

F and the base S1,

• the degrees of the maps on F and S1 are coupled: if they are ±1 they are

either both +1 or both −1.

Since the fibre and the base are both amphicheiral, the obstruction must lie

in the monodromy of a mapping torus, or more generally spoken in the twisting
of a fibre bundle.

29
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For the chirality of the even-dimensional examples, we use the cup product
structure in cohomology in a way which cannot be reduced to the intersection

or linking form as in the simpler examples of Chapter 2.

3.1 Examples in every odd dimension ≥ 3

Theorem 23

In every odd dimension ≥ 3, there is a closed orientable manifold that does
not admit a continuous map to itself with degree −1.

Examples of such manifolds will be provided by mapping tori of n-dimen-

sional tori Tn = S1 × . . . × S1. Although the base space S1 and the fibre Tn

are amphicheiral, the fibration is twisted in a way that makes orientation re-

versal impossible. We can exclude orientation-reversing maps by studying

the endomorphisms of the fundamental group. Therefore, we first work out

some properties of the kind of groups which we will encounter as fundamental

groups.

Lemma 24

Abelianisation is a right exact functor.

Although abelianisation as a functor is left adjoint to the inclusion of abelian

groups into all groups, the simple category-theoretic argument “left adjoint

functors are right exact” only applies to abelian categories. Therefore, the

exactness property is checked ad hoc.

Proof. Clearly, abelianisation is functorial. Consider the following commutat-

ive diagram, where the middle row is assumed to be exact and the columns

are exact by definition of the commutator subgroup and abelianisation. The

surjectivity of the map [B, B] → [C ,C] follows from the surjectivity of B → C.

1 1

[B, B] [C ,C] 1

A B C 1

Aab Bab Cab
1

1 1 1

∗
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The homomorphism Bab → Cab is surjective since the composition in the square

∗ is surjective. The composition at Bab is trivial since every element of Aab

lifts to A and the middle row is exact.

If an element [b] ∈ Bab maps to e ∈ Cab, its representative b ∈ B maps to

a product of commutators ∏i[ci , c
′
i] ∈ C. Let bi resp. b′i be preimages of ci

resp. c′i in B. Then b −∏i[bi , b
′
i] has the same image [b] in Bab but maps to

the neutral element in C. Hence it has a preimage a ∈ A. Its vertical image

[a] ∈ Aab is a horizontal preimage for [b] ∈ Bab.

Lemma 25

Let the group G be a semidirect product of its subgroups N and H, i. e. there
is a split extension

1→ N → G → H → 1.

Since N is a normal subgroup of G, the commutators [g , n] with g ∈
G, n ∈ N lie in N. If these commutators generate Nab then abelianisation
induces an isomorphism Gab → Hab.

Proof. Lemma 24 results in a diagram with exact rows

1 N G H 1

Nab Gab Hab
1.

Each commutator [g , n] is zero in Gab but not necessarily in Nab. Since Nab

is generated by these elements, the map Nab → Gab is the zero homomorphism.

Corollary 26

Given a semidirect product G ≅ N ⋊ H, if [G ,N] = Nab and H is abelian,
the normal subgroup N is the commutator subgroup [G ,G], and G is a
semidirect product G ≅ [G ,G] ⋊ Gab. The splitting map Gab ↪ G can be
chosen as the old splitting map H ↪ G precomposed with the isomorphism
Gab → Hab = H.

In our examples, H will be isomorphic to Z. Every extension of a free

group splits, so an exact sequence always yields a semidirect product. Define a

homomorphism

ψ ∶ H → Out(N), h ↦ [n ↦ s(h)ns(h)−1].

This definition might depend on the choice of a splitting s ∶ H → G. However,
since two choices of s(h) differ by an element of N , we obtain a well defined

map ψ to the outer automorphism group.
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If we restrict N to abelian groups, the distinction between Aut(N) and

Out(N) becomes superfluous. Given a splitting map s ∶ H → G, we get a well-

defined relation in G

s(h)n = ψ(h)(n)s(h) for all h ∈ H, n ∈ N . (1)

Now consider an endomorphism T of G. If [G ,N] = Nab, the normal sub-

group N is preserved by T because it is the commutator subgroup [G ,G].
Let p denote the given map G → H. This defines another endomorphism

TH ∶= (p ○ T ○ s) ∶ H → H. Note that TH does not depend on the choice of s
since T preserves ker p = [G ,G].
Furthermore, T has to preserve the above relation (1):

T(s(h)n) = T(ψ(h)(n)s(h))
⇒ T(s(h))T∣N(n)T(s(h))−1 = T∣N(ψ(h)(n))

From the relation p ○ s = idH it follows that T(s(h)) and s(TH(h)) differ
by an element x ∈ ker p = N , i. e. T(s(h)) = s(TH(h))x. Since N is abelian,

conjugation xT∣N(n)x−1 by this element has no effect, and we get

s(TH(h))T∣N(n)s(T(h))−1 = T∣N(ψ(h)(n))
⇒ ψ(TH(h))(T∣N(n)) = T∣N(ψ(h)(n)).

The last line is independent of s. In summary, we have proved the following

Proposition 27

Let 1 → N → G → H → 1 be an exact sequence of groups, with N being
abelian and H ≅ Z. Define the homomorphism ψ ∶ H → Aut(N) as above by
conjugation. Suppose also that (ψ(h) − idN) is surjective for some h ∈ H.∗

A necessary condition for T∣N ∶ N → N and TH ∶ H → H being induced
from an endomorphism of G is

ψ(TH(h))(T∣N(n)) = T∣N(ψ(h)(n)) for all n ∈ N, h ∈ H.

Keeping this condition in mind for later, we now construct manifolds fitting

into this algebraic setting. As mentioned above, we will consider mapping tori

of n-dimensional tori Tn ∶= S1 × . . . × S1.
Let f ∶ Tn → Tn be an orientation-preserving diffeomorphism and define the

mapping torus M f as the quotient space

M f ∶= Tn × [0, 1] / (x , 0) ∼ ( f (x), 1). (2)

∗ Cf. Lemma 25, where a weaker condition was used.
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M f is a closed, connected, orientable manifold of dimension n + 1. Note

that M f is a fibration, where the base space as well as the fibre are K(π, 1)-
manifolds. From the exact sequence of homotopy groups it follows that M f itself

is a K(π, 1)-manifold, and its fundamental group fits into the exact sequence

1→ π1(Tn) → π1(M f , x0) → π1(S1) → 1

≅ ≅

Z
n

Z

The basepoint x0 ∈ M f is given below, when we specify the CW-structure.

For π1(Tn) and π1(S1), the basepoint is not specified since these groups are

abelian.

We orient the circle such that the positive generator r ∈ H1(S1) follows the
cycle [0, 1]/{0, 1} in the positive direction. We now want to show that

ψ(r) = f∗ ∶ H1(Tn) → H1(Tn).

Note that we sometimes replace π1(S1) and π1(Tn) by H1(S1) and H1(Tn)

resp. to highlight the fact that these are abelian groups.

Give S1 its usual CW-structure with one 0-cell and one 1-cell, and Tn the

corresponding product CW-structure. We replace f by a homotopic cellular

map f ′ so that M f ′ is not necessarily a manifold but is homotopy equivalent to

M f . For convenience, let the basepoints of Tn, M f ′ and S1 be their respective
unique 0-cells. All fundamental groups in the following will refer to these

basepoints.

The subcomplex Tn ∨ S1 ⊂ M f ′ has fundamental group

π1(Tn) ∗ π1(S1) ≅ Zn ∗Z.

Let ai (i = 1, . . . , n) be a system of generators for π1(Tn) and r the positive

generator of π1(S1). The 2-cells of the relative CW-complex (M f ′ , Tn ∨ S1)
generate the relations

rai = f ′∗(ai)r,

as can be seen from the following scheme using the identification made in (2).

Comparison with (1) shows that ψ(r) is indeed equal to f∗ = f ′∗.

2-cell

0 r 1

0 r−1 1

ai at 1
a−1i at 0

∼

f ′∗(a−1i ) at 1

Now let T ∶ M f → M f be a continuous map. The map T is homotopic to a

basepoint-preserving map, so we assume this property w. l. o. g. Since M f is a

K(π, 1)-manifold, the homotopy class of T and thus the effect on orientation is

determined by the induced map on π1(M f , x0). We write T∗ for the induced
map on homology and homotopy in any degree.
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Lemma 28

Let f ∶ Tn → Tn be an orientation-preserving diffeomorphism such that the
difference f∗ − id is surjective on H1(Tn). Let T ∶ M f → M f be a continuous
map. The induced map T∗ on Hn+1(M f ) ≅ Z is given by

det((T∗)∣N) ⋅ det((T∗)H),

where in our case, N = π1(Tn) ≅ Zn and H = π1(S1) ≅ Z.

Proof. The strategy is to show that T is homotopic to a fibre-preserving map

and then to exploit naturality of the Serre spectral sequence.

Consider the diagram

M f
T

p

M f

p

S1 t S1

where p is the projection in our fibre bundle and t has to be defined.

Since there is a natural bijection [M f , S1] ≅ H1(M f ), which is isomorphic

to Z, this diagram commutes up to homotopy, with the map t being any

(basepoint-preserving) map with the correct degree.

By the homotopy lifting property, T is homotopic to a fibre-preserving map

(and still preserving the basepoint), so we can replace T w. l. o. g. by this map.

Now we are in the situation of a commutative diagram

Tn

T
∣Tn

M f
p

T

S1

t

Tn M f
p

S1

so that we can apply the naturality of the Serre spectral sequence. To be precise,

we consider the E2 term of the homology spectral sequence for the fibration p.
The only term with total degree at least n + 1 is E2

1,n = H1(S1;Hn(Tn)). A priori,
the coefficients are local, but since we specified f ∶ Tn → Tn as orientation-

preserving, the coefficient group is in fact constant. Since there are no differ-

entials from or to E2
1,n, we have E2

1,n = E
∞
1,n. Since there are no other terms in

degree n + 1, we have a natural isomorphism H1(S1;Hn(Tn)) ≅ Hn+1(M f ) ≅ Z.

The word “natural” here refers to fibre-preserving maps of M f , as always in the

context of the Serre spectral sequence. Note that the map t∗ ∶ H1(S1) → H1(S1)
coincides with (T∗)H . Furthermore, (T∣Tn)∗ = (T∗)∣N is given by the determ-

inant of the map on π1(Tn) ≅ Zn as is proved by the cohomology product

structure of the n-torus.
The induced map on H1(S1;Hn(Tn)) is the tensor product of the two maps

above, hence the lemma is proved.
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Having chosen a basis for H1(Tn) ≅ Zn, every invertible matrix A ∈ SL(n,Z)
can be realised as the induced map on H1(Tn) of an orientation-preserving

diffeomorphism f ∶ Tn → Tn. Hence, we can construct a chiral (n + 1)-manifold

under the following circumstances:

Lemma 29

Suppose there is a matrix A ∈ SL(n,Z) such that

(a) det(A− id) = ±1,

(b) the equation AB = BA has no solution B ∈ GL(n,Z), detB = −1,

(c) the equation A−1B = BA has no solution B ∈ SL(n,Z).

Then a mapping torus M f with f ∶ Tn → Tn realising A on H1(Tn) ≅ Zn

has no map onto itself with degree −1.

Proof. This is a consequence of Proposition 27 and Lemma 28. For the reader’s

convenience, we list the correspondence between the notations here and in

Proposition 27:

A = f∗ = ψ(1), A−1 = ψ(−1),

TH(1) = {
+1

−1
, T∣N = B.

For odd n, this method fails because B = −A is a solution for equation (b).

This is the reason why this approach does not yield examples in even dimen-

sions n + 1. For even n ≥ 2, we construct an example in each dimension, thus

proving Theorem 23.

It is shown that every matrix A ∈ M(n × n;Z), for n even, with characteristic

polynomial

χA(X) = Xn − X + 1

fulfills the lemma. Such a matrix is given, e. g., by the following scheme:

A ∶=

−1 1 0

0 In−1

The value χA(0) = 1 guarantees A ∈ SL(n,Z), while χA(1) = 1 ensures condi-
tion (a). Next we show that there is no solution to equation (b). The matrix

A has no real eigenvalues. Indeed, χA(X) is always positive for real X, which
can be shown easily. Since the coefficients are real, the zeros occur as pairwise

conjugate complex numbers

λ1, λ̅1, . . . , λn/2, λ̅n/2 ∈ C ∖R.
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We claim that the zeros are distinct, i. e. χA has no multiple zeros over C.

For this, we have to show that χA and χ′A have no common zeros. We have

χ′A(X) = 0 ⇔ nXn−1 − 1 = 0 ⇔ Xn−1 =
1

n
.

Insert this into χA(X) = 0:

1

n
X − X + 1 = 0 ⇔ X =

n
n − 1

.

The latter is a contradiction to X ∉ R, hence all zeros of χA are distinct. Thus,

A is diagonisable (over C), and we have

detA =
n/2
∏
i=1

λi λ̅i =
n/2
∏
i=1
∣λi ∣2.

Suppose now that AB = BA, detB = −1. Expressing this algebraically, B lies

in the centraliser of A, written B ∈ Z(A). We use the following lemma, whose

proof is postponed until we have finished Theorem 23, since the lemma is

purely algebraic and valid in a general setting.

Lemma 30

Let A ∈ M(n × n;K) for any field K and suppose A has distinct eigenvalues
in an algebraic closure K̅. Then

B ∈ Z(A) ⇔ B is polynomial in A (with coefficients in K).

By this lemma, B is also diagonisable. Let p ∈ Q[X] be a polynomial such

that B = p(A). Then B has eigenvalues p(λi), p(λ̅i) and determinant

detB =
n/2
∏
i=1

p(λi)p(λi) =
n/2
∏
i=1
∣p(λi)∣2 ≥ 0

This contradicts detB = −1, hence equation (b) has no solution.

Now we show that there is no solution to equation (c). Suppose BA = A−1B
for some B ∈ SL(n,Z). Then BAB−1 = A−1, i. e. A and A−1 are similar. Hence,

they have the same eigenvalues. Since we have

λ is an eigenvalue of A ⇔ λ−1 is an eigenvalue of A−1,

we have

χA(λ) = 0 ⇔ χA(λ−1) = 0.

Hence, χA(X) = Xn − X + 1 and Xn χA(X−1) = Xn − Xn−1 + 1 must have the

same zeros. Note that we can neglect 0 as a possible eigenvalue/zero of the

polynomials.
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Since we have seen that all complex zeros of χA(X) are distinct, the second
polynomial cannot have the same zeros for n > 2.
For n = 2, the two eigenvalues of A are in fact inverse to each other. One

shows by hand that BA = A−1B implies that B is of the form

B = ( a b
a + b −a) with a, b ∈ Z.

Then detB = −(a2 + ab + b2) = − 1

2
(a2 + (a + b)2 + b2), which is never posit-

ive. Thus, there is no solution to (c) in any case. With this argument, the proof

of Theorem 23 is complete.

We still have to prove Lemma 30. The implication “⇐” is obvious. For

the opposite direction, we work over a splitting field L ⊇ K of χA. Since A
has distinct eigenvalues, all eigenspaces are one-dimensional. Furthermore,

since B commutes with A, it respects these eigenspaces. Fix a basis of Ln

for which A is diagonal. Then B is also diagonal with respect to this basis.

Since A has distinct eigenvalues λi , the Vandermonde matrix M = (mi , j) with

mi , j ∶= λ
j
i (i = 1, . . . , n; j = 0, . . . , n − 1) is invertible. Thus, we can find coeffi-

cients p = (p0, . . . , pn−1) ∈ Ln such that Mp = b, where b is the vector consisting

of the eigenvalues of B. This means exactly B = p(A), where p is the polynomial

with coefficient vector p.
At this stage, B is a polynomial expression in A but maybe with coefficients

in L, not just K. Since L ⊇ K is a splitting field of a separable polynomial (i. e. a

polynomial without multiple roots), it is a Galois extension [Lang, V.3 and V.4].

Let the Galois group AutK(L) act on matrices componentwise and on poly-

nomials coefficientwise and let σ be an arbitrary element in the Galois group.

Then

p(A) = B = Bσ = (p(A))σ = pσ(Aσ) = pσ(A).

Since all eigenvalues of A are distinct, the characteristic polynomial χA of

degree n is the minimal polynomial, and the powers A0, . . . ,An−1 are linearly
independent over L. Hence, the above equation implies that all coefficients of

p are invariant under the action of σ . By the fundamental theorem of Galois

theory, the coefficients lie in K.

3.2 Products of chiral manifolds

The chiral manifolds that we have constructed in odd dimensions can be used

to obtain examples in even dimensions. In dimensions which are divisible by

four, the signature is a well-known obstruction to self-maps of degree −1, so

the dimensions in which truly new information is obtained are those congruent

2 modulo 4 starting from 6.
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We show that under certain conditions, products of chiral manifolds are

again chiral. This method will be reused to prove the existence of simply-

connected, chiral manifolds in all higher dimensions. In order to bundle similar

ideas in one place, we do not stop when Theorem 23 is finally proved but

continue with the construction of simply-connected chiral manifolds in all but

a few dimensions. Chapter 4 is then dedicated to those more complicated cases.

Theorem 31

Let Σ be a rational homology sphere and M a closed, connected, orientable
manifold of the same dimension which is not a rational homology sphere. If
neither of these manifolds admits a map to itself of degree −1, then neither
does the product Σ ×M.

The somewhat peculiar condition that M is not a rational homology sphere

becomes clear in Lemma 33. This lemma forms the core of the argument and

is itself an old and beautiful application of Poincaré duality.

Example 32

Let Σ be a lens space of dimension n ≡ 3 mod 4 with fundamental group of
prime order p ≡ 3 mod 4, and let M be a chiral mapping torus of the same
dimension, as constructed in the previous section. This yields examples of
chiral manifolds in each dimension congruent 6 modulo 8.

Proof. We have H1(M) = π1(M)ab ≅ Z, so M is not a rational homology sphere.

Proof of Theorem 31. Let n be the dimension of Σ and M. By the Künneth

theorem, we have

Hn(Σ ×M)free ≅ Hn(Σ) ⊕Hn(M) ≅ Z2
. (3)

Consider the cohomology classes in Hn(Σ) and Hn(M) that are Kronecker
dual to the fundamental classes [Σ], [M] and denote their images in the free

quotient Hn(Σ ×M)free by [Σ]∗ resp. [M]∗.
Let T ∶ Σ ×M → Σ ×M be a continuous map. The effect on Hn(Σ ×M)free

is given (with respect to the basis [Σ]∗, [M]∗) by an integral matrix

(
a b
c d) .

Since [Σ]∗ ∪ [M]∗ is a generator of H2n(Σ ×M) ≅ Z, the mapping degree of

T is given by ad + (−1)nbc.
Now denote the usual inclusions and projections by

iΣ ∶ Σ → Σ ×M , iM ∶ M → Σ ×M ,

pΣ ∶ Σ ×M → Σ, pM ∶ Σ ×M → M .
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Since the first isomorphism in (3) is induced by these inclusions and pro-

jections, a can be recovered, for example, as the degree of pΣ ○ T ○ iΣ ∶ Σ → Σ,

and b is the degree of

f ∶= (pM ○ T ○ iΣ) ∶ Σ → M .

Now we use the following

Lemma 33: [Hopf, Satz IIIa]

Let f ∶ X → Y be a map of n-dimensional closed, connected, orientable
manifolds. If f has nonzero degree, then the Betti numbers of X are greater
than or equal to the Betti numbers of Y.

This lemma goes back to Hopf ’s seminal paper on the Umkehr homomorph-

ism. In modern mathematical language, a proof can be given in a few lines,

see below. By the contrapositive of this lemma, b = 0, so the degree of T is

equal to the product ad. Since neither of the factors can be −1 by assumption,

T cannot reverse the orientation.

Proof of Lemma 33. Let f u ∶ H∗(Y ;Q) → H∗(X;Q) be the Umkehr homo-

morphism, which is defined by the induced map f ∗ ∶ H∗(Y ;Q) → H∗(X;Q)
on cohomology and Poincaré duality on X and Y . Then the composition

f∗ ○ f u ∶ H∗(Y ;Q) → H∗(Y ;Q) is multiplication by the degree of f , as can

be seen from the following commutative diagram. (A very similar diagram

was shown in Section 1.3 to prove that a self-map of degree ±1 of a simply-

connected manifold is a homotopy equivalence.)

Hn−k(X;Q)

∩[X] ≅

Hn−k(Y ;Q)

∩ f∗[X]

f ∗

Hk(X;Q) f∗
Hk(Y ;Q)

Hk(Y ;Q) ⋅deg f

∩[X]
≅

f u

Hence, if deg f is nonzero, f∗ must be surjective.

If Σ and M have different dimensions, chirality of the product is even easier

to prove.

Theorem 34

Let Σ be a rational homology sphere of dimension s and M a closed, con-
nected, orientable manifold of different dimension m ≠ s. Also require that
Hs(M;Q) = 0. If neither of these manifolds admits a map to itself of degree
−1, then neither does the product Σ ×M.
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Proof. By the rational Künneth theorem, we have

Hm(Σ ×M) ≅ Hm(M) ⊕ (Hs(Σ) ⊗Mm−s(M)),

all understood with rational coefficients. In degree s, we have Hs(M) = 0 and

thus Hs(Σ ×M) ≅ Hs(Σ). Then, as before, we know that the degree of any

map T ∶ Σ ×M → Σ ×M is given by the product of the degrees of

pΣ ○ T ○ iΣ ∶ Σ → Σ and pM ○ T ○ iM ∶ M → M .

Since neither of those degrees can be −1, T cannot reverse orientation.

Example 35

Let d1 > . . . > dk be positive integers and let L j ( j = 1, . . . , k) be lens spaces
of dimension 4d j − 1 which are homotopically chiral (e. g. when ∣π1(L j)∣ is a
prime congruent 3 mod 4). Then the product manifold L1 × . . . × Lk admits
no orientation-reversing self-map.

Proof. This follows by applying Theorem 34 several times.

This last example finishes the construction of chiral manifolds in dimensions

≥ 3. (As was pointed out in Chapter 2, the point is a chiral 0-dimensional

manifold, and all manifolds in dimensions 1 and 2 are amphicheiral.)

• Theorem 23 treats the odd dimensions ≥ 3.

• In dimensions which are divisible by 4, there are plenty of examples with

nonzero signature.

• Dimension 6 is dealt with in Example 32.

• Finally, all dimensions which are congruent 2 mod 4 and at least 10 are

handled by Example 35.

Example 35 allows a strong conclusion:

Theorem 36

Let L = L1 × . . . × Lk be a product of lens spaces of pairwise different dimen-
sions. Then L is homotopically chiral if and only if this holds for each single
factor.

Proof. This follows immediately from Example 35 since in all other cases, L is

clearly amphicheiral.

Note that the condition of the theorem can be easily tested by Corollary 10.

We now want to apply this approach to simply-connected chiral manifolds and

cover as many dimensions as possible. As “starting dimension” we cannot use

3 as in the examples with nontrivial fundamental group. Instead, we construct

the “building blocks” from dimension 7 on.
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Proposition 37

For every even integer k ≥ 4, there is a (k − 2)-connected (2k − 1)-dimen-
sional rational homology sphere that does not admit an orientation-reversing
homotopy self-equivalence.

Corollary 38

This provides us with homotopically chiral, simply-connected manifolds in
every dimension n ≡ 3 mod 4 starting from n = 7.

Proof. Let n ∶= 2k − 1. We exhibit a closed, simply-connected n-dimensional

manifold M with the following integral cohomology:

H i(M) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z i = 0, n
Z/6 i = k
0 else.

Since −1 is not a quadratic residue modulo 6, the linking form immediately

forbids a self-homotopy equivalence of this degree.

The modulus 6 was chosen only for simplicity; every multiple of 4 or 2p,
where p is a prime congruent 3 mod 4, would do. Note that our construction

could provide an odd modulus only in dimensions with k ∈ {4, 8}, due to

the Hopf invariant one problem (see [Kosinski, Appendix, Prop. 5.2]∗). We

construct M as a linear Sk−1-bundle over Sk (that is, the sphere bundle of a

Riemannian vector bundle of rank k). Let E be the total space of the pull-back

of the tangent bundle TSk under a smooth map Sk → Sk of degree 3. TSk has

Euler class 2[Sk]∗, where [Sk]∗ denotes the Kronecker dual of the fundamental

class. Because of naturality, E has Euler class e = 6[Sk]∗.
Let M ∶= SE, the associated sphere bundle with respect to some Riemannian

metric on E. The long exact Gysin sequence [HatcherAT, 4.D]

. . . → H i−k(Sk) ∪eÐ→ H i(Sk) → H i(M) → H i−k+1(Sk) → . . .

immediately gives the announced cohomology groups. M is simply-connected

because the base space and the fibre are.

Alternatively, M can be described as the boundary of a 2k-dimensional

handlebody with one handle of index k. Details of this construction can be

found in [Kosinski, Ch. VI.12].

For completing the examples of simply-connected chiral manifolds in higher

dimensions, we still need simply-connected homotopically chiral 7-manifolds

that are not rational homotopy spheres. Explicitly, we define N1 to be the

∗ Note that the arrow ϕ∗ in the ⨉-shaped diagram on p. 231 must point in the opposite direction.

Another reference is [HatcherVBKT, p. 93 in Section 3.2].
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connected sum of S3 × S4 with a 7-manifold M7 as constructed above. Similarly,

N2 ∶= (S2 × S5)#M7. These manifolds have the following homology groups:

i Hi(N1) Hi(N2)

0 Z Z

1 0 0

2 0 Z

3 Z⊕Z/6 Z/6

4 Z 0

5 0 Z

6 0 0

7 Z Z

They are chiral because of the linking form.

Corollary 39

In every dimension n ≡ 2 mod 4 starting from 14, there is a homotopically
chiral simply-connected manifold.

Proof. In dimension 14, take the product of a simply-connected 7-dimensional

rational homology sphere M7 from Proposition 37 with either N1 or N2 and

apply Theorem 31. In higher dimensions, use products of two rational homology

spheres of different dimensions congruent 3 mod 4 and apply Theorem 34.

Corollary 40

In every dimension n ≡ 1 mod 4 starting from 21, there is a homotopically
chiral simply-connected manifold.

Proof. From dimension 25 on, we can take the product of the 14-dimensional

manifold M7 ×N2 from the previous corollary with a rational homotopy sphere

from Proposition 37. Note that, according to the rational Künneth theorem,

M7 × N2 has no rational homology in degree 11 (and of course not in higher

degrees congruent 3 mod 4). Thus, Theorem 34 applies.

For dimension 21, consider M21 ∶= M7 × N1 × N2. Here, we can argue in a

similar way as in the proof of Theorem 31, but we have to consider products of

three manifolds instead of two. Lemma 33 shows that every map M7 → N1 must

have degree zero, likewise every map M7 → N2 and N1 → N2. One checks with

the Künneth theorem that in our case, H7(M21;Q) ≅ Q3, with basis [M7]∗,
[N1]

∗ and [N2]
∗. Every automorphism of H7(M21;Q) which is induced from

a self-map of M21 is then given by a lower triangular (3 × 3)-matrix. Thus, the

induced map on [M21]∗ = [M7]∗ ∪ [N1]
∗ ∪ [N2]

∗ is given by the product of

the three degrees, neither of which can be −1.
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Simply-connected chiral manifolds

In the previous chapter, it was shown that chiral manifolds exist in all di-

mensions greater than two. Apart from the well-known examples, where

the intersection and linking forms posed obstructions to amphicheirality, the

newly constructed chiral manifolds are all Eilenberg-MacLane spaces or con-

tain them as factors. Since all the new examples depend so strongly on

the fundamental group, it is natural to ask what other factors can influence

chirality/amphicheirality. A fundamental question is in which dimensions there

are simply-connected chiral manifolds.

This problem is all the more interesting as the answer differs in low dimen-

sions from the case of arbitrary fundamental group in the last chapter.

Theorem 41

In dimensions 3, 5 and 6, every simply-connected, closed smooth (or PL or
topological) manifold is amphicheiral in the respective category.

A closed, simply-connected, topological 4-manifold is topologically amphi-
cheiral if its signature is zero. If the signature is nonzero, the orientation
cannot be reversed, not even by a homotopy equivalence.

Classification results for simply-connected manifolds exist in dimensions up

to 6. These far-reaching results are reviewed in Section 4.1, and apart from

dimension 6 the corollaries about chirality and amphicheirality are obtained

immediately. The classifying invariants in dimension 6 are considerably more

complicated. In Section 4.1.4, the necessary arguments are provided to deduce

that all simply-connected 6-manifolds are amphicheiral.

Together with Theorem 41, the main result of this chapter is the following

theorem:

Theorem 42

In every dimension ≥ 7 there is a closed, simply-connected, smooth manifold
which does not admit an orientation-reversing homotopy equivalence.

The aim was again to produce manifolds which are chiral in the strongest

possible sense, so we present homotopically chiral, simply-connected manifolds.

43
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In Section 3.2 (corollaries 38 to 40), such manifolds in all dimensions congruent

1, 2 and 3 mod 4, except 9, 10, 13 and 17, were already constructed. The complex

projective spaces CP2k clearly provide simply-connected examples in dimen-

sions congruent 0 mod 4. Homotopically chiral, simply-connected manifolds

in the remaining dimensions are proved to exist in Section 4.2 (dimensions 10

and 17) and Section 4.3 (dimensions 9 and 13).

Again, there are new obstructions to orientation reversal. For the 10- and

17-dimensional manifolds, the obstruction lies in the interplay between the

cup product structure and cohomology operations. This may not come as a

surprise since the linking form (see Appendix A.1) can also be regarded as

a combination of the cup product and the Bockstein homomorphisms. We

establish that other cohomology operations, in our case the mod-3 Steenrod

operations, can be used to prove chirality in previously unknown cases.

In the case of the 9- and 13-dimensional examples, we construct a three-stage

Postnikov approximation with appropriate k-invariants. In order to handle the

automorphisms of a three-stage Postnikov tower, we use rational homotopy

theory and the minimal model for the rational cohomology to make the prob-

lem accessible. The rational Postnikov tower, however, is not enough in our

case, and we must also extract information from the integral Postnikov tower

in order to restrict the possible automorphisms. For the list of obstruction to

orientation reversal, we propose the item “the structure of the rational minimal
model plus information from the integral Postnikov tower”.
We remark that the more general “structure of the partial Postnikov tower”

is important both as an obstruction to orientation reversal and as a condition

for amphicheirality. The Postnikov tower, from a certain stage on, is certainly

an obstruction for the chiral manifolds in dimensions 9, 10, 13 and 17 which

we construct. However, there is also a complementary proof in this chapter. In

our review of simply-connected 6-manifolds, a crucial ingredient is the proof

that there is no obstruction in the first stage of the Postnikov tower, a K(G , 2)

(see Lemma 46).

4.1 Results in low dimensions

The results are deduced in the following subsections from the classification

theorems in each dimension.

4.1.1 Dimension 3

By the Poincaré conjecture, which was proved by Perelman, every closed,

smooth, simply-connected 3-manifold is diffeomorphic to S3 (see [MT]). Hence,
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all closed, smooth, simply-connected 3-manifolds are smoothly amphicheiral.

Since every topological 3-manifold admits a smooth structure, every closed,

simply-connected topological (or PL) 3-manifold is topologically amphicheiral

resp. PL-amphicheiral.

4.1.2 Dimension 4

Simply-connected topological 4-manifolds are classified up to homeomorphism

by the intersection form. More precisely, we have the following statement

Theorem 43: Part (2) of [FQ, 10.1]

Let M, N be closed, simply-connected 4-manifolds and h ∶ H2(M) → H2(N)
be an isomorphism which preserves the intersection form. Moreover, suppose
that the Kirby-Siebenmann invariants of M and N are equal. Then there is
a homeomorphism f ∶ M → N, unique up to isotopy, such that f∗ = h.

The Kirby-Siebenmann invariant is in general an element in H4(M , ∂M;Z/2).

It does not depend on the orientation of the manifold [Rudyak]. For a closed,

connected 4-manifold, the Kirby-Siebenmann invariant is simply an element

in Z/2.

It was pointed out in Proposition 3 that a nondegenerate symmetric bilinear

form Q over Z is isomorphic to its negative if and only if the signature is zero.

By Poincaré duality and the universal coefficient theorems, H2(M) is a finitely

generated free abelian group. If H2(M) ≠ 0, the orientation on M is determ-

ined by the intersection product. Indeed, any two elements x , y ∈ H2(M) with
Q(x , y) ≠ 0 determine the orientation because the intersection product reverses

its sign with the orientation.

If H2(M) = 0, this argument is not valid. However, M is then homeomorphic

to the 4-sphere since the Kirby-Siebenmann invariant must vanish in this case

(see [FQ, 10.2B]). (This is the 4-dimensional topological Poincaré conjecture

[FQ, 7.1B].) Thus, M is topologically amphicheiral in this case, too.

With respect to smooth amphicheirality, the situation is more complicated

since a 4-manifold can have many distinct differentiable structures. Of course,

the signature is still an obstruction to amphicheirality. On the other hand,

Kotschick found a closed, simply-connected, smooth 4-manifold with signature

zero whose orientation cannot be reversed by a diffeomorphism.

Theorem 44: [Kotschick92, Thm. 3.7 and Rem. 3.9]

There exists a simply-connected, minimal compact complex surface of general
type with signature zero which is not orientation-reversing diffeomorphic to
another minimal, compact complex surface of general type.
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4.1.3 Dimension 5

Barden classified all simply-connected, closed, oriented, smooth 5-manifolds

[Barden, Thm. 2.3]. According to his results, a complete set of invariants is

given by the isomorphism class of H2(M) and a nonnegative integer or infinity,

0 ≤ i(M) ≤ ∞. There is an orientation-preserving diffeomorphism between two

manifolds with the same invariants.

The invariant i(M) is defined as follows: The second Stiefel-Whitney class

of a simply-connected manifold can be regarded as a homomorphism

w ∶ H2(M) → Z/2.

If this map is nonzero, let i(M) be the greatest integer i such that this map

factors through the mod-2 reduction map Z/(2i) → Z/2. If the map can be

lifted to Z, let i(M) be infinity. If w is the zero map, set i(M) to zero.

Since neither the isomorphism class of H2(M) nor i(M) depend on the

orientation, every closed, simply-connected, smooth 5-manifold is (orientation-

preserving) diffeomorphic to its negative. Since homology groups as well as

the Stiefel-Whitney classes are invariant under homotopy equivalences of mani-

folds [MS, p. 131], Barden’s invariants are invariants of the homotopy type.

Now, let M be a simply-connected closed, topological 5-manifold. Since

H4(M;Z/2) ≅ H1(M;Z/2) = 0, the Kirby-Siebenmann invariant of M must

vanish, so M has a PL-structure. Since PL/DIFF is 6-connected, every piece-

wise linear 5-manifold has a unique differentiable structure (see e. g. [FQ, 8.3]).

All this implies that Barden’s classification is the same for topological, PL and

smooth manifolds, and it holds equally up to orientation-preserving homotopy

equivalence, homeomorphism, combinatorial equivalence and diffeomorphism

(see [Barden, Cor. 2.3.1], except for the topological case because Barden’s paper

was written prior to the work of Kirby and Siebenmann).

4.1.4 Dimension 6

Zhubr finished in [Zhubr] the classification of all simply-connected, closed, ori-

ented 6-manifolds in the topological, PL and smooth category. He also achieved

the classification up to homotopy type. It can be extracted from his results

that every manifold of the above type is orientation-preserving homeomorphic

(resp. combinatorially equivalent or diffeomorphic) to its negative. We describe

the relevant parts of the classification and add the details for amphicheirality.

We adopt some of Zhubr’s notations: Let N̂ denote the set N∪ {∞} (without

zero). For any m, n ∈ N̂, let ρn ∶ Z/mn → Z/n be the reduction modulo n, with
the special case Z/∞ = Z. Similarly, for m ∈ N and n ∈ N̂, let ιm ∶ Z/n → Z/mn
be the multiplication by m.
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Let M be a simply-connected, closed, oriented topological 6-manifold. Con-

sider the following set of invariants:

• The third Betti number, divided by two, r ∶= 1

2
rkH3(M).

• The group H2(M), which is denoted shortly by G. Note that it is neces-
sary to give an abstract group G for the question whether the invariants

are realised by a manifold. A 6-manifold M and some isomorphism

H2(M) ≅ G is then obtained by the realisation part of the classification.

However, we start from a given manifold M, and for our purpose it is

appropriate to strictly identify H2(M) with G. This avoids complica-

tions where we otherwise would have to keep track of the choice of an

isomorphism.

• The second Stiefel-Whitney class w ∶= w2(M) ∈ H2(M;Z/2), which is

regarded as a homomorphism w ∶ G → Z/2. Define the “height” m as the

maximum in N̂ so that w can be extended to an ω ∈ Hom(G ,Z/2m) with

ρ2ω = w. The set of all such ω with maximal m is denoted by U(w).
(The height m was denoted by i(M) in the previous section on Barden’s

work. If w2(M) = 0, the definitions differ: i(M) = 0 but m = ∞, see

[Zhubr, 1.13].)

• The homology class µ ∈ H6(G , 2) that is the image of the fundamental

class [M] under the canonical homomorphism H6(M) → H6(G , 2). This

homomorphism is induced from the identity H2(M) → G under the

canonical identifications Hom(H2(M),G) = H2(M;G) = [M ,K(G , 2)].

• The Poincaré dual p ∈ G of the first Pontrjagin class p1(M) ∈ H4(M).

• The Poincaré dual ∆ ∈ G/2G of the Kirby-Siebenmann triangulation class

in H4(M;Z/2).

• Two “exotic” invariants Γω ∈ Z/2
m−1 and γω ∈ G/2m−1G. Actually, these

are functions Γ ∶ U(w) → Z/2m−1 and γ ∶ U(w) → G/2m−1G but their

values at some arbitrary ω0 ∈ U(w) determine the values at all other ω.
For this reason, Zhubr does not write the invariants as functions but as

single invariants Γω, γω which depend on the choice of ω ∈ U(w).

The classification theorem [Zhubr, Thm. 6.3] states that two manifolds M and

M′ with invariants (r,G ,w , µ, p, ∆, Γω , γω) and (r′,G′,w′, µ′, p′, ∆′, Γ′ω , γ′ω) are
oriented homeomorphic if and only if r = r′ and there exists an isomorphism

φ ∶ G → G′ such that w = φ∗(w′), φ∗(µ) = µ′, φ(p) = p′, φ(∆) = ∆′, Γφ∗ω = Γ′ω
and φ(γφ∗ω) = γ′ω.
Amphicheirality is proved by the following arguments:

1. The 6-manifold M with the opposite orientation has the invariants (r,G ,

w ,−µ,−p, ∆,−Γω ,−γω). For the “standard” invariants (r,G ,w , µ, p, ∆)
this is obvious from their well-known properties. E. g. the first Pontrjagin

class is independent of the orientation but the Poincaré duality map
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changes by a sign if the orientation is reversed. Thus, p reverses its sign

if the orientation of M is reversed.

The minus sign for the invariants Γω and γω can be deduced from the

following arguments: In [Zhubr], the symbols Γω and γω denote not only

the invariants itself but also homomorphisms

Γω ∶ tΩSpin
6 (G , 2,w) → Z/2m−1 and γω ∶ tΩSpin

6 (G , 2,w) → G/2m−1G .

See [Zhubr, 1.8] for a definition of the bordism group tΩSpin
6 (G , 2,w)

and [Zhubr, 5.18 and 5.26]∗ for the definition of the homomorphisms.

These homomorphisms do not depend on the manifold M but only on

the data G, w and ω. The first two are independent of the orientation on

M. Also, the freedom of choice for ω is not affected by the orientation,

so we choose it to be the same element in U(w) for both M and −M.

The invariants Γω(M) and γω(M) are defined as the values of Γω and

γω at M. The manifold M as an element of tΩSpin
6 (G , 2,w) is the pair

(M , id ∶ H2(M) → G), see [Zhubr, 1.9]. The negative element in this

bordism group is M with its orientation reversed, but the identification

of H2(M) with G remains untouched. Altogether, the invariants Γω(M)
and γω(M) change their signs when the orientation of M is reversed.

2. The homomorphism φ ∶= (−id) ∶ G → G induces exactly the same trans-

formation of invariants, i. e. φ∗(w) = w, φ∗(µ) = −µ, φ(p) = −p, φ(∆) =
∆, Γφ∗ω = Γ−ω = −Γω and φ(γφ∗ω) = −γ−ω = −γω. For w, p and ∆, this is

again obvious. The relations Γ−ω = −Γω, γ−ω = γω and φ∗(µ) = −µ will

be proved in the lemmas below.

Given the assertions above, this proves that every simply-connected, closed,

oriented topological 6-manifold is amphicheiral. Moreover, Zhubr shows that

the classification theorem for the smooth case is the same as above but with

the invariant ∆ always set to zero. Besides, the smooth and PL-classifications

coincide since PL/DIFF is 6-connected. Thus, every simply-connected, closed,

oriented, smooth (PL) 6-manifold is smoothly (resp. PL-)amphicheiral.

Lemma 45

For every ω ∈ U(w), we have γ−ω(M) = γω(M) and Γ−ω(M) = −Γω(M).

Proof. The theorem [Zhubr, 5.26] states that for any x ∈ Hom(G ,Z/2m−1), we
have

γω+ι2x(M) = γω(M) + µ ∩ (x
2 + ωx).

For x ∶= −ρ2m−1(ω), we have ι2x = −2ω and thus

γ−ω(M) = γω(M) + µ ∩ ρ2m−1(ω
2 − ω2) = γω(M).

∗ Note that there are a few typographical errors in [Zhubr, 5.26]: The occurrences of

tOSpin
6 (G , 2,w) and Ω

Spin
6 (G , 2,w) should be replaced by tΩSpin

6 (G , 2,w). The domain of

γω is stated correctly e. g. at the end of Section 5.19.
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The same theorem states also a formula for Γω:

⟨x , γω(M)⟩ = Γω+ι2x(M) − Γω(M) + R(µ,ω, x), (1)

where R(µ,ω, x) is defined in [Zhubr, 5.24] as

R(µ,ω, x) ∶= { ⟨ω
2x , µ⟩ + 3

2
⟨ωx2, µ⟩ + ⟨x3, µ⟩ if m = ∞,

⟨ω2x , µ⟩ + 3ι−12 ⟨ωP(x), µ⟩ + ⟨x
3, µ⟩ if m ∈ N.

The expression P(x) denotes the Pontrjagin square, a nonstable cohomo-

logy operation H2i(X;Z/2m−1) → H4i(X;Z/2m). One of its properties [Zhubr,
eq. (42)] is the relation P(ρ2m−1 y) = y2 for y ∈ H2i(X;Z/2m), so we have with

x ∶= −ρ2m−1ω as before

R(µ,ω, x) = −ρ2m−1⟨ω
3
, µ⟩ + 3ι−12 ⟨ω

3
, µ⟩ − ρ2m−1⟨ω

3
, µ⟩

= −2ρ2m−1⟨ω
3
, µ⟩ + 3ι−12 ⟨ω

3
, µ⟩

The last equation is valid for all m ∈ N̂. Together with equation (1), this gives

−⟨ρ2m−1ω, γω(M)⟩ = Γ−ω(M) − Γω(M) − 2ρ2m−1⟨ω
3
, µ⟩ + 3ι−12 ⟨ω

3
, µ⟩.

According to [Zhubr, eq. (192)], the left hand side is equal to

−(2Γω(M) + ι−12 ⟨ω
3
, µ⟩) ,

so we have

Γ−ω(M) + Γω(M) = 2ρ2m−1⟨ω
3
, µ⟩ − 4ι−12 ⟨ω

3
, µ⟩ = 0.

Lemma 46

Let G be a finitely generated abelian group. The automorphism −id ∶ G → G
induces

(−id)k ∶ H2k(G , 2) → H2k(G , 2)

on the even homology groups in degrees 0 to 6.

Proof. 1. For k = 0, this is clear since K(G , 2) is a connected space.

2. For k = 1, the assertion is true since H2(G , 2) is (though not canonically

but naturally) isomorphic to G.

3. The case G ≅ Z. Since the homology of K(Z, 2) ≃ CP∞ is free in every

degree, it suffices to check the corresponding assertion in cohomology

according to the universal coefficient theorem. In cohomology, the in-

duced homomorphisms are the desired ones since H∗(CP∞) is naturally
isomorphic to the polynomial ring Z[t] with one generator in degree 2.
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4. If the assertion is true for abelian groups G1 and G2, it holds for G1 ⊕G2.
To prove this, recall that H0(G , 2) ≅ Z and H1(G , 2) = H3(G , 2) = 0 for

all abelian groups G, see [EMcL, Thm. 20.5]. Therefore, all Tor terms

Tor(Hp(G1, 2),Hq(G2, 2))

with p + q + 1 ∈ {2, 4, 6} are equal to 0. This implies that the Künneth

homomorphism, given by the cross product map

⊕
p+q=2k

Hp(G1, 2) ⊗Hq(G2, 2)
×
Ð→ H2k(G1 ⊕G2, 2)

is an isomorphism for k ≤ 3. Besides, only terms with even p and q
contribute to the direct sum on the left hand side. Since the cross product

is natural in both factors, the maps (−id)p/2 ⊗ (−id)q/2 on Hp(G1, 2) ⊗

Hq(G2, 2) amount to (−id)(p+q)/2 = (−id)k on H2k(G1 ⊕G2, 2).

5. The previous paragraphs have reduced the problem to the case of p-cyclic
groups G ≅ Z/pr (p prime, r ≥ 1) and k ∈ {2, 3}. For p-cyclic groups,

we compare the homology Serre spectral sequences of the path loop

fibrations

K(Z, 1) PK(Z, 2) ≃ ∗

K(Z, 2)

and

K(Z/pr , 1) PK(Z/pr , 2) ≃ ∗

K(Z/pr , 2).

Reduction mod pr induces a map K(Z, 2) → K(Z/pr , 2), which in

turn induces by the path functor P a fibre-preserving map PK(Z, 2) →
PK(Z/pr , 2). This is the starting point for a morphism of the E2-stages

of the Serre spectral sequence.

The diagram below shows the relevant part of the spectral sequences.

In the lower half, we have

E2
x ,y ≅ Hx(K(Z, 2);Hy(K(Z, 1))) = Hx(CP

∞
;Hy(S1)),

and in the upper half

E2
x ,y ≅ Hx(K(Z/pr , 2);Hy(K(Z/pr , 1))).

x

y

x

y

Z 0 Z 0 Z 0 Z

Z 0 Z 0 Z 0 Z∼ ∼

Z 0 Z/pr 0 A ? B

Z/pr 0 Z/pr ? Z/pr

f1 f3 f2 f4
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According to [EMcL, Thm. 21.1], we have

A ≅ { Z/p
r if p ≠ 2

Z/pr+1 if p = 2 and B ≅ { Z/p
r if p ≠ 3

Z/pr+1 if p = 3.

In any case, the (4, 1)-entry in the upper diagram is Z/pr .
The arrows marked f1, . . . , f4 denote components of the spectral se-

quence morphism. We want to show that all of these are surjective.

First, f1 is surjective since it is the composition of the homomorphism

Z ≅ H2(Z, 2) → H2(Z/pr , 2) ≅ Z/pr coming from the quotient Z→ Z/pr

followed by a change of coefficients Z → Z/pr , which induces an iso-

morphism H2(Z/pr , 2) → H2(Z/pr , 2;Z/pr). From the first “commuting

parallelogram” we conclude that the composition

Z
f2
Ð→ A ≅ Z/ps → Z/pr

is surjective, where s is equal to r or r + 1, depending on p. Since 1 ∈ Z/pr

is not divisible by p, all of its preimages in Z/ps are not, so each one is

again a generator. This implies that a generator of Z/ps lies in the image

of f2, so f2 is surjective.
Exactly the same argument applies to f3 and f4 instead of f1 and

f2. Since f2 and f4 are surjective, we can deduce the action (−id)∗ on

H4(Z/pr , 2) and H6(Z/pr , 2) from that on H∗(Z, 2).

4.2 Dimensions 10 and 17

Theorem 47

There exists a simply-connected (closed, smooth) 10-dimensional manifold
that does not admit an orientation-reversing homotopy equivalence.

Proof. The strategy is the following: We prove the existence of a 10-dimensional

manifold M with H3(M;Z/3) ≅ Z/3 and ⟨i ∪ P1 i , ρ3[M]⟩ ≠ 0, where i denotes
a generator of the third cohomology group, P1 ∶ H3(M;Z/3) → H7(M;Z/3) is

the first Steenrod power operation and ρ3 is the reduction of integral coefficients

modulo 3.

Then we can proceed by the familiar arguments which we already en-

countered when dealing with the linking form: If T ∶ M → M is a homo-

topy equivalence, i is multiplied by some factor k ∈ Z/3: T∗ i = k ⋅ i. Then we

have

degT ⋅ ⟨i ∪ P1 i , ρ3[M]⟩ = ⟨i ∪ P1 i , T∗ρ3[M]⟩ = ⟨(T∗ i) ∪ P1(T∗ i), ρ3[M]⟩
= k2⟨i ∪ P1 i , ρ3[M]⟩.
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k Hk(Z/3, 3;Z/3) generators r(k) ∶= dim(Hk(Z/3, 3) ⊗Z/3)

0 Z/3 1 1

1 0 0

2 0 0

3 Z/3 ι 1

4 Z/3 βι 0

5 0 0

6 0 0

7 (Z/3)2 P1ι, ι ∪ βι 2

8 (Z/3)3 βP1ι, (βι)2, P1βι 1

9 Z/3 βP1βι 0

10 Z/3 ι ∪ P1ι 1

Table 4.1: The homology and cohomology of K(Z/3, 3).

Thus, degT ≡ k2 mod 3, and this is never congruent −1, so T cannot reverse

the orientation.

We will actually prove the existence of a 2-connected manifold with integral

homology H3(M) ≅ Z/3. The obstruction we described must already be present

in K(Z/3, 3), the first stage of the Postnikov tower of M. That is, as a necessary

prerequisite for our proof of Theorem 47, we have the following

Lemma 48

Let ι ∈ H3(Z/3, 3;Z/3) denote the canonical generator. There is a homology
class m ∈ H10(Z/3, 3) such that ⟨ι ∪ P1ι, ρ3m⟩ ≠ 0 (∈ Z/3).

Later, m will be the image f∗[M] of the fundamental class [M] under a first
Postnikov approximation f ∶ M → K(Z, 3), and i will be f ∗ι.

Proof of Lemma 48. The cohomology ring H∗(Z/3, 3;Z/3) is a module over the

Steenrod algebra A3, generated by the canonical element ι ∈ H3(Z/3, 3;Z/3).

As a free commutative algebra over Z/3, it has generators Θ(ι), where Θ ∈ A3

runs through all “admissible monomials” of “excess” less than 3. (See [Hatch-

erAT, Ch. 4.L] for reference and an explanation.) The first three columns in

Table 4.1 list the cohomology groups together with their generators as a Z/3

vector space up to degree 10. Given this information, we can already conclude

the integral homology groups in degree ≤ 10. For the current lemma, the groups

H∗(Z/3, 3) ⊗ Z/3 are sufficient. As means of computing them, we have the

universal coefficient sequence

0→ Hk(X) ⊗Z/3→ Hk(X;Z/3) → Tor(Hk−1(X),Z/3) → 0, (2)

isomorphisms Hk(Z/3, 3;Z/3) ≅ Hk(Z/3, 3;Z/3) (since these groups are fi-

nitely generated) and the following lemma which we prove below.
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Lemma 49

Let p be a prime number. The cohomology group Hk(Z/p, n) is a finite
p-primary abelian group for all n ≥ 0 and k ≥ 1.

(Only the statement about finiteness is needed so far; the 3-primary part will

be used later.)

Because of this lemma, Tor(Hk−1(Z/3, 3),Z/3) is isomorphic to the tensor

product Hk−1(Z/3, 3) ⊗Z/3. In total, we have an exact sequence

0→ Hk(Z/3, 3) ⊗Z/3→ Hk(Z/3, 3;Z/3) → Hk−1(Z/3, 3) ⊗Z/3→ 0,

and working from k = 0 upwards, we can determine all the dimensions of the

Z/3 vector spaces. This information is collected in the last column of Table 4.1.

For k = 10, the left map in the universal coefficient sequence (2) is an iso-

morphism because the right term Tor(H9(Z/3, 3),Z/3) vanishes. Since tensor-

ing an abelian group with Z/3 is always surjective, we have

H10(Z/3, 3) ↠ H10(Z/3, 3) ⊗Z/3
∼
Ð→ H10(Z/3, 3;Z/3)

∼
Ð→ Hom(H10(Z/3, 3;Z/3),Z/3),

and there is an element m ∈ H10(Z/3, 3) such that ⟨ι ∪ P1ι, ρ3m⟩ ≠ 0.

Proof of Lemma 49. For n = 0 and n = 1, the statement is obviously true because

a K(Z/p, 0) is given by a finite set and a K(Z/p, 1) is given by an infinite di-

mensional lens space, whose cohomology ring coincides with the ring Z[x]/px
with deg x = 2. For higher Eilenberg-MacLane spaces, we work inductively and

consider the homology Serre spectral sequence for the path-loop fibration

K(Z/p, n) ≃ ΩK(Z/p, n + 1) → PK(Z/p, n + 1) → K(Z/p, n + 1).

Hr(Z/p, n + 1)
r

s
E2
r,s ≅ Hr(Z/p, n + 1;Hs(Z/p, n))

H
s(
Z
/p
,n
)

i−1

i

d i

Since the path space PK(Z/p, n + 1) is contractible, its homology must van-

ish, so each E i
r,s (except E i

0,0) must be zero for i > r. If an E2
r,0 ≅ Hr(Z/p, n + 1)

was infinite, consider the least such r, r > 0. Then all differentials from E i
r,0

(i ≥ 2) go to finite groups, thus there is still an infinite kernel for each differ-

ential. Hence, E i
r,0 is an infinite group for all i, contradicting the vanishing

homology of the total space.
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By the last conclusion and the inductive hypothesis, all terms E2
r,s for s > 0 are

p-primary finite abelian groups. This class of groups is stable under subgroups

and quotients, so each E i
r,s for i ≥ 2 and s > 0 is p-primary finite abelian. If

E2
r,0 ≅ Hr(Z/p, n + 1) contained, for some r, an element whose order is not

divisible by p, all differentials had to be zero on this element. Hence, it would

remain up to the E∞-term, again contradicting the vanishing homology of the

total space.

For the further arguments, it is convenient to know the actual integral homo-

logy groups Hk(Z/3, 3). Direct inspection of Table 4.1 reveals that the Bockstein

sequence

H0(Z/3, 3;Z/3)
β
Ð→ H1(Z/3, 3;Z/3)

β
Ð→ H2(Z/3, 3;Z/3)

β
Ð→ . . .

. . .
β
Ð→ H11(Z/3, 3;Z/3)

is exact, i. e. the 3-primary Bockstein cohomology of K(Z/3, 3) vanishes in de-

grees 1 to 10. (The last arrow is injective because β(ι ∪ P1ι) = βι ∪ P1ι − ι ∪ βP1ι
is nonzero.) According to [HatcherAT, Prop. 3E.3], this implies that there

are no elements of order 9 in Hk(Z/3, 3) for k = 1, . . . , 10. Altogether, we

have proved that the integral homology Hk(Z/3, 3) is isomorphic to (Z/3)r(k)

(k = 1, . . . , 10), where the multiplicity r(k) is given by Table 4.1.

Now we continue with the proof of Theorem 47. We have shown that there

is a homology class m ∈ H10(Z/3, 3) with the desired properties, and we claim

that there is a manifold M together with a map f ∶ M → K(Z/3, 3) such that

f∗[M] = m. More restrictive, we are looking for a framed manifold M, al-

though a spin manifold would be sufficient in the surgery step later. This

task can be formulated as a bordism problem: Show that there is an element

(M , f ) ∈ Ωfr
10(K(Z/3, 3)) that maps to m under the Thom homomorphism

Ω
fr
10(K(Z/3, 3)) → H10(K(Z/3, 3))

(M , f ) ↦ f∗[M].

The Thom homomorphism factors through the edge homomorphism E∞10,0 ↪
E2
10,0 in the Atiyah-Hirzebruch spectral sequence for the homology theory Ωfr∗ :

Ω
fr
10(K(Z/3, 3)) ↠ E∞10,0 ↪ E2

10,0 ≅ H10(Z/3, 3)

Thus, it is sufficient to prove surjectivity of the edge homomorphism.

Here and at several other places in this thesis, the Atiyah-Hirzebruch spectral

sequence is used. The references which state and prove its properties in the

way which is most useful for our purpose are [Conner, Ch. 1.7] and [Kochman,

Ch. 4.2]. Conner only deals with the spectral sequence for oriented bordism

but all statements and proofs carry over to framed bordism because both are

generalised homology theories which satisfy the wedge axiom and have zero

homology groups in negative degrees. Also what is said about the Ω∗-module
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structure remains valid since Ω∗ and Ωfr∗ have analogous ring structures given

by the cartesian product on the underlying manifolds.

Since there are no bordism groups of negative degree, the Atiyah-Hirzebruch

spectral sequence is located in the first quadrant, and we have E∞r,0 = E
r+1
r,0 . It is

sufficient to show that all the intermediate inclusions E i+1
10,0 = ker di ⊆ E

i
10,0 are

in fact bijections, i. e. we want to show that all differentials starting from E2
10,0

are zero. The diagram below shows the relevant part of the reduced Atiyah-

Hirzebruch spectral sequence for Ωfr
10(K(Z/3, 3)).

r

s

0 0 0 Z/3 0 0 0 (Z/3)2 Z/3 0 Z/3Z

Z/2

Z/2

Z/24

0

0

Z/2

∗

∗

∗

Ω
fr
∗

0

0

0

0

0

0

0

0

0

E2
r,s = H̃r(Z/3, 3; Ω

fr
s )

d i

The diagram reveals that all terms E2
r,9−r on the 9-line are zero. Thus, the

Thom map is surjective.

Now, we have a framed manifold M together with a map f ∶ M → K(Z/3, 3)
such that f∗[M] = m. We still need the correct third homology group. By

[Kreck99, Prop. 4] (see below), (M , f ) can be replaced by another manifold

(M′, f ′) (with the same image of the fundamental class) such that the new

map f ′ ∶ M′ → K(Z/3, 3) is a 5-equivalence. Hence, M′ is 2-connected and

H3(M′) is isomorphic to Z/3.

Corollary 50

There exists a simply-connected (closed, smooth) 17-dimensional manifold
that does not admit an orientation-reversing homotopy equivalence.

Proof. The 10-dimensional manifold whose existence was shown in Theorem 47

has nonzero Betti numbers only in degrees 0, 10 and possibly 5. By the argument

which we have used several times before (Theorem 34), the product of this

manifold with a 7-dimensional chiral rational homology sphere is chiral.
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In the following, we explain how [Kreck99, Prop. 4] can be applied in the

proof of Theorem 47. If ν ∶ M → BO is the classifying map of the stable normal

bundle of a manifold M, a framing of M is equivalent to the fibrewise homotopy

class of a lift ν̅ to EO as in the following diagram:

EO
p

M ν

ν̅

BO

The map p is the projection in the fibration EO → BO with contractible total

space EO and fibre O = colimn O(n). Let B ∶= K(Z/3, 3) × EO and consider

the fibration over BO which is given by the projection to EO followed by p.
The map f × ν̅ ∶ M → B is a normal B-structure on M in the sense of [Kreck99,

Section 2]. For the reader’s convenience, we quote [Kreck99, Prop. 4] and detail

how to get into the right context for applying it.

Proposition 51: [Kreck99, Prop. 4]

Let ξ ∶ B → BO be a fibration and assume that B is connected and has finite
[m
2
]-skeleton. Let ν̅ ∶ M → B be a normal B-structure on an m-dimensional

compact manifold M. Then, if m ≥ 4, by a finite sequence of surgeries (M , ν̅)

can be replaced by (M′, ν̅′) so that ν̅′ ∶ M′ → B is an [m
2
]-equivalence.

Nearly all conditions of this proposition are fulfilled, only the requirements

on B are too restrictive. However, the proof in [Kreck99] shows that it is

sufficient if B is connected and has the homotopy type of a CW-complex with

finite [m
2
]-skeleton.

The space B has the homotopy type of a CW-complex by the following

arguments:

• The space EO is homotopy equivalent to a CW-complex since the model

used in our context is the union of Stiefel manifolds, which have a CW-

structure (for the latter assertion see [Steenrod, Thm. IV.2.1]).

• Eilenberg-MacLane spaces can be constructed as CW-complexes.

• The cartesian product of two spaces with the homotopy type of a CW-

complex has the homotopy type of a CW-complex by the following the-

orem.

Theorem 52: [FP, Thm. 5.4.2]

Let p ∶ Y → X be a fibration with X path-connected and such that X and
F ∶= p−1(x) have the homotopy type of CW-complexes, for any x ∈ X. Then,
Y has the type of a CW-complex.
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For the finiteness of the CW-complex, there are easily controllable criteria if

the group ring Z[π1(B)] is Noetherian:

Theorem 53: [Wall65, Thm. A and additions on p. 61]

Let X be a space which is homotopy equivalent to a CW-complex. Denote
its fundamental group by π. Consider the following sequence of conditions:

NF(1): The group π is finitely generated.

NF(2): The group π is finitely presented and H2(X̃) is finitely generated
as a Z[π]-module.

NF(n) (n ≥ 3): NF(n − 1) holds and Hn(X̃) is finitely generated over
Z[π].

If Z[π] is Noetherian, X is homotopy equivalent to a complex with finite n-
skeleton if and only if X satisfies NF(n).

As Wall points out further, Z[π] is Noetherian if π is a finite extensions of

a polycyclic group. This includes finite groups and finitely generated abelian

groups. Thus, the space B = K(Z/3, 3) × EO on page 56 is homotopy equivalent

to a CW-complex with finite 5-skeleton.

Also, all other spaces that will occur later in this work as total spaces B for

Proposition 51 have the homotopy type of CW-complexes with finite k-skeleta,
for the k which is required by the application. We list these spaces and the

necessary arguments here to ensure that [Kreck99, Prop. 4] can later be applied

without reservation.

• P4 × EO on page 71. P4 is part of a Postnikov system and homotopy

equivalent to a CW-complex, see the remarks on page 67. Furthermore,

P4 is simply-connected and has finitely generated homology groups up

to degree 4.

• BSO × K(π, 1) in Proposition 75. The classifying space BSO is a twofold

covering of the CW-complex BO. It will be required that π is a finitely

presented group. The groups π that actually appear in the application

(Theorem 81) are polycyclic, so Theorem 53 applies.

Alternatively, for a general finitely presented group, a standard CW-

construction for the classifying space (1-cells correspond to generators,

2-cells to relations in π) yields a K(π, 1) with finite 2-skeleton. Without

the restrictions in Wall’s theorem, one can then argue that BSO and

K(π, 1) are countable CW-complexes, and in this case the cartesian pro-

duct (with the product topology) is again a CW-complex [HatcherAT,

Thm. A.6].

• BSO in Lemma 72.

• L × EO in Theorem 82. L is a compact smooth manifold and thus a finite

CW-complex.
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4.3 Dimensions 9 and 13

In this section, examples of simply-connected, homotopically chiral manifolds

are given in the last two missing dimensions. Before we start proving their

existence, some preliminaries are necessary. Since repeated use of the universal

coefficient theorems is made, it is convenient to enumerate them.

Proposition 54: [Munkres, Cor. 53.2, 55.3 and 56.4]

Let (X ,A) be a topological pair and G an abelian group. For each n ≥ 0,
there are exact sequences

0← Hom(Hn(X ,A),G) ← Hn(X ,A;G) ← Ext(Hn−1(X ,A),G) ← 0

(UCT 1)

0← Hom(Hn(X ,A),G) ← Hn(X ,A;G) ← Ext(Hn+1(X ,A),G) ← 0

(UCT 2)

0→ Hn(X ,A) ⊗G → Hn(X ,A;G) → Tor(Hn−1(X ,A),G) → 0

(UCT 3)

0→ Hn(X ,A) ⊗G → Hn(X ,A;G) → Tor(Hn+1(X ,A),G) → 0

(UCT 4)

These sequences are natural with respect to homomorphisms which are in-
duced by continuous maps. Moreover, the sequences split but not naturally.
For the sequences (UCT 2) and (UCT 4) it is assumed that Hi(X ,A) is
finitely generated for all i ≤ n + 1.∗

Furthermore, some observations about principal K(π, n)-fibrations are need-
ed. Such fibrations constitute the Postnikov tower of a simply-connected space.

Let π be an abelian group. Quoting [GM, Ch. VI.B], a fibration with the fibre a

K(π, n) is called principal if the action of the fundamental group of the base on

the fibre is trivial up to homotopy. The classifying space is a K(π, n + 1) [Baues,
Cor. 5.2.3], and the universal fibration is (up to fibre homotopy equivalence)

the path-loop fibration

K(π, n) ≃ ΩK(π, n + 1) PK(π, n + 1) ≃ ∗

K(π, n + 1).

Thus, up to fibre homotopy equivalence, principal K(π, n)-fibrations over a
base space B are obtained as pull-backs of the path-loop fibration, and they are

classified by the k-invariant kn+1 ∈ [B,K(π, n + 1)]. Usually, the k-invariant is
considered as a cohomology class kn+1 ∈ Hn+1(B; π).
∗ In fact, Munkres requires that H i(X , A) is finitely generated for all i. With small adaptations

of the proof it can be shown that the weaker condition suffices.
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Given a principal K(π, n)-fibration p ∶ E → B with k-invariant kn+1, we would
like to relate the k-invariant to the first possibly nonzero differential in the

cohomology Serre spectral sequence

p

q

●

●

dn+1E0,n
n+1dn+1 ∶ En+1,0

n+1
≅ ≅

Hn(K(π, n)) Hn+1(B)

n+1

n

Lemma 55

The k-invariant kn+1 ∈ Hn+1(B; π) is the transgression of the canonical ele-
ment ∆ ∈ Hn(K(π, n); π).

Explanation and proof. The k-invariant is the principal obstruction to extend-

ing the trivial section over the basepoint

{∗}
↑
{∗} ⊂ B

⊂ E

to all of B [GM, Lemma 6.2]. In terms of [Baues, 4.3.15], this obstruction is

called the characteristic cohomology class

c̅(p) ∈ Hn+1(B; πn(F)),

where F ≃ K(π, n) is the fibre. (Baues considers a more general case, where the

fundamental group π1(B) may act nontrivially on πn(F) but in our context of

principal fibrations, the action is trivial and all local coefficients are constant.)

See also [Baues, 5.3.2] for a definition of the k-invariant.
By [Baues, Lemma 5.2.9], the characteristic class is the transgression of the

fundamental class,

c̅(p) = τ(∆F).

By definition, the fundamental class ∆F ∈ Hn(F; πn(F)) is the canonical ele-

ment, i. e. it maps to the identity under the isomorphisms

Hn(F; πn(F)) ≅ Hom(Hn(F), πn(F)) (UCT 1)

≅ Hom(πn(F), πn(F)) (Hurewicz isomorphism)

According to [McCleary, Thm. 6.8], the transgression τ coincides with the

differential

dn+1 ∶ E0,n
n+1 → En+1,0

n+1
in the cohomology Serre spectral sequence. Note that we are working with

coefficients in π = πn(F) here.
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Since the fibre is (n − 1)-connected, these En+1-terms are equal to the E2-
terms. Thus, for any coefficients G, the transgression is a homomorphism

τ ∶ Hn(F;G) → Hn+1(B;G).

By now, the k-invariant is identified as the image of the canonical element

under transgression with π-coefficients. We would like to relate this to the

transgression homomorphism with integer coefficients τ ∶ Hn(F) → Hn+1(B). In
order to distinguish the transgression homomorphism for the various coefficient

groups, the latter is indicated by a subscript to τ in the following proposition.

Proposition 56

Suppose that π is a finitely generated free abelian group. Let E → B be a
principal fibration with the fibre F ≃ K(π, n). Assume that B is homotopy
equivalent to a CW-complex and Hi(B) is finitely generated for i ≤ n + 2.
The map

Hn+1(B; π) → Hom(Hn(F),Hn+1(B))
k-invariant ↦ transgression in the spectral sequence

kn+1 = τπ(∆) ↦ (τZ = dn+1 ∶ E0,n
n+1 → En+1,0

n+1 )

coincides with the chain of natural isomorphisms

Hn+1(B; π) → Hn+1(B;Hn(F)) (Hurewicz)

← Hn+1(B) ⊗Hn(F) (UCT 4)

→ Hn(F;Hn+1(B)) (UCT 3)

→ Hom(Hn(F),Hn+1(B)). (UCT 2)

Note that all relevant Ext and Tor groups in the universal coefficient theor-
ems vanish because Hn−1(F) = Hn+1(F) = 0 and Hn(F) is finitely generated
free.

In the following, πn(F) = π and Hn(F) are always identified by the Hurewicz

homomorphism, and we write only Hn(F). The proof of Proposition 56 needs

some preparation and is given on page 63 f.

As Proposition 54 states, the universal coefficient maps used in Proposition

56 are natural. We also need the following facts (Lemmas 57 and 58) about the

first map in the sequence (UCT 4).

Lemma 57

Let (X ,A) be a topological pair and G an abelian group. The coefficient
homomorphism H∗(−) ⊗ G → H∗(−;G) commutes with the boundary
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homomorphisms in the long exact relative cohomology sequence, i. e. the
following square is commutative for all n:

Hn(A) ⊗G δ⊗id Hn+1(X ,A) ⊗G

Hn(A;G) δ Hn+1(X ,A;G)

Proof. Let Ci(X)i∈Z be the singular chain complex of X or any complex of free

abelian groups which is chain homotopy equivalent to it. Let

C i(X;G) ∶= Hom(Ci(X),G)

denote the dual complex with coefficients in G. The coefficient homomorphism

is defined on generators c ⊗ g with c ∈ C i(X), g ∈ G by

C i(X;Z) ⊗G → C i(X;G)
c ⊗ g ↦ c ⋅ g = (x ↦ c(x) ⋅ g)

Analogous notations and statements are valid for A and (X ,A).
Consider the diagram chase for the boundary homomorphism δ. The fol-

lowing diagram makes it obvious that for computing δ(c ⋅ g) instead of δ(c),
every element can be tensored by g.

0 Cn(A;Z) Cn(X;Z) Cn(X ,A;Z) 0

0 Cn+1(A;Z) Cn+1(X;Z) Cn+1(X ,A;Z) 0

c

0

c′

c′′ δc

leads to

0 Cn(A;G) Cn(X;G) Cn(X ,A;G) 0

0 Cn+1(A;G) Cn+1(X;G) Cn+1(X ,A;G) 0

c⋅g

0

c′⋅g

c′′⋅g (δc)⋅g

(Note that the rows are exact since each Ci is free.)

Hence, we have δ(c ⋅ g) = δ(c) ⋅ g.

In the following lemma, it is proved that the transgression commutes with

the coefficient homomorphism. Let F → E
p
Ð→ B be a principal fibration and

G′ an abelian group. Let p0 denote the fibration (E , F) → (B, ∗). The map

j denotes the inclusion B ⊂ (B, ∗). The transgression (with any coefficients

G′) is then defined by the following scheme. The rows are the relative exact
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cohomology sequences, and the vertical maps are induced by the projections p
and p0.

⋯ Hn(∗;G′) δ Hn+1(B, ∗;G′)

p∗
0

j∗
Hn+1(B;G′)

p∗

⋯

⋯ Hn(F;G′)

τG′

δ Hn+1(E , F;G′) Hn+1(E;G′) ⋯

(3)

In a formula:

τG′ ∶ δ−1(im p∗0) → Hn+1(B;G′)/ j∗(ker p∗0)
z ↦ [ j∗(r)],

where p∗0(r) = δz. If the fibre is (n − 1)-connected, it can be shown that

the transgression is in fact a well-defined homomorphism from Hn(F;G′) to
Hn+1(B;G′).

Lemma 58

Let F → E
p
Ð→ B be a principal fibration and G an abelian group. The coef-

ficient homomorphism H∗(−) ⊗ G → H∗(−;G) commutes with the trans-
gression. In particular, if the fibre is (n − 1)-connected, the following square
is commutative for all n:

Hn(F) ⊗G τZ⊗id Hn+1(B) ⊗G

Hn(F;G)
τG Hn+1(B;G)

Proof. Similar to the previous proof, it is shown that in the diagram chase

(3), all elements can be tensored by g ∈ G to obtain the transgression with

G-coefficients.

Given z ∈ δ−1(im p∗0) ⊆ H
n(F), the diagram below shows that the element

z ⋅ g lies in the corresponding subgroup of Hn(F;G) and the transgression

with coefficients in G can be obtained by the same chain of elements as for z,
except that everything is tensored with g. Indeed, let z̅ and r̅ be cocycles that
represent the cohomology classes z and r resp. The following diagram displays

the diagram chase for Z- and G-coefficients side by side.

Hn(F) ⊗G Hn+1(B, ∗) ⊗G

Hn(F;G) Hn+1(E , F) ⊗G Hn+1(B, ∗;G) Hn+1(B) ⊗G

Hn+1(E , F;G) Hn+1(B;G)

δ⊗id p∗
0
⊗id j∗⊗id

δ
p∗
0

j∗
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[z̅] ⊗ gz ⊗ g = [r̅] ⊗ g

δ(z) ⊗ g j∗[r̅] ⊗ g = τZ(z) ⊗ g
[z̅ ⋅ g] [r̅ ⋅ g]

[δz̅ ⋅ g] j∗[r̅ ⋅ g] = τG([z̅ ⋅ g])

The left quadrangle commutes because of Lemma 57. The other quadrangles

commute because the coefficient map is natural.

Proof of Proposition 56. Consider the following commutative diagram, which

relates the transgression to the various coefficient maps.

Hom(Hn(F),Hn(F))
Hom(id,τZ)

Hom(Hn(F),Hn+1(B))

Hn(F;Hn(F))

(UCT 2)

τ∗
coefficient change

Hn(F;Hn+1(B))

Hn(F) ⊗Hn(F)

(UCT 3)

(UCT 4)

τZ⊗id Hn+1(B) ⊗Hn(F)

Hn(F;Hn(F))

(UCT 1)

τHn(F) Hn+1(B;Hn(F))

Hom(Hn(F),Hn(F)) Hom(Hn+1(B),Hn(F))

The vertical maps are coefficient maps, labelled accordingly. They are all

isomorphisms except for the dotted arrow at the bottom right. The horizontal

arrows marked τZ ⊗ id and τHn(F) are the transgressions with the respective

coefficients. The square which connects them commutes by Lemma 58. Define

all other horizontal maps as the maps which are induced by the coefficient

isomorphisms, so commutativity in the other squares is a tautology.

Remembering the maps in the universal coefficient theorems, one easily sees

that

• the homomorphism marked τ∗ is induced by the coefficient change τZ,

• the topmost homomorphism is given by Hom(id, τZ).

Besides, the isomorphisms in the left column map id ∈ Hom(Hn(F),Hn(F))
to id ∈ Hom(Hn(F),Hn(F)).
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As all relevant maps are identified now, we can, using Lemma 55, see that

elements are mapped in the following way:

id ↦ τ

↦ ↦

● ●

↦ ↦

● ●↦ ↦

∆ ↦ kn+1

↦

id

Thus, the maps are exactly as stated in Proposition 56.

4.3.1 The 9-dimensional example

Theorem 59

There exists a simply-connected, closed, smooth, 9-dimensional manifold
which does not admit an orientation-reversing self-homotopy equivalence.

Summary of proof. We exhibit an obstruction to amphicheirality in the Post-

nikov tower. It is a combination of rational and integral information. First, we

construct a candidate for the Postnikov approximation P4 → P3 → P2 of the

desired manifold M together with a candidate for the image of the fundamental

class m ∈ H9(P4). We show that there are very few automorphisms of H2(P3)

that can be induced from a self-homotopy equivalence P3 → P3.

Let P4
(0)
→ P3

(0)
→ P2

(0)
be the corresponding rational Postnikov tower and

denote by mQ the image of m in H9(P4
(0)
). We show that mQ cannot be re-

versed by a self-map of P4
(0)

that induces one of the above automorphisms on

H2 (tensored with Q).

A short bordism argument shows that there really is a 9-dimensional mani-

fold M together with a map g ∶ M → P4 inducing the correct image of the funda-

mental class, i. e. g∗[M] = m. By surgery, we alter M to M′ so that g′ ∶ M′ → P3

is a 4-equivalence and g ∶ M′ → P4 → P4
(0)

is rationally a 5-equivalence. Due to

functoriality of the Postnikov approximations (see the remark below) P3 and

P4
(0)
, M′ is homotopically chiral.

Construction and automorphisms of P3

We start with a candidate for the Postnikov tower of fibrations P4 → P3 → P2

of the desired manifold M. As the base, we choose P2 ≅ K(U , 2) with U ≅ Z3.
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We fix a basis (a, b, c) of the dual group U∨ ∶= Hom(U ,Z). Likewise, we let

V ≅ Z3 and fix a basis (A, B,C) of the dual group V∨. The space P3 is defined

as a principal fibration over P2 with the fibre K(V , 3). By Proposition 56, there

is a bijection between the possible k-invariants and the first differential in the

Serre spectral sequence. This correspondence allows us to define the fibration

by its transgression

τ ∶ V∨ → S2(U∨)
A↦ bc, B ↦ 2ac, C ↦ 3ab.

Here, we have used that the base is homotopy equivalent to (CP∞)3, whose
cohomology algebra is the polynomial algebra Z[a, b, c] = S∗(U∨).

The cohomology of P3 can be computed by the Serre spectral sequence.

The fibre K(V , 3) has no other nontrivial cohomology groups in degree ≤ 5

apart from H0(Z3, 3) ≅ Z and H3(Z3, 3) ≅ V∨ ≅ Z3. This can either be proved

by a very short argument with the spectral sequence for the path-loop fibra-

tion K(V , 2) → ∗ → K(V , 3) or by more general results about the homology

of Eilenberg-MacLane spaces [EMcL, Section 23], the Künneth and universal

coefficient theorems.

The following diagram shows the part of the spectral sequence that is neces-

sary to compute H i(P3) for i ≤ 5. Zero entries in the E2-page are left blank,

while non-zero entries are either specified exactly or marked with a dot ●.

p

q

Z U∨ S2(U∨) S3(U∨)

V∨ U∨ ⊗ V∨ ● ●

τ

Ep,q
4 ≅ E

p,q
2 ≅ H

p(U , 2;Hq(V , 3))

0 1 2 3 4 5 6

0

1

2

3

4

5

A short computation immediately gives the following cohomology groups:

i H i(P3) generators

0 Z 1

1 0

2 U∨ a, b, c
3 0

4 Z3 ⊕Z/2⊕Z/3 a2, b2, c2, ac, ab
5 Z2 2aA− bB, 3aA− cC
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Lemma 60

Let T ∶ P3 → P3 be a homotopy equivalence. Then the induced map on H2

is necessarily of the form
⎛
⎜
⎝

±1 0 0

0 ±1 0

0 0 ±1

⎞
⎟
⎠

(4)

with respect to the basis (a, b, c).

Proof. Since P2 is an Eilenberg-MacLane space K(U , 2) and the projection

P3 → P2 induces an isomorphism on H2 with any coefficients, the map T and

the Postnikov fibrations can be complemented to a homotopy-commutative

square

P3 T P3

P2 P2

By the homotopy lifting property of a fibration, the map T is homotopic

to a fibre-preserving map T ′. This yields a restriction to the fibre, T ′∣K(V ,3), in
addition to the induced map on the base K(U , 2). For simplicity, we write the

induced maps in cohomology simply as T∗. From the functoriality of the Serre

spectral sequence, we get

T∗τ(v) = τ(T∗v) (5)

for every v ∈ V∨.
Express the induced map on H2(P3) = U∨ by a matrix

M ∶=
⎛
⎜
⎝

g h i
k l m
p q r

⎞
⎟
⎠
∈ M(3 × 3;Z).

By (5), we have

τ(T∗C) = T∗(τ(C)) = T∗(3ab) = 3(ga + kb + pc)(ha + lb + qc).

Since the right hand side is in the image of τ, the coefficients of a2, b2 and
c2 must be zero, i. e. gh = kl = pq = 0. Considering the images of A and B
in the same manner, we obtain that in every row of M, the product of two

arbitrary entries must vanish. Thus, in every row of M, there is at most one

nonzero entry.

Since M is a unimodular matrix, it must be the product of a permutation

matrix and a diagonal matrix with eigenvalues ±1. We want to show that the

only possible permutation is the identity.

Suppose that the permutation is a transposition, e. g. (a↔ b). This would

imply τ(T∗A) = T∗(τ(A)) = T∗(bc) = ±ac but only multiples of 2ac are in
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the image of τ. Likewise, the other transpositions (b↔ c) and (a↔ c) as well
as the 3-cycles (a → b → c) and (c → b → a) are excluded.

A note on functoriality
As was already indicated, the fibration P3 → P2 shall eventually be the begin-

ning of the Postnikov tower of a manifold M. Since automorphisms of M are

considered, it is crucial for the following arguments that the Postnikov approx-

imations are functorial. In our context, the Postnikov approximations are always

built as principal fibrations with the fibre an Eilenberg-MacLane space. Let C

denote the class of spaces having the homotopy type of a simply-connected

CW-complex with basepoint. By the following two technical prerequisites it can

be shown inductively that every Postnikov stage can be constructed within C:

• If K(π, n) is chosen to be in C, then so is its loop space by [Milnor59,

Cor. 3].

• In a fibration with path-connected base space in C and the fibre in C,

also the total space lies in C, see [FP, Thm. 5.4.2].

Thus, obstruction theory is available for the Postnikov spaces, and it fol-

lows almost immediately that given a map of spaces X → Y , there is always

an induced map on their Postnikov approximations Pk
X → Pk

Y , unique up to

homotopy, such that the diagram

X Pk
X

Y Pk
Y

commutes up to homotopy. The same argument holds for the rational Postnikov

approximations.

In the arguments given here, we do not relate the induced maps between

successive stages in the tower of fibrations. (For P3 → P2, it was done, though,

explicitly and elementary in the proof of Lemma 60, and for P4
(0)
→ P3

(0)
→ P2

(0)

we will refer to the properties of minimal models instead of spaces.) The full

naturality statement involving all Postnikov stages at once would be [Kahn,

Thm. 2.2].

Construction of P4 and m
The next Postnikov stage, P4, is again constructed as a pullback of the path-loop

fibration. We choose the fibre as a K(W , 4) with W ≅ Z2 and a basis α, β of

the dual group W∨. The k-invariant is again determined by the transgression,

which is chosen as the isomorphism

τ ∶W∨ → H5(P3)

α ↦ 2aA− bB, β ↦ 3aA− cC .
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The spectral sequence for this fibration immediately shows that H5(P4) = 0

and therefore H5(P4;Q) = 0. (This result is needed later in Proposition 64.)

p

q

Z ● ● Z
2

W∨ ● ● ●

τ
∼

Ep,q
5 ≅ E

p,q
2 ≅ H

p(P3
;Hq(W , 4))

0 1 2 3 4 5

0

1

2

3

4

5

Lemma 61

There is a class m ∈ H9(P4) such that

• m is an element of infinite order,

• the image of m in H9(P4
(0)) is never mapped to its negative under any

self-map of P4
(0) such that the induced map on H2(P4

(0)) is of the form
(4).

By P4
(0)
, we mean the rational localisation of P4, as described in [GM, Ch. 7].

The above properties of m obviously remain if m is replaced by a nonzero

multiple.

Proof. Consider the rational cohomology of P4
(0)
. The minimal model for it

(uniquely determined up to isomorphism) is the free, graded-commutative,

rational differential graded algebra

M ∶= Q[a′, b′, c′,A′, B′,C′, α′, β′]

with degrees ∣a′∣ = ∣b′∣ = ∣c′∣ = 2, ∣A′∣ = ∣B′∣ = ∣C′∣ = 3 and ∣α′∣ = ∣β′∣ = 4 and

differentials
da′ = db′ = dc′ = 0,

dA′ = b′c′, dB′ = 2a′c′, dC′ = 3a′b′,
dα′ = 2a′A′ − b′B′, dβ′ = 3a′A′ − c′C′.

The generators are chosen so that a′ ∈M2 maps to a ∈ H2(P4
(0)
) under the

isomorphisms

H∗(M) ≅ H∗(P4
(0);Q) ≅ H

∗(P4
;Q), (6)

and likewise for the other generators. This correspondence is natural. For the

second isomorphism above, this follows immediately from the universal prop-

erty of a localisation. However, since the minimal model is only determined up

to some (noncanonical) isomorphism, the naturality of the first isomorphism

must be stated carefully.
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Lemma 62

Let K, L be simply-connected simplicial complexes. As in [GM, Ch. VIII.A],
denote by A∗(K) the differential graded algebra of piecewise linear, polyno-
mial differential forms on K. Choose minimal models MK → A∗(K) and
ML → A∗(L). Let f ∶ K → L be a map. Then there is an induced homo-
morphism f̂ ∶ML →MK , unique up to homotopy, such that the following
diagram commutes:

H∗(L;Q)

f ∗

H∗(A∗(L))
f ′∗

∼ H∗(ML)∼

f̂∗
H∗(A∗(K′))∼

H∗(K;Q) H∗(MK)

∼

∼

H∗(A∗(K))

∼ r∗∼

Here, K′ is a suitable rational subdivision of K, r ∶ A∗(K) → A∗(K′) the
restriction of forms and f ′ ∶ K′ → L a simplicial map homotopic to f .

It follows from this lemma that the induced map f̂∗ on cohomology exists

and it is unique, so the isomorphisms in (6) are natural.

Proof. The horizontal maps in the left half are isomorphisms by the “piecewise

linear deRham theorem” [GM, Ch. VIII.A]. The lower left triangle consists of

isomorphisms and commutes because of [GM, Lemma 8.5] (“Naturality under

subdivision”). In the right half, the map H∗(MK) → H∗(A∗(K′)) is simply

defined to be the composition of the other two maps in the lower right triangle.

Note that MK is then a minimal model for A∗(K) as well as for A∗(K′) because
r ∶ A∗(K) → A∗(K′) induces an isomorphism in cohomology. The horizontal

maps in the right half are isomorphisms by the definition of a minimal model.

The upper left quadrangle commutes, since the horizontal maps are induced

by the cochain map

ρ ∶ A∗(K′) → C∗(K′;Q),

defined by ⟨ρ(ω), ∆n⟩ = ∫∆n ω (likewise for L), and integration is natural:

∫
∆n

f ′∗ω = ∫
f ′∆n

ω,

where f ′∆n is the (oriented) simplex in L spanned by the images of the vertices

in ∆n ∈ K′. (See also [GM, Ch. VIII.A].)

The existence of f̂ and the commutativity of the upper right quadrangle is

[GM, Cor. 10.11].

Consider the element (dα)β − ABC ∈M9. It is easily verified that this ele-

ment is closed, thus it represents a cohomology class m̅Q ∈ H9(M) ≅ H9(P4
(0)
).

The cohomology class is nonzero since there is no expression in M8 whose

differential contains a summand ABC.
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Let mQ ∈ H9(P4
(0)
) be a homology class such that ⟨m̅Q,mQ⟩ ∈ Q is nonzero.

The class mQ itself might not be in the image of H9(P4) → H9(P4
(0)
) but a

nonzero multiple of mQ certainly is. We replace mQ by this multiple and

choose a preimage m ∈ H9(P4).

Now consider an automorphism of M. Note that the differentials in every

Hirsch extension which is used to build M are injective, i. e. d is injective on the

vector spaces Q{A, B,C} and Q{α, β}. For this reason, the automorphism of M

is completely determined by the restriction to the base degree M2 = Q{a, b, c}.
Let Ta be the automorphism of M2 which is given by

a ↦ −a, b ↦ b, c ↦ c.

The automorphism Ta extends uniquely to M by

A↦ A, B ↦ −B, C ↦ −C ,
α ↦ −α, β ↦ −β.

It can be quickly checked that Ta fixes m̅Q. Likewise, the automorphism Tb
and Tc which reverse b resp. c fix m̅Q. Hence, every automorphism T of P4

that induces a diagonal matrix of the form (4) on H2(P4
(0)
) ≅ H2(M) ≅M2

fixes m̅Q. Since the evaluation is natural, we have

⟨T∗mQ, m̅Q⟩ = ⟨mQ, T∗m̅Q⟩ = ⟨mQ, m̅Q⟩,

so mQ cannot be reversed by T . The same clearly holds for m.

Bordism argument

Proposition 63

There is a framed, 9-dimensional, closed, smooth manifold M together with
a map g ∶ M → P4 such that g∗[M] is a nonzero multiple of m ∈ H9(P4).

Proof. This proposition can be reformulated as follows: There is an element

(M , g) ∈ Ωfr
9 (P

4) that maps to a nonzero multiple of m under the Thom homo-

morphism

Ω
fr
9 (P

4) → H9(P4)

(M , g) ↦ g∗[M].

The Thom homomorphism is in fact the edge homomorphism

Ω
fr
9 (P

4) ↠ E∞9,0 ↪ E2
9,0 ≅ H9(P4)

in the Atiyah-Hirzebruch spectral sequence for the homology theory Ωfr∗ .
The Atiyah-Hirzebruch spectral sequence for bordism homology theories lies

in the first quadrant. Moreover, for framed bordism, all coefficient groups Ωfr
i

for i > 0 are finite abelian groups since Ωfr
i ≅ π

s
i according to the Pontrjagin-
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Thom theorem. Thus, each of the (finitely many) differentials starting from E2
9,0

has a nonzero multiple of m in the kernel, so a nonzero multiple of m survives

to the E∞-page.

Surgery
So far, the manifold M can still be amphicheiral: even though its image of the

fundamental class in P4 is irreversible, the maps M → P3 and M → P4
(0)

are

not necessarily functorial (not even up to homotopy). This crucial condition

would hold if P3 and P4
(0)

were Postnikov approximations of M. Thus, we aim

to replace M by surgery with a manifold M′ such that the corresponding map

g′ ∶ M′ → P4 is a 4-equivalence and rationally a 5-equivalence. Note also that

M′ is then automatically simply-connected.

Since M is framed, its stable normal bundle ν ∶ M → BO is trivial. Thus, there

is a lift of ν to the path space EO ≃ PBO ≃ ∗. Fix any such lift ν̂ ∶ M → EO.
Together with the map g from the previous proposition, we have a fibration

and a lift
B

ξ

P4 × EO
ev1 ○ pr2

M

ν̅

BO M

g×ν̂

BO

∶=

The lift ν̅ is a normal B-structure on M in the language of [Kreck99, Sec-

tion 2]. We refer to the discussion of [Kreck99, Prop. 4] on page 56 f.

By this proposition, [M , g] is bordant over P4 to [M′, g′] such that g′ is a

4-equivalence. The proof of Theorem 59 is completed as soon as the following

proposition is shown. (Denote the manifold to be dealt with again by M, which

is M′ from the current paragraph.)

Proposition 64

Let M be an m-dimensional, closed, smooth, simply-connected manifold with
normal B-structure ν̅ ∶ M → B which is a [m

2
]-equivalence. Assume that m

is odd and at least 5. Also assume that H[m/2]+1(B;Q) = 0. Then, by a finite
sequence of surgeries (M , ν̅) can be replaced by (M′, ν̅′) such that ν̅′ ∶ M′ →
B is again a [m

2
]-equivalence and additionally π[m/2]+1(B,M′) ⊗Q = 0.

Let B′ be the mapping cylinder of ν̅. Denote [m/2] shortly by r. Compare

the long exact sequences for relative homotopy and homology.

πr+1(B) ⊗Q πr+1(B′,M) ⊗Q

∼

πr(M) ⊗Q
ν̅∗ πr(B) ⊗Q 0

Hr+1(B;Q) Hr+1(B′,M;Q) Hr(M;Q)
ν̅∗ Hr(B;Q) 0

The vertical maps are the respective Hurewicz maps. By the relative Hurewicz

theorem, Hr(B′,M) = 0 and πr+1(B′,M) → Hr+1(B′,M) is an isomorphism.



72 4 Simply-connected chiral manifolds

Since Hr+1(B;Q) = 0 it suffices to make ν̅∗ ∶ Hr(M;Q) → Hr(B;Q) injective. If
this is the case, Hr+1(B′,M;Q) ≅ πr+1(B′,M) ⊗Q = 0. Since Hr(M) is finitely
generated, it suffices to decrease the rank of ker(Hr(M;Q) → Hr(B;Q)) by one
in each surgery step. Instead of Proposition 64 we can thus prove the following

statement.

Proposition 65

Let M be an m-dimensional, closed, smooth, simply-connected manifold
with normal B-structure ν̅ ∶ M → B which is a [m

2
]-equivalence. Assume

that m is odd and ≥ 5. Further, suppose that the rank of

ker(ν̅∗ ∶ H[m/2](M;Q) → H[m/2](B;Q))

is greater than zero. By attaching a ([m
2
] + 1)-handle to M × I which extends

the B-structure, one can obtain that the rank of the corresponding group
ker(ν̅′∗) is one lower than ker(ν̅∗), while ν̅′ is still a [m

2
]-equivalence.

As usual, the result of the surgery is denoted by M′ and its normal B-structure
by ν̅′ ∶ M′ → B.

Proof. Recall the abbreviation r = [m
2
]. Let s be an element in the kernel of

ν̅∗ ∶ Hr(M) → Hr(B) which is indivisible and of infinite order. By the diagram

before Proposition 65, s is in the image of the rational Hurewicz map for

M, and by [Kreck99, Lemma 2 i)], it can be represented by an embedding

f ∶ Sr × Dm−r ↪ M.

By [Kreck99, Lemma 2 ii)], the embedding can be chosen in a way such

that the normal B-structure on M can be extended to the trace of the surgery

by an (r + 1)-handle attached along f . Denote the trace of the surgery by

W . Since W is homotopy equivalent to M with an (r + 1)-cell attached and

the attaching map is in the kernel of ν̅, the normal B-structure on W is still

an r-equivalence. Moreover, since W is homotopy equivalent to M′ with an

(m − r)-cell attached (and in our case m − r = r + 1), the normal B-structure ν̅′

on M′ is an r-equivalence.
It remains to compute the effect on the r-th homology groups. Consider the

relative homology sequence of the pair (W ,M):

Hr+1(W ,M) ∂
Ð→ Hr(M) → Hr(W) → Hr(W ,M).

Since (W ,M) is r-connected, Hr(W ,M) is zero. By [Kosinski, Lemma

XI.10.1] Hr+1(W ,M) ≅ Z and the image of ∂ is generated by s.
Considering the analogous sequence for M′, we have again a surjection

Hr(M′) ↠ Hr(W) with the kernel generated by the image of the boundary

map ∂ ∶ Hr+1(W ,M′) → Hr(M′). Denote the embedded image of Sr × Dm−r

in M by Dτ (like the unit disk bundle in the normal bundle alias a tubular

neighbourhood τ of Sr). Its boundary in M is accordingly denoted by Sτ
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and its interior by D̊τ. Pictorially, the image of ∂ in Hr(M′) is generated

by the homology class of the meridian {e1} × Sm−r−1 ↪ M ∖ D̊τ ⊂ M′. In the

following, we prove that the meridian is nullhomologous in M ∖ D̊τ if and only

if there is an element in Hm−r(M) which intersects the embedded sphere Sr

with intersection number one. This is the geometric meaning of Proposition 66

below, although its statement and proof are purely in terms of homology and

we identify the image of the boundary map ∂ without appealing to its geometric

meaning.

By excision and homotopy invariance, the left vertical map in the following

commutative diagram is an isomorphism.

Hr+1(W ,M′) ∂ Hr(M′)

Hr+1(M ,M ∖ D̊τ)

∼

∂ Hr(M ∖ D̊τ)

Hence, if the lower boundary map is zero, the upper one is zero, too. The

necessary information about the lower boundary map is given by the following

proposition. It holds even for an embedding Sr ↪ M with nontrivial normal

bundle and arbitrary r > 0 but we apply it only in the setting with trivial normal

bundle and r = [m
2
].

Proposition 66

Let M be a closed, oriented m-dimensional manifold and Sr ↪ M an em-
bedded r-sphere. The boundary map

∂ ∶ Hr+1(M ,M ∖ D̊τ) → Hr(M)

has image zero if and only if the homology class of Sr is indivisible and of
infinite order.

This proposition finally proves Proposition 65 and thus Theorem 59: Since

s ∈ ker(ν̅∗) is of infinite order and indivisible, we have a commutative diagram

Hr(M)/Zs

ν̅∗

∼ Hr(W) Hr(M′)

ν̅′
∗

∼

Hr(B)

Proof of Proposition 66. Let i be the inclusion Sr ↪ M. By the universal coeffi-

cient theorem (UCT 1), i∗[Sr] is of infinite order and indivisible if and only if

there is a cohomology class σ ∈ Hr(M) such that ⟨σ , i∗[Sr]⟩ = 1. This is in turn

equivalent to ⟨i∗σ , [Sr]⟩ = 1 in Sr . Since Hr(Sr) ≅ Z, this is finally equivalent

to the statement

There exists σ ∈ Hr(M) such that i∗σ is a generator of Hr(Sr) ≅ Z.
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Consider now the following commutative diagram with exact upper row:

Hn−r(M) Hn−r(M ,M ∖ D̊τ) ∂ Hn−r−1(M ∖ D̊τ)

Hn−r(Dτ, Sτ)

∼ ∗

Hr(M)

∼ ∩[M]

i∗

Hr(Dτ)

∼ ∩[Dτ,Sτ]

∼

Hr(Sr)

Regardless of which maps are described here, a simple diagram chase shows

that the image of ∂ is zero if and only if i∗ is surjective. The proof is completed

by a description of the maps and the proof of commutativity.

The upper row is part of the relative homology sequence. The bottom tri-

angle consists of the obvious restrictions induced by inclusions and therefore

commutes. The map labelled ∗ is the excision isomorphism. The remaining

two vertical maps are Poincaré duality isomorphisms. As the last step, consider

the upper left square.

Hn−r(M) Hn−r(M ,M ∖ D̊τ)

Hn−r(Dτ, Sτ)

i∗

Hr(M)

∩[M]

i∗

∩[M ,M∖D̊τ]

Hr(Dτ)

∩[Dτ,Sτ]

The upper triangle commutes by the definition of the relative cap product.

(See [Bredon, Ch. VI.5] for background information.) In the lower triangle, the

map i denotes the inclusion of pairs (Dτ, Sτ) ⊂ (M ,M ∖ D̊τ) as well as the
absolute inclusion Dτ ⊂ M. Note that i∗ maps the fundamental class [Dτ, Sτ]
to the fundamental class [M ,M ∖ D̊τ]. Thus we have for all x ∈ Hr(M)

i∗(i∗x ∩ [Dτ, Sτ]) = x ∩ i∗[Dτ, sτ] = x ∩ [M ,M ∖ D̊τ]

4.3.2 Extension to dimension 13

Theorem 67

Let M be a manifold as in the previous section with all described properties.
The product N ∶= M ×CP2 is a simply-connected closed, smooth, 13-dimen-



4.3 Dimensions 9 and 13 75

sional manifold that does not admit an orientation-reversing self-homotopy
equivalence.

Proof. Denote by Pk
N the k-th Postnikov stage of N and by Pk

N ,(0)
its rational

localisation. The homotopy sequence of the fibration S1 → S5 → CP2 yields

π3(CP2) = 0. Besides, CP2 has the minimal algebra Q[x , X] with ∣x∣ = 2, ∣X∣ = 5
and dX = x3. Thus, we are in a very similar situation as before:

• P2
N is homotopy equivalent to (CP∞)4.

• P3
N is homotopy equivalent to P3 ×CP∞.

• We have a basis (a, b, c, x) of H2(P3
N).

• H4(P3
N) ≅ S

2(H2(P3
N)) = S

2(Z{a, b, c, x})

• The space P̂4
N ∶= P

4 ×CP∞ is not necessarily the fourth Postnikov stage of

N (as P4 was not necessarily the fourth Postnikov stage of M). However,

its localisation P̂4
N ,(0)

is the correct rational Postnikov approximation.

Thus, we have P̂4
N ,(0)
= P4

N ,(0)
.

• The localisation P4
N ,(0)

has the minimal algebra M⊗Q[x], where M is

the rational minimal algebra of P4
(0)
.

• The fundamental class of N is detected by

((dα)β − ABC)x2 ∈ H13(P4
N ,(0)).

This shows that the proof is finished as soon as the following analogue to

Lemma 60 is proved.

Lemma 68

Let T ∶ P3
N → P3

N be a homotopy equivalence. Then the induced map on H2

is necessarily of the form

⎛
⎜
⎜
⎜
⎝

±1 0 0 ∗

0 ±1 0 ∗

0 0 ±1 ∗

0 0 0 ±1

⎞
⎟
⎟
⎟
⎠

with respect to the basis (a, b, c, x).

Proof. Express the induced map on H2(P3
N) by the matrix

⎛
⎜
⎜
⎜
⎝

g h i j
k l m n
p q r s
t u v w

⎞
⎟
⎟
⎟
⎠

∈ M(4 × 4;Z).
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Since k4(T∗C) = T∗(k4(C)) cannot have summands containing x, we have
th = tl = tq = tu = 0. But since the second column must contain a nonzero

entry, t must be zero. Likewise, we prove u = 0 and v = 0. From here on, the

proof proceeds exactly as in Lemma 60.



5
Bordism questions

So far, examples of chiral manifolds have been obtained in all dimensions where

this is possible, both for manifolds with arbitrary fundamental group and for

simply-connected manifolds. Since the dimension is a very coarse invariant

for manifolds, it is an interesting question how dense (or sparse) chiral and

amphicheiral manifolds are with respect to a finer differentiation. The most

definite answer, of course, would be to regard chirality/amphicheirality itself as

an invariant and to express it in terms of other invariants which are computable

in some way. (The word “invariant” refers to homotopy/homeomorphism/

diffeomorphism invariants of manifolds, depending on the category.)

This ultimate question, however, can presumably not be answered since there

are too many possible obstructions to amphicheirality on all levels (homotopy,

homeomorphism and diffeomorphism). This is illustrated in chapter 6 when

we prove smooth amphicheirality for a certain class of manifolds in a nontrivial

case. For these manifolds, all possible obstructions vanish and the “surgery

programme” can be carried out, but the method shows that only slightly more

general cases can be very difficult to handle. The author’s feeling is that for

many concrete families of manifolds, chirality is much easier to detect and

to disprove than to classify the members in that family, but a general answer

might be as impossible as a general classification of all manifolds.

Historically, the concept of bordism has proved very successful as a distinc-

tion of manifolds that is not too coarse and at the same time accessible to

classification and computations. Therefore, it is an interesting question which

oriented bordism classes contain chiral manifolds and which contain amphi-

cheiral manifolds. Again, there are several flavours of chirality to consider.

We can give definite answers (old and new) in one category in each direction

(chiral vs. amphicheiral).

We start with the existing results: The question

When is a manifold bordant to a smoothly amphicheiral one?

has been solved previously. If a manifold has a nonzero Pontrjagin number, it

cannot be smoothly amphicheiral. On the other hand, if all Pontrjagin numbers

are zero, the following theorem states that the orientation of some manifold in

the bordism class can be reversed even by an involution.

77
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Theorem 69: [Kawakubo], [Rosenzweig, p. 5, ll. 13–20]

An element x of Ω∗ has a representative which admits an orientation-
reversing involution if and only if x is a torsion element of Ω∗.

The involutions considered in the two papers are constructed as diffeomorph-

isms. Moreover, the manifold representative in [Kawakubo] is connected.

In the opposite direction, recall that in low dimensions, the answer is imme-

diate: a set of points is chiral if and only if its bordism class is nonzero; all one-

and two-dimensional manifolds are smoothly amphicheiral. For all bordism

classes in higher dimensions, the following result is proved in the next sections:

Theorem 70

In every dimension ≥ 3, every closed, smooth, oriented manifold is oriented
bordant to a manifold of this type which is connected and homotopically
chiral.

Summary of proof. The proof is split into three cases for different dimensions:

Proposition 71 deals with all odd dimensions, and Proposition 74 handles the

even dimensions greater than four. In dimension four, the bordism classes

are detected by the signature [MS, Ch. 17, 19], and a manifold with nonzero

signature is homotopically chiral.

Section 5.3 deals with the remaining single case: it is proved that there is a

homotopically chiral 4-dimensional manifolds with signature zero (Theorem

81).

Sections 5.1 and 5.2 do not contain new obstructions for our list. Instead, it

is proved in these sections that the existing obstructions can be preserved when

the bordism class of a manifold is changed. For the 4-dimensional manifolds

with signature zero in Section 5.3, we exploit again the fact that the funda-
mental group and its automorphisms can pose obstructions to homotopical

amphicheirality. The approach to the obstruction is purely algebraic using

group homology. Then it is proved that the algebraic obstruction is realised

geometrically by a manifold with the desired properties (dimension 4, simply-

connected, signature 0).

5.1 Odd dimensions ≥ 3

Proposition 71

In every odd dimension ≥ 3 and every oriented bordism class, there is a
connected manifold that admits no self-map of degree −1.
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To show this, we first prove the following lemma.

Lemma 72

In every odd dimension ≥ 3 and every oriented bordism class, there is a
simply-connected representative.

Proof of Lemma 72. Since Ω3 = 0 [Saveliev99, Cor. 2.5], the statement is trivial

in dimension 3. Let Mn be a manifold of dimension n ≥ 4. Since M is oriented,

the stable normal bundle ν has a lift ν̅ to BSO. By [Kreck99, Prop. 4] M
is bordant to a manifold M′ such that the corresponding lift ν̅′ is at least a
2-equivalence. In particular, M′ is simply-connected.

Lemma 73

Let Mn be a closed, connected manifold of dimension n ≥ 3 and let the map
f1 ∶ M → K(π1(M), 1) induce an isomorphism on the fundamental group.
Suppose that f1∗[M] ∈ Hn(K(π1(M), 1)), the image of the fundamental
class, is never sent to its negative under any self-map of K(π1(M), 1). Let
Nn be a simply-connected manifold. Then M#N does not admit a self-map
of degree −1.

Proof. We would like to have a map M#N → M that has degree 1 and induces

an isomorphism on π1. Such a map can be defined by the scheme in Figure 5.1

on the following page. The fundamental group of M is not changed by this

process because M is at least 3-dimensional.

Thus, the composition f ∶ M#N → M
f1
Ð→ K(π1(M), 1) is the first Postnikov

stage of M#N . Since the Postnikov approximation is functorial up to homotopy

and the image of the fundamental class f∗[M#N] = f1∗[M] cannot be mapped

to its negative, M#N is chiral.

Proof of Proposition 71. In Section 3.1, we constructed manifolds M that fulfill

the conditions of Lemma 73 in every odd dimension n ≥ 3. In fact, these

manifolds are aspherical, so for the map f1, we can use the identity on M.

Proposition 71 now follows from the two previous lemmas. Note that no as-

sumption about the bordism class of M is needed: Since N runs through all

n-dimensional bordism classes, the connected sum M#N does as well.

5.2 Even dimensions ≥ 6

Proposition 74

In every even dimension ≥ 6 and every oriented bordism class, there is a
connected manifold that admits no self-map of degree −1.
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id

M ∖ D̊n

N ∖ D̊n

collar

M#Sn ≅ M

M#N

constant map
to the pole

Sn ∖ D̊n ≅ Dn

Figure 5.1: A map of degree 1 and an isomorphism on π1.

Proof. The proposition follows again from Lemmas 72 and 73. Instead of an

aspherical manifold Mn, however, we use a product L3 ×Mn−3 of the following
components:

• L3 is a 3-dimensional lens space. Let r be the order of the fundamental

group. Let h ∶ L3 → L∞ be a map to an infinite-dimensional lens space

which induces an isomorphism of the fundamental groups. We require

that h∗[L3] ∈ H3(L∞;Z/r) is never mapped to its negative under any

self-map of L∞. This is the case, e. g., for every lens space L3 such that

r = ∣π1(L3)∣ contains a prime factor congruent 3 modulo 4.

• Mn−3 is an odd-dimensional aspherical chiral manifold, which was con-

structed in Section 3.1.

The map f1 ∶= (idM × h) ∶ M × L3 → M × L∞ induces an isomorphism on

the fundamental groups, and the target is an Eilenberg-MacLane space. In the

remaining proof it is shown that the image of the fundamental class

(idM × h)∗[M × L3] ∈ Hn(M × L∞;Z/r)

is never mapped to its negative under any self-map of M × L∞. This completes

the requirements of Lemma 73.

We first determine all endomorphisms of π1(M × L∞) and then study their

effect on homology. Since all spaces are connected, we can fix any basepoint,

and all self-maps of the respective spaces can be made basepoint-preserving by

a homotopy. Since there is no danger of confusion, the basepoint is neglected

in the notation of the fundamental group.
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Recall the following facts from the construction of M: G ∶= π1(M) is a

semidirect product

1→ Z
k → G → Z→ 1

with k = dim(M) − 1, and the right map is the abelianisation of G.
This exact sequence implies that all nontrivial elements of G have infinite

order. Indeed, if an element maps to a nonzero number in Z, it certainly has

infinite order. On the other hand, if it maps to zero, then it is contained in the

subgroup Zk .

Although there is no notion of the torsion subgroup in a general (non-

abelian) group, we do have one in π ∶= π1(M × L∞) = G × Z/r: The subset

of all torsion elements in π constitutes the second factor Z/r, hence it is a

subgroup.

Denote by i1, i2, p1 and p2 the inclusions and projections for the two factors

G and Z/r of π. Since the set of torsion elements is preserved under any

endomorphism f of π, we can always complete the diagram below with a

homomorphism fT .

Z/r
fT

i2

Z/r

i2

π
f

π

Denote the composition p1 ○ f ○ i1 by fG ∶ G → G and likewise p2 ○ f ○ i1 by
fS ∶ G → Z/r (“S” like shear map). In the following, write the groups multiplic-

atively with neutral element e. We have for g ∈ G, c ∈ Cr = Z/r

f (g , c) = f (g , e) ⋅ f (e , c)
= ( fG(g), fS(g)) ⋅ (e , fT(c))
= ( fG(g), fS(g) ⋅ fT(c)).

Therefore, any endomorphism f of π can be decomposed (in this order) into

idG × fT , (idG , fS ⋅ idCr) and fG × idCr .

In the following, all homology and cohomology groups are with Z/r-coeffi-

cients understood. Denote the image of the fundamental class h∗[L3] ∈ H3(L∞)
shortly by [L]. Since (idM × h)∗[M × L3] in Hn(M × L∞) is the homology

cross product of the fundamental classes [M] and [L], it is clear that neither
fG nor fT can reverse the product fundamental class. It is therefore sufficient

to study the shear homomorphism fS ∶ G → Z/r and its effect on homology.

For the rest of the proof, assume that f = (idG , fS ⋅ idCr) for some homo-

morphism fS ∶ G → Cr . Since we would like to exploit the cup product structure,

we work in Z/r-cohomology instead of homology.

Let [L]∗ ∈ H3(L∞) ≅ Z/r be dual to [L] = h∗[L3] ∈ H3(L∞). Likewise, let
[M]∗ ∈ Hn−3(M) be dual to [M]. The cross product [M]∗ × [L]∗ evaluates on
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(idM × h)∗[M × L3] nontrivially. We identify [M]∗ ∈ Hn−3(M) with its image

p∗1 [M]
∗ ∈ Hn−3(M × L∞) and likewise for [L]∗, so the cross product above can

be written as a cup product [M]∗ ∪ [L]∗. The following two facts are shown:

• f ∗([M]∗ ∪ [L]∗) is a multiple m ⋅ ([M]∗ ∪ [L]∗), m ∈ Z/r. (Here, the
use of f ∗ for the induced map in cohomology is legitimate since M × L∞

is an Eilenberg-MacLane space.)

• The coefficient m is never congruent −1 mod r.

By the particular form of f , we have the following commutative diagram

G ×Z/r
f

p1

G ×Z/r

p1

G
idG G

Thus, there is a corresponding diagram of Eilenberg-MacLane spaces which

commutes up to homotopy. The induced diagram in cohomology is

Hn−3(M × L∞) Hn−3(M × L∞)
f ∗

Hn−3(M)

p∗
1

Hn−3(M)

p∗
1

id

Since [M]∗ is in the image of p∗1 , we can conclude that f ∗[M]∗ = [M]∗. The

transformed fundamental class [L]∗, on the other hand, could a priori be any
element of H3(M × L∞) ≅ ⊕i+ j=3H i(M) ⊗ H j(L∞). However, only the part

in H0(M) ⊗ H3(L∞) gives a nontrivial product with [M]∗.
Therefore, f∗([M]∗ ∪ [L]∗) = [M]∗ ∪ f ∗([L]∗) is a multiple of [M]∗ ∪ [L]∗.

The factor is equal to the degree of the induced map on H3(L∞), given by the

composition

L∞
i2
Ð→ M × L∞

f
Ð→ M × L∞

p2
Ð→ L∞.

Since it was assumed that [L] is never mapped to −[L], the proof is complete.

5.3 Dimension 4 and signature 0

In this section, we prove that there are homotopically chiral 4-dimensional

manifolds with signature zero. Since every simply-connected closed 4-manifold

is amphicheiral, such a manifold must certainly have a nontrivial fundamental

group. We pick up the idea that the obstruction to amphicheirality should

already be manifest in the 1-type, as it obviously was in the aspherical odd-

dimensional manifolds in Section 3.1.
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Proposition 75

Let π be a finitely presented group with the following properties:

• Every automorphism of π is an inner automorphism.

• There is an element m ∈ H4(π) of order greater than two.

Then there is a (closed, connected, smooth, orientable) homotopically chiral
4-manifold with fundamental group π and signature zero.

Proof. Consider the oriented bordism group Ω4(K(π, 1)). We show that there

is an element (M , f ) ∈ Ω4(K(π, 1)) that maps to m under the Thom homo-

morphism

Ω4(K(π, 1)) → H4(K(π, 1))
(M , f ) ↦ f∗[M].

For this, consider the Atiyah-Hirzebruch spectral sequence for Ω∗(K(π, 1)).

r

s

Z πab ? ? H4(π)

0

0

0

0

0

Z E2
r,s = Hr(K(π, 1); Ωs)

d i

Since there is no differential from or to E2
4,0, we have E∞4,0 = E

2
4,0, and the

Thom homomorphism

Ω4(K(π, 1)) ↠ E∞4,0 = E
2
4,0 ≅ H4(π)

is surjective. Let (M′, f ′) be a preimage of m.

By surgery below the middle dimension, (M′, f ′) can be altered to (M , f ) in
the same bordism class such that f ∶ M → K(π, 1) is a 2-equivalence [Kreck99,

Prop. 4].∗

Now f is a first Postnikov approximation map for M, and as such it is

functorial. Every homotopy equivalence of M induces an automorphism on

K(π, 1). Since every automorphism of π is inner and inner automorphisms

induce the identity on group homology [Brown, Prop. II.6.2], m = f∗[M] is
fixed under any automorphism of π. Thus, since m ≠ −m, the fundamental

class [M] can never be sent to its negative under any homotopy equivalence

of M.

The signature of M can be corrected to be zero by connected sum with

several copies of CP2 or −CP2 (cf. Lemma 73 for a similar argument).

∗ In [Kreck99, Prop. 4], take B = BSO × K(π, 1) and ξ ∶ B → BO the projection BSO → BO in

the first factor and the constant map in the second factor.
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In the rest of this section, we present an infinite set of finite groups that

fulfill the requirements of Proposition 75. For this, a certain set of finite groups

is studied, and it is shown that they all have only inner automorphisms (Pro-

position 77). For an infinite subset of these groups, we show that they also

fulfill the condition on the fourth homology group (Proposition 80).

Lemma 76

Let 1→ N → G → Q → 1 be a split extension of groups, where Q is abelian.
Denote by ψ ∶ Q → Aut(N) the action of Q on N by conjugation. Suppose
that (1) ψ is injective and (2) the fixed point set NQ consists only of the
neutral element. Then G has trivial centre.

Proof. For n ∈ N , q ∈ Q, we have [q, n] = ψ(q)(n)n−1. Thus, q is in the centre

of G if and only if it is in the kernel of ψ. By condition (1), this only holds if

q = e.
Write any other element g ∈ G ∖ Q as g = nq, n ≠ e. Since Q is abelian, we

have [q′, g] = [q′, n] for any q′ ∈ Q. By condition (2), this commutator does

not vanish for some q′ ∈ Q.

Now the definitions and notations are introduced that lead to the desired fun-

damental groups. Let p1, . . . , pk be pairwise distinct odd primes. Let Ni ∶= Cp i ,

the cyclic group of order pi (written multiplicatively). Let Qi be the auto-

morphism group of Ni . Since pi is prime, it is a cyclic group of order pi − 1.
Define Gi as the semidirect product

1→ Ni → Gi → Qi → 1,

where the operation ψi ∶ Qi → Aut(Ni) is the identity.

Choose generators ni of Ni and qi of Qi . Let G(p1, . . . , pk) ∶= ⨉k
i=1Gi .

Every element can be uniquely written in the form na1
1
qb1
1
. . . nakk qbkk . Denote

G(p1, . . . , pk) shortly by G, suppressing the parameters. There is no danger of

confusion since one such group is fixed for the rest of this section.

Let ri ∈ Z/pi be the primitive root of pi that corresponds to qi . In other

words, we have

qi(n) = nr i for every n ∈ Ni . (1)

In particular, we have ri ∉ {[0], [1]}. Considered in Gi , equation (1) says

qiniq
−1
i = n

r i
i , (2)

which is equivalent to

niqin
−1
i = n

1−r i
i qi . (3)

Proposition 77

Every automorphism of G is inner.
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This proposition extends [Huppert, Bsp. I.4.10], where the case of a single

factor is proved, i. e. when k = 1 and G = G1. For the sake of completeness, we

state a small extension of the proposition.

Corollary 78

The group G is complete, i. e. it has trivial centre and every automorphism
is inner.

Proof. Combine Lemma 76, the information Z(G ×G′) ≅ Z(G) × Z(G′) for all
groups G, G′ and Proposition 77.

Proof of Proposition 77. Let α ∶ G → G be an automorphism. First, it is shown

that each cyclic subgroup Ni is invariant under α. Define exponents ai , j ∈ Z/pi
and bi , j ∈ Z/(pi − 1) by

α(ni) =∶
k
∏
j=1

na i , jj qb i , jj .

Let f j be the composition G α
Ð→ G → G j → Q j, where the second and third

map are the projections. Applying f j to equation (2) yields qb i , jj = q
b i , jr i
j . Thus,

bi , j ≡ bi , jri mod p j − 1, or equivalently,

p j − 1 ∣ bi , j(ri − 1) for all i , j ∈ {1, . . . , k}. (4)

Besides, we have np i
i = e. Applying f j to this equation yields qb i , j p ij = e, and

thus

p j − 1 ∣ bi , jpi . (5)

Since ri − 1 and pi are coprime, equations (4) and (5) imply bi , j ≡ 0 mod

p j − 1. Thus, the image of ni in Q j is trivial for all i , j.
This means that α(ni) = ∏ j n

a i , j
j , i. e. α maps to the abelian subgroup ⊕ j N j

of G. The order of α(ni) is the product of all primes p j such that ai , j ≠ 0.
Hence, all ai , j with i ≠ j must be zero. This proves that α(ni) ∈ Ni .

In order to simplify the further arguments, define for each i an exponent

ci ∈ Z/pi by ai ,i =∶ rc ii . Let εi ∶ G → G be the conjugation by q−c ii . Then εi maps

na i , ii to ni and leaves all other generators fixed.

Define an automorphism of G by φ ∶= ε1 ○ . . . εk ○ α. The automorphism φ
leaves all generators ni fixed. In addition, it is sufficient to prove that φ is an

inner automorphism in order to prove the proposition.

Now the images of the generators qi are studied. Similar to before, write

φ(qi) as ∏ j n
d i , j
j qe i , jj with di , j ∈ Z/pi and ei , j ∈ Z/(pi − 1). Applying φ to the

relation (2) yields

⎛

⎝

k
∏
j=1

nd i , jj qe i , jj
⎞

⎠
ni
⎛

⎝

k
∏
j=1

q−e i , jj n−d i , jj
⎞

⎠
= nr ii .
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⇔ nd i , ii qe i , ii niq
−e i , i
i n−d i , ii = nr ii

⇔ n
(rei , ii )
i = nr ii

⇔ re i , ii ≡ ri mod pi
⇔ ei ,i ≡ 1 mod pi − 1

Similarly, applying φ to the relation qhni = niqh for h ≠ i yields

⎛

⎝

k
∏
j=1

ndh , jj qeh , jj
⎞

⎠
ni = ni

⎛

⎝

k
∏
j=1

ndh , jj qeh , jj
⎞

⎠

⇔ ndh , ii qeh , ii niq
−eh , i
i n−dh , ii = ni

⇔ n
(r

eh , i
i )

i = ni
⇔ reh , ii ≡ 1 mod pi
⇔ eh,i ≡ 0 mod pi − 1 for all h ≠ i.

This implies that φ(qi) = (∏ j n
d i , j
j ) qi . Applying φ to the relation qhqi =

qiqh gives then

⎛

⎝

k
∏
j=1

ndh , jj
⎞

⎠
qh
⎛

⎝

k
∏
j=1

nd i , jj
⎞

⎠
qi =
⎛

⎝

k
∏
j=1

nd i , jj
⎞

⎠
qi
⎛

⎝

k
∏
j=1

ndh , jj
⎞

⎠
qh .

Projection onto Gi yields for all h ≠ i

ndh , ii nd i , ii qi = n
d i , i
i qin

dh , i
i

⇔ ndh , ii = qin
dh , i
i q−1i

⇔ ndh , ii = nr idh , ii

⇔ dh,i ≡ ridh,i mod pi
⇔ dh,i ≡ 0 mod pi

This holds for every h ≠ i, so the image of qi is finally restricted to the form

φ(qi) = n
d i , i
i qi .

Let γi ∶= di(1 − ri)−1 mod pi . Conjugation by nγ ii maps qi to

nγ ii qin
−γ i
i = nγ i(1−r i)i qi = n

d i , i
i qi = φ(qi)

(see equation (3)) and leaves all other generators fixed. Hence, the automorph-

ism φ equals conjugation by ∏ j n
γ j
j for suitably defined γ1, . . . , γk .

We now turn to the homology groups of G with constant integral coefficients.

Wall computed in [Wall67] the integral homology of split extensions of finite

cyclic groups by finite cyclic groups (in other words: of finite split metacyclic
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groups). We state his result in the special case of our groups Gi corresponding

to the odd prime pi .∗

Proposition 79: special case of [Wall67, p. 253 ff.]

Let pi be an odd prime. The finite split metacyclic group Gi ∶= Cp i ⋊ Cp i−1
defined by an isomorphism Cp i−1 ≅ Aut(Cp i) has the following homology
groups with constant integral coefficients:

H2m−1(Gi) ≅ {
Z/(pi − 1) if pi − 1∤m
Z/pi(pi − 1) if pi − 1 ∣ m

(m ≥ 1)

H2m(Gi) = 0 (m ≥ 1)

Wall has to compute the differentials in a double complex explicitly in order

to obtain his result. For the groups Gi (not for all groups which Wall considers),

the following arguments give the homology quickly without computing any

differential if one invests the Lyndon-Hochschild-Serre spectral sequence as a

ready-made tool:

Alternative proof of Proposition 79. For every group extension

1→ N → G → Q → 1

and every left G-module M, there is the cohomological Lyndon-Hochschild-
Serre spectral sequence with E2-term

Er,s
2 ≅ H

r(Q;Hs(N ;M))

converging to Hr+s(G;M) [Evens, Ch. 7.2]. This spectral sequence resides in the

first quadrant. The N-module structure on M is simply defined by restriction

from G to N . In our case, M is the trivial module Z.

The coefficients Hs(N ;M) in the E2-term are local coefficients, and the left

action of Q on Hs(N ;M) is given by conjugation [Evens, Ch. 7.2], [Brown,

Ch. II.6]: We have a map Q → Out(N) given by conjugation with a preimage

of q ∈ Q in G (no matter which preimage). The induced map in cohomology

is the action in the local coefficient system. Here again, it is used that inner

automorphisms (in N) act trivially on the cohomology [Evens, Prop. 4.1.1].

By the definition of the group Gi , we know this action: We have N = Ni =

Cp i , Q = Qi ≅ Cp i−1, and the chosen generator qi ∈ Qi acts by the automorphism

n ↦ nr i . Fix a generator x ∈ H1(N) ≅ Z/pi . Denote by ρp i the coefficient reduc-

tion modulo pi , which in our case is an isomorphism H1(N) ∼Ð→ H1(N ;Z/pi).
Let (ρp i x)

∗ be the Kronecker dual in H1(N ;Z/pi) and define

y ∶= β(ρp i x)
∗ ∈ H2(N ;Z/pi)

∗ The correspondence between [Wall67, p. 253 ff.] and our symbols is the following: x ∶= n i ,

y ∶= q i , r ∶= p i , s ∶= p i − 1 and t ≡ r−1i mod p i . Also note the typographical error on p. 254

(twice): The sum ∑s−1
j=1 t

jm
must start at j = 0.
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as the image under the Z/pi Bockstein homomorphism. In our case, the Bock-

stein homomorphism is again an isomorphism (which is a well-known fact from

the cohomology of lens spaces), so y is in fact a generator for H2(N ;Z/pi).
Since coefficient reduction, Kronecker duality and cohomology operations

are natural (in the appropriate sense for duality), we conclude that qi acts on
H2(N ;Z/pi) ≅ H2(N ;Z) in the same way as on H1(N), which is by the map

y ↦ r ⋅ y (now written additively, as usual with abelian groups). By the product

structure in the cohomology of finite cyclic groups, we conclude that hi acts by
multiplication with rm on H2m(N). In particular, the action is trivial if m ≡ 0
mod pi − 1 and nontrivial otherwise.

We can now draw a diagram of the E2-term of the Lyndon-Hochschild-Serre

spectral sequence:

r

s

Z 0 Z/(pi − 1) 0 Z/(pi − 1) 0 Z/(pi − 1) . . . (periodic)

0

⋮

0

Z/pi

0

⋮

0

Z/pi

⋮

(periodic)

Er,s
2 = H

r(Cp i−1;H
s(Cp i))

(0 everywhere)

0

2(p i−1)

4(p i−1)

0 1 2 3 4 5 6

The base line is the cohomology of the quotient group Q ≅ Cp i−1. All entries
Er,s
2 with r ≥ 1 and s ≥ 1 are zero because the order pi of every nontrivial element

in N is invertible in the coefficient module Z/(pi − 1) [Brown, Cor. III.10.2]. The

first column is the zeroth cohomology H0(Q;Hs(N)) with local coefficients.

By [Brown, III.1.8], this is equal to the fixed points of Hs(N) under the action
of Q. If s is a multiple of 2(pi − 1), the action is trivial, so E0,s

2 ≅ Z/(pi − 1).
Otherwise, either the coefficient module is zero (if s is odd) or the action is

free, so E0,s
2 = 0 in these cases.

There are no nontrivial homomorphisms Z/pi → Z/(pi − 1), so all higher

differential vanish. By the universal coefficient theorem ((UCT 2) on page 58),

the homology groups in Proposition 79 follow.

Thus, we have H1(Gi) = Z/2 and H3(Gi) ≅ Z/6 if pi = 3 and H1(Gi) ≅

H3(Gi) ≅ Z/(pi − 1) for all primes pi > 3.
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By the Künneth theorem, we get the following result:

Proposition 80

The group G = G(p1, . . . , pk) has an element of order greater than 2 in
H4(G) if and only if there are indices i , j ∈ {1, . . . , k}, i ≠ j such that either
pi = 3 and p j ≡ 1 mod 3 or gcd(pi − 1, p j − 1) > 2.

Proof. If the condition is fulfilled, H4(G) contains a summand

H3(Gi) ⊗H1(G j) ≅ Z/6⊗Z/(p j − 1) ≅ Z/6

by the Künneth theorem in the first case (note that p j − 1 is always even) and

H3(Gi) ⊗H1(G j) ≅ Z/(pi − 1) ⊗Z/(p j − 1) ≅ Z/ gcd(pi − 1, p j − 1)

in the second case. The necessity of the conditions (which is not needed for

this work) can also be checked easily with the Künneth formula.

The group G(3, 7) = G3 × G7 with 252 elements is the smallest group in

this family. In fact, computer calculations with the computer algebra system

GAP ([GAP], [HAP]) showed that G(3, 7) is the smallest finite group that has

only inner automorphisms and an element of order greater than 2 in its 4th

homology (with constant Z-coefficients).

In summary, the following theorem was proved by Propositions 75, 77 and 80:

Theorem 81

There are infinitely many (with different fundamental groups) closed, con-
nected, smooth, homotopically chiral 4-manifolds with signature zero.





6
Products of Lens spaces

In Theorem 36 it was shown that products of lens spaces of different dimen-

sions are homotopically chiral if and only if each single factor is homotopically

chiral. This leads to the question whether this is also true for lens spaces

of the same dimension. Products of lens spaces are always amphicheiral if

one of the factors is amphicheiral or if two factors are equal (i. e. homotopy

equivalent, diffeomorphic, . . .), since then two odd-dimensional factors can be

interchanged and this reverses orientation.

For products of three-dimensional lens spaces, there are further results.

These manifolds were classified up to unoriented homotopy equivalence by

Huck and Metzler [HM], [Huck]. Their proofs are in fact sufficient to de-

duce the oriented statement. The results are stated and it is detailed how the

proofs must be read in order to obtain the oriented classification in Appendix

A.2. In Corollary 96, necessary and sufficient conditions are obtained when a

product of three-dimensional lens spaces is homotopically amphicheiral. The

conditions are numerical congruences which can be checked easily in each

individual case.

Moreover, Metzler obtains diffeomorphisms of certain products of three-

dimensional lens spaces in a constructive way [Metzler]. Again, he states only

unoriented results but his proofs in fact produce orientation-preserving diffeo-

morphisms. Those results which are relevant for producing new amphicheiral

products are stated in Appendix A.3, where it is also explained how to read the

proofs so that they can be understood in the oriented sense. The conclusions

about new, nontrivial orientation-reversing diffeomorphisms of products of lens

spaces are summarised in the Propositions 101 and 103.

As mentioned above, Metzler really constructs diffeomorphisms between

products of three-dimensional lens spaces. For this, he exploits the group

structure on S3 as the unit quaternions. One of the restrictions of his approach
is that one of the lens space factors must always be a “standard” lens space

Lr(1, 1).
In this chapter, we extend these results by showing that products of three-

dimensional lens spaces can be smoothly amphicheiral in previously unknown

cases. The result is the following theorem.

91
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Theorem 82

Let r1 and r2 be coprime odd integers and let L1 and L2 be (any) 3-
dimensional lens spaces with fundamental groups Z/r1 resp. Z/r2. Then
the product L1 × L2 is smoothly amphicheiral.

This result intersects with Metzler’s but neither is a subset of the other. In

fact, the approach here is completely different. We use the surgery theory of

[Kreck99] to establish orientation-preserving diffeomorphisms between L1 × L2
and −L1 × L2. The argumentation is facilitated by the fact that it is known from

Corollary 96 that L1 × L2 is homotopically amphicheiral. This is however not a

crucial ingredient, and the exact technical condition (L1 × L2 and its negative

are bordant over their normal 3-type) can be proved independently. Since the

result is available, though, we adopt it gratefully and cut the first step in Kreck’s

surgery programme short.

Proof of Theorem 82. Preliminaries
The surgery technique which is used in this chapter is presented in [Kreck99],

and we first explain the necessary preliminaries to get into the correct context.

In [Kreck99], all spaces are equipped with basepoints, and all maps preserve

basepoints. We will stick to this convention. A very important detail is the

way in which a manifold is assigned a classifying map for its stable normal

bundle. Given a manifold Mn, it can always be embedded in an Rr+n by the

Whitney embedding theorem if r is large enough. The normal Gauss map for

this embedding is a map from M to Gr,n, the Grassmannian of r-planes in
Rr+n. It is defined by assigning a point p ∈ M the r-plane that is orthogonal to
the tangent plane of M at p in Rr+n.
In the following, we work with a very specific model for BO, the classi-

fying space for stable real vector bundles. Let BO be the colimit over the

Grassmannian manifolds Gk,l for k, l ≥ 0, where

• Gk,l is embedded in Gk,l+1 by the map induced from

R
k+l → R

k+l+1
, (v1, . . . , vr+n) ↦ (0, v1, . . . , vr+n),

• Gk,l is embedded in Gk+1,l by mapping a plane V ⊂ Rk+l to the plane

V ⊕ ⟨er+n+1⟩ ⊂ Rk+l+1.

(It is easy to verify that both stabilisation steps commute. For more details, see

[Switzer, 11.36–11.55]). It will become clear below why it is necessary to choose

this model for BO and not any space that is homotopy equivalent to it.

In Kreck’s surgery theory, one works with the stable normal Gauss map,
which is the composition

ν ∶ M → Gr,n → BO
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corresponding to an embedding Mn ↪ Rr+n. Choosing another embedding

yields a map that is homotopic to ν.

Given a fibration B → BO, a B-structure on M is defined as a lift ν̅ ∶ M → B
of the stable normal Gauss map ν. At first sight, this notion depends on the

classifying map ν, i. e. on the embedding Mn ↪ Rr+n: A priori, there is no

correspondence between B-structures for different maps M → BO, even if they

are homotopic. Another choice of ν, say ν′, which is homotopic to ν, gives rise

to another lift ν̅′ by the homotopy lifting property of a fibration. All possibilities

for ν̅′ are of course homotopic but the fibrewise homotopy class depends on

the choice of the homotopy ν ∼ ν′.
This problem is resolved by the arguments in [Stong, Ch. II]: Stong argues

that if the codimension r is large enough, two different embeddings Mn → Rn+r

are regularly homotopic and “any two such regular homotopies are homotopic

through regular homotopies leaving endpoints fixed” [Stong, p. 15]∗. By the

lifting property for fibrations, this provides a fibre-preserving homotopy over

ν′ between two lifts ν̅′1 and ν̅′2 that were obtained from ν̅ along two different

homotopies ν ∼ ν′. Thus, there is a canonical correspondence between fibrewise

homotopy classes of lifts M → B for any two maps M → BO that are the stable

Gauss maps of actual embeddings M → Rn+r .
As a consequence of this, though it is not necessary to fix a map M →

BO, only those classifying maps M → BO shall be allowed that come from an

embedding. If the last statement is to make sense, the specific model for BO as

the colimit of Grassmannians should be chosen.

Consequences of these considerations become apparent when products of

manifolds are studied: Given a fibration B → BO and two manifolds with

B-structures
B

M1
ν1

ν̅1

BO,

B

M2
ν2

ν̅2

BO,

we would like to define a “product B-structure” on M1 ×M2. To justify the

reference to a more complicated approach below, we explain why a simpler

idea does not give the desired result easily. In his explanations to this topic,

Stong suggests to appeal to the H-space structure of BO corresponding to the

Whitney sum of vector bundles [Stong, p. 24 f.]. After an H-space map has been

fixed in the homotopy class, one could try to lift this map to B and “define” a

B-structure on M1 ×M2 by

B × B lift B

M1 ×M2
ν1×ν2

ν̅1×ν̅2

BO × BO
H-space

structure
BO

∗ At the cited place, Stong works in fact with so-called (Br , fr)-structures over BOr and stabilises

at a later stage to BO. This difference, however, does not compromise the arguments that are

given in this text.
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Since it is not clear that the composite in the bottom row of this diagram is

induced by an embedding of M1 ×M2, the composite M1 ×M2 → B does not

necessarily induce a sensible B-structure on the product. On the other hand,

if the product of two embeddings M1 ×M2 ↪ RN1 × RN2 ≅ RN1+N2 is chosen

for the classifying map to BO, it is not clear what the product of B-structures
should be. The author of this thesis did not succeed in finding an H-space

structure on the Grassmannian model for BO that always takes the stable nor-

mal Gauss maps of two embeddings to the stable normal Gauss map of the

embedding of the product.

Product structures in bordism theory, however, can be defined in a sim-

ilar but different way. Kochman explains in his book [Kochman, Ch. 1] very

carefully how the classifying normal map for products of manifolds can be

constructed. He also details how to define the product of B-structures based
on this, if the spaces that form B in the colimit admit “multiplication maps”

with certain properties. Kochman gives several examples, including the case

of framings, which is needed here (B = EO). The downside of this approach is

that an embedding of the manifold into a finite-dimensional real vector space

is part of the structure. More precisely, it is an equivalence class of embeddings

but only stabilisation by extra coordinates is allowed; very simple operations

like permutation of the coordinates, rotation or deformation of the embedding

lead out of the equivalence class. (There are bordism relations in these cases

but no equivalences of embeddings.)

In the course of this proof, we will refer to products of framed manifolds, the

ring structure on the framed bordism groups Ωfr∗ and the Ωfr∗ -module structure

on the homology theory Ωfr∗(−) without mentioning the technical details but

always implicitly refer to [Kochman] for a careful setup of these structures.

As a last item of fine print, we mention the way that orientations are fixed

in [Kreck99]. Usually, an orientation on the stable normal bundle (and thus,

after agreeing on conventions, on the manifold itself) can be given by choosing

one of two possible lifts

BSO

M ν BO.

The orientation corresponding to a specific lift can be seen directly if BSO is

defined as the double covering of BO built as the colimit of oriented Grass-

mannians. In [Kreck99] however, already the r-plane which is the fibre of the

universal r-plane bundle γr → BOr over the basepoint is oriented. For unori-

entable manifolds, this gives a local orientation at the basepoint. For orientable

manifolds, with which we are dealing here exclusively, the only difference is

that an orientation is not given when a lift of the stable normal map ν is

chosen but is already predefined by the embedding of the manifold into an

RN . Correspondingly, the stable normal maps for M and −M must be different

(but one can easily be obtained from the other, if desired: e. g. if the vector
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u ∈ RN (u ≠ 0) is tangent to M ⊂ RN at the basepoint 0 ∈ RN , then mirroring

RN at the plane orthogonal to u gives an embedding of M which corresponds

to the negative orientation.)

Bordism computation
Given a manifold M with a lift of the stable normal Gauss map ν̅ ∶ M → EO and

a map to another space f ∶ M → X, write (M , ν̅, f ) for the element in the bor-

dism group Ωfr∗(X). In Kreck’s notation, this bordism group would be written

as Ω∗(X × EO) with the fibration X × EO → BO (constant in the first factor)

understood. Given a map g ∶ X → Y , the induced map on the bordism groups is

given by g∗(M , ν̅, f ) = (M , ν̅, g ○ f ), i. e. only the last data is affected. Elements

in Ωfr∗ = Ωfr∗(pt) are written (M , ν̅), omitting the constant map to the point.

Now we return to the specific setting of Theorem 82. Let L1 and L2 be lens
spaces with fundamental groups Z/r1 resp. Z/r2. Let L be the product L1 × L2.
Since r1 and r2 are required to be coprime, we know by Corollary 96 that there

is an orientation-preserving homotopy equivalence T ∶ −L → L.
Choose embeddings of L1, L2 and −L1 and denote the classifying maps of

the stable normal bundles by ν1, ν2 and ν3 resp. Since every closed oriented

3-manifold is parallelisable [Stiefel, Satz 21], there are lifts ν̅1, ν̅2 and ν̅3 in the

fibration EO→ BO.
We want to prove the following

Proposition 83

There are framings ν̅w ∶ L1 → EO, ν̅x ∶ −L1 → EO and ν̅y , ν̅z ∶ L2 → EO such
that (L1 × L2, ν̅w × ν̅y , id) and (−L1 × L2, ν̅x × ν̅z , T) coincide in the framed
bordism homology group Ωfr

6 (L).

Proof. For the beginning, we choose framings ν̅1, ν̅2 and ν̅3 on L1, L2 and −L1
that will later be adapted.

There is a standard procedure to translate a tangential framing of a manifold

into a framing of the stable normal bundle [Stong, p. 23 f.].∗ A generator of

Ωfr
3 ≅ Z/24 is given by the Lie group SU(2) ≅ S3 with tangential framing any

left invariant vector field [Gershenson, p. 128f.], [BS, §6]. For the correct iden-

tification of the generator, also the correct orientation on S3 must be chosen.

This detail can be neglected here since only a generator of Ωfr
6 is needed, no

matter which one. We denote it by (S3, α).

∗ Stong defines a map BO → BO as follows: On each Grassmannian, In ,N ∶ Gn ,N → GN ,n maps

each n-plane in R
n+N

to its orthogonal N-plane. With the conventions that are used here on

page 92, the maps In ,N do not glue together under the two stabilisations that are used to build

BO from the Grassmannians. Instead, each In ,N has to be composed with the map induced

from R
n+N → R

n+N
, (x1 , . . . , xn+N) ↦ (xn+N , xn+N−1 , . . . , x1), i. e. the order of the coordinates

must be reversed. Stong is not explicit about the convention which he uses for the stabilisation

BO = colimn ,N Gn ,N . However, a similar correction map must always be applied since the

general idea is that the two stabilisation directions “grow” each R
n+N

at different coordinates,

and this must be compensated when a plane is mapped to its orthogonal complement.
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Thus, by (multiple) connected sum with (S3, α), any framed 3-manifold can

be changed to any element in Ωfr
3 by changing only the framing and preserving

the underlying manifold. Therefore, the framings on L1, L2 and −L1 can be

chosen such that these lens spaces represent the zero element in Ωfr
3 .

In order to prove Proposition 83, we determine the bordism group Ωfr
6 (L)

with the help of the Atiyah-Hirzebruch spectral sequence as far as necessary.

Recall that there is a splitting for every space X

Ω
fr
k (X) ≅ Ω̃

fr
k (X) ⊕Ω

fr
k ,

where the inclusion of Ωfr
k and the projection to it are induced by the inclusion

pt→ X and the constant map X → pt respectively. The reduced bordism group

Ω̃fr
k (X) is defined as the kernel of the second map. This implies that the zero-

column of the Atiyah-Hirzebruch spectral sequence always splits off as a direct

summand of Ωfr∗(X) in the E∞-page and that there are no differentials from

or to the zero-column on any page. By the Pontrjagin-Thom theorem (see

e. g. [Kochman, Cor. 1.5.11]), the framed bordism groups Ωfr
k (pt) ≅ E

∞
0,k are

isomorphic to the stable homotopy groups of spheres. The following figure

shows the relevant part of the Atiyah-Hirzebruch spectral sequence.

r

s

Z Z/r1r2 0 Z
2

Z/r1r2 0 Z

Z/2

Z/2

0

0

0

0

(Z/24)2

0

0

Z/2
E2
r,s = Hr(L; Ωfr

s )

Z/2

d3

0

0

Z/24

0

0

0

?

0

0

?

0

0

0

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

From this diagram, we conclude an exact sequence

Z/2
d3
Ð→ (Z/24)2 → Ω̃

fr
6 (L)

Thom
ÐÐÐ→ Z→ 0,

and Ωfr
6 (L) ≅ Ω̃

fr
6 (L) ⊕Z/2 because the leftmost column splits off.

The map d3 denotes here and in the following paragraphs always the dif-

ferential from E2
6,1 to E2

3,3. The right map in the sequence above is the Thom

homomorphism

Ω̃
fr
6 (L) ⊂ Ω

fr
6 (L) → H6(L)

(M , f ) f∗[M].
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The orientation-reversing homotopy equivalence T ∶ −L → L was chosen so

that the images of (L, ν̅1 × ν̅2, id) and (−L, ν̅3 × ν̅2, T) under the Thom map

coincide. Moreover, these elements are in the reduced bordism group Ω̃fr
6 (L)

due to their initial framings.

The E∞-terms in the Atiyah-Hirzebruch spectral sequence for a CW-complex

X are the quotients E∞r,s = Jr,s/Jr−1,s+1 in a filtration

0 ⊂ J0,n ⊂ . . . ⊂ Jr−1,s+1 ⊂ Jr,s ⊂ . . . ⊂ Jr+s,0 = Ωfr
r+s(X).

The subgroup Jr,s is the image of the map Ωfr
r+s(Xr) → Ωfr

r+s(X), which is

induced by the inclusion of the r-skeleton. It is actually an Ωfr∗ -submodule

because the module structure preserves the filtration (see [Conner, Ch. 1.7] for

the analogous case of oriented bordism).

Since the images of (L, ν̅1 × ν̅2, id) and (−L, ν̅3 × ν̅2, T) under the Thom

homomorphism coincide, the difference between these elements is in the sub-

group J3,3. We want to show that this difference is zero for suitable framings

on L and −L.

Lemma 84

The submodule J3,3 ⊂ Ωfr
6 (L) is equal to the image of the module map

Ω
fr
3 (L) ⊗Ω

fr
3 → Ω

fr
6 (L).

Proof. The module structure yields a commutative diagram

Ω
fr
3 (L) ⊗Ω

fr
3 = J3,0 ⊗Ω

fr
3

Ω
fr
6 (L) J3,3

Thus, the lemma is equivalent to surjectivity of the right vertical arrow. For

this, consider the following morphism of exact sequences, again given by the

module structure.

J2,1 ⊗Ω
fr
3 J3,0 ⊗Ω

fr
3 E∞3,0 ⊗Ω

fr
3 0

0 J2,4 J3,3 E∞3,3 0

By the “four-lemma” (a weak version of the five-lemma aiming at surjectivity

of the middle vertical arrow) it is sufficient to prove surjectivity of the outer

vertical arrows.

The modules J2,1 and J2,4 on the left hand side are equal to Ωfr
3 and Ωfr

6 resp.

since the E∞-entries at positions (2, 1), (1, 2), (2, 4) and (1, 5) are all zero. Thus,

the left vertical map is the multiplication Ωfr
3 ⊗Ωfr

3 → Ωfr
6 . This is a surjection
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since the Pontrjagin-Thom map is a ring isomorphism [Kochman, Thm. 1.5.4],

and in the stable homotopy groups of spheres, we have that ν2 ∈ πs6 = Z/2
is the nonzero element with ν ∈ πs3 the generator that is represented by the

quaternionic Hopf map S7 → S4.
The right vertical map fits into a commutative square

E∞3,0 ⊗Ω
fr
3 E2

3,0 ⊗Ω
fr
3

E∞3,3 E2
3,3

(1)

Since there are no differentials leaving the E∗3,0-entries, the upper horizontal

map is surjective. The right vertical map is the module map on the E2-term,

which is given by

H3(L; Ωfr
0 ) ⊗Ω

fr
3 → H3(L; Ωfr

0 ⊗Ω
fr
3 ) → H3(L; Ωfr

3 )

≅ ≅ ≅

Z
2 ⊗Z/24 (Z/24)2 ∼ (Z/24)2

see [Conner, Lemma 7.1]. The left arrow in the upper row is the coefficient

change map in homology and a surjection in the present case. The right arrow

is the module map on Ωfr∗ , which is an isomorphism since Ωfr
0 ≅ Z.

The lower horizontal map in the diagram (1) exists since the only possibly

nonzero differential involving Ek
3,3 (k ≥ 2) is the differential marked d3 in the

spectral sequence. This gives a surjection E2
3,3 ↠ E∞3,3. Since the subsequent

identifications Ek+1∗,∗ ≅ H(Ek∗,∗, dk) are module homomorphisms, the diagram

(1) commutes.

Since all three arrows of the composition from top to bottom in diagram (1)

are surjective, the left vertical map is surjective, too. This proves Lemma 84.

By the Atiyah-Hirzebruch spectral sequence, the third bordism group Ωfr
3 (L)

fits into an exact sequence

0→ Ω
fr
3 → Ω

fr
3 (L) → H3(L) → 0.

≅ ≅

Z/24 Z
2

Let ν̅a and ν̅b be any framings of L1 resp. L2 and denote the inclusions of

L1 and L2 into L by i1 resp. i2. A set of generators for Ωfr
3 (L) is then given by

(L1, ν̅a , i1), (L2, ν̅b , i2) and (S3, α).
In the following, we admit only framings ν̅a and ν̅b such that (L1, ν̅a) is

an even element in Ωfr
3 ≅ Z/24, likewise for L2. We call framings having this

property “even”. Note that a framing ν̅ on a 3-manifold M is even if and only if

(M , ν̅) × (S3α) = 0 in Ωfr
6 . The restriction to even framings has the effect that

the cross products g1 ∶= (L1, ν̅a , i1) × (S3, α) and g2 ∶= −(L2, ν̅b , i2) × (S3, α) lie
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in the reduced bordism group Ω̃fr
6 (L). The minus sign in the definition of

g2 is deliberate since we will work in the following with the flipped product

(S3, α) × (L2, ν̅b , i2), which is also a representative of g2. Note that g1 and g2 do
not depend on the choice of the framings ν̅a and ν̅b, as long as these framings

are even.

By Lemma 84, the subgroup J3,3 ⊂ Ωfr
6 (L) is generated by g1, g2 and g3 ∶=

(S3, α) × (S3, α). The last element g3 also generates Ωfr
6 .

Since the difference (L, ν̅1 × ν̅2, id) − (−L, ν̅3 × ν̅2, T) lies in J3,3 ∩ Ω̃fr
6 (L),

there are p, q ∈ Z/24 such that

T∗(−L, ν̅3 × ν̅2, id) = (L, ν̅1 × ν̅2, id) + p ⋅ g1 + q ⋅ g2. (2)

The coefficients p and q may not be unique, depending on the differential

d3, but at least there are values which fulfill equation (2). There are different

strategies for the last step of the proof, depending on the parity of p and q.
The three cases below should be understood non-exclusively. If more than one

case applies, each procedure works.

Case 1: p is even. Choose ν̅a = ν̅1 and write equation (2) as

(−L, ν̅3 × ν̅2, T) = (L1, ν̅1, i1) × (L2, ν̅2, i2) + p ⋅ (L1, ν̅1, i1) × (S3, α) + q ⋅ g2
= (L1, ν̅1, i1) × ((L2, ν̅2, i2) + p ⋅ (S3, α)) + q ⋅ g2

The sum (L2, ν̅2, i2) + p ⋅ (S3, α) is bordant to (L2, ν̅y , i2) with a new fram-

ing ν̅y. Since ν̅2 is an even framing and p an even number, ν̅y is even.

Choose ν̅b = ν̅y and write

(−L, ν̅3 × ν̅2, T) = (L1, ν̅1, i1) × (L2, ν̅y , i2) + q ⋅ (S3, α) × (L2, ν̅y , i2)
= ((L1, ν̅1, i1) + q ⋅ (S3, α)) × (L2, ν̅y , i2)

This step changes the framing of L1 to a new framing ν̅x , so finally we have

(−L, ν̅3 × ν̅2, T) = (L1, ν̅x , i1) × (L2, ν̅y , i2) = (L, ν̅x × ν̅y , id),

as desired.

Case 2: q is even. This is analogous to the previous case with the roles of p and

q switched. Choose first ν̅b = ν̅2 and change the framing of L1 to another

even framing ν̅x . Then choose ν̅a = ν̅x and change the framing of L2 in
order to dispose of the generator g1.

Case 3: p and q are odd. Consider the subgroup M′ ∶= J3,3 ∩ Ω̃fr
6 (L) in Ωfr

6 (L).
This subgroup is invariant under automorphisms of L because both con-

stituents J3,3 and Ω̃fr
6 (L) are. Another set of generators for M

′, which is

more suitable for working on the left hand side of the equation, is

h1 ∶= (−L1, ν̅3, i1) × (S3, α) and h2 ∶= (S3, α) × (L2, ν̅2, i2).
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There is still the small issue that coefficients for this set of generators

are not unique modulo 24 if the differential d3 ∶ E3
6,1 → E3

3,3 ≅ (Z/24)
2

is nonzero. Since E3
6,1 = Z/2, this is overcome by reducing everything

modulo 12. Accordingly, we consider M ∶= M′/12M′, which is isomorphic

to (Z/12)2. Two bases (g1, g2) and (h1, h2) have been identified for M as

a Z/12-module.

Let τ ∈ M(2 × 2;Z/12) be the matrix of the homomorphism T∗ with basis

(h1, h2) in the domain and (g1, g2) in the target understood. Since T is

a homotopy equivalence, τ is an invertible matrix. Thus, not all entries of

τ are even. Let the i-th column have at least one odd entry. Then we can

write

T∗hi = p′ ⋅ g1 + q′ ⋅ g2, (3)

again in M′, with p′, q′ ∈ Z/24. The coefficients p′, q′ may not be uniquely

determined but at least one of them is odd.

Adding equation (3) to equation (1) changes the framing on the left hand

side (it is still in the reduced bordism group) and changes the coefficients

on the right hand side such that at least one of them is even. With this

change, the problem is reduced to case 1 or 2.

This finishes the proof of Proposition 83.

Surgery step
In the previous section it was shown that L and −L are framed bordant over

L itself. This is the starting point of the actual surgery step, in which the

connectedness of the inclusions of L and −L into the bounding manifold is

increased stepwise to make it finally an s-cobordism. The proof follows the

technique of [Kreck99], and the part of its main theorem which is needed here,

is excerpted below as Theorem 85.

Let wk ∈ Hk(BO;Z/2) be the k-th Stiefel-Whitney class of the universal

bundle. Let wk(B) be the class which is pulled back by the projection B → BO.
In our case, wk(B) = 0 for all k > 0 because the projection factors through EO,
which has vanishing cohomology.

The following theorem is [Kreck99, Thm. 4] restricted to dimension 6 (q = 3),
manifolds M0, M1 without boundary and wq+1(B) = 0. It is stated with the

simplifications that follow immediately from the restrictions, and only with the

part of the conclusion that is needed here.

Theorem 85: Special case of [Kreck99, Thm. 4]

Let M0 and M1 be closed, connected, smooth 6-dimensional manifolds with
the same Euler characteristic. Suppose there are normal 3-smoothings in a
fibration B → BO. Let W together with a normal structure ν̅ be a B-bordism
between M0 and M1. Then M0 and M1 are oriented diffeomorphic if and
only if θ(W , ν̅) ∈ L7(π1(B),w1(B)) vanishes.
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Here, we set M0 = L, M1 = −L. A k-smoothing is a lift of the stable normal

bundle ν̅ ∶ Mi → B over BO which is a (k + 1)-equivalence. We have not only

3-smoothings to B but even full homotopy equivalences

(id, ν̅w × ν̅y) ∶ L → (L × EO) = B and (T , ν̅x × ν̅z) ∶ −L → (L × EO).

In the previous section of the proof, the existence of a B-bordism was shown.

The symbol L2q+1(π,w) denotes a certain abelian group. It depends on the

parity of q, a group π and a homomorphism w ∶ π → Z/2. The orientation

character w1(B) can equivalently be regarded as an element in H1(B,Z/2) or
as a homomorphism π1(B) → Z/2, and is zero in the present case. In the group

L7(π1(B),w1(B)), an obstruction θ(W , ν̅) is defined. We do not analyse the

obstruction θ(W , ν̅) and the way it is obtained from W but show in the follow-

ing that its containing group L7(π1(B),w1(B)) is trivial. This step concludes

the proof of Theorem 82.

Proposition 86

Let π be a finite cyclic group of odd order and w ∶ π → Z/2 the trivial map.
Then the group L2q+1(π,w) vanishes for all q ∈ N0.

The groups L2q+1(π,w) were defined in [Kreck99, p. 733]. The definition is

reproduced along with the proof below.

Proof. As above, let π be a group and w ∶ π → Z/2 be a homomorphism. Denote

the integral group ring of π by Λ = Z[π]. There is an anti-involution ∶ Λ → Λ

defined by g̅ = w(g)g−1 for g ∈ π.
Set ε to (−1)q. An ε-quadratic form over Λ is given by a left Λ-module

together with an ε-hermitian sesquilinear form λ ∶ V × V → Λ and a so-called

quadratic refinement, which is a map µ ∶ V → Λ/⟨x − εx̅⟩. (Here, ⟨x − εx̅⟩
means the additive subgroup of Λ consisting of all elements of the specified

form.) For a better understanding of the concept, we quote all the required

properties from [Kreck99, p. 725], even though they are not required to be

remembered in the further proof.

i) For fixed v ∈ V , the map V → Λ, w ↦ λ(w , v) is a Λ-homomorphism.

ii) λ(v ,w) = ε λ(w , v).

iii) λ(v , v) = µ(v) + εµ(v) (which is actually a well-defined element in Λ).

iv) µ(v +w) = µ(v) + µ(w) + λ(v ,w) ∈ Λ/⟨x − εx̅⟩.

v) µ(x ⋅ v) = x ⋅ µ(v) ⋅ x̅ for x ∈ Λ, v ∈ V .

An important case is the ε-hyperbolic form Hr
ε , which is the r-fold ortho-

gonal sum of Hε, and Hε is the form on Λ ⊕ Λ with standard basis e and f
and λ(e , f ) = 1, λ( f , e) = ε, λ(e , e) = λ( f , f ) = 0 and µ(e) = µ( f ) = 0.
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A finitely generated, free Λ-module is called based if it is equipped with

an equivalence class of bases, where two bases are equivalent if the matrix

of base changes vanishes in the Whitehead group Wh(π). An isomorphism

between based Λ-modules is called a simple isomorphism if the matrix of the

isomorphism with respect to the given bases vanishes in Wh(π).
An element in L2q+1(π,w) is now represented by a hyperbolic form Hr

ε on

Λ2r together with a free, based direct summand V ⊂ Λ2r of rank r. Further-
more, it is required that λ and µ vanish on V . Two equivalence relations among

those pairs (Hr
ε ,V) are introduced to define L2q+1(π,w):

• Stabilisation by orthogonal sum with (Hε , Λ × {0}).

• The action of a certain group RU ε(Λ) on stable equivalence classes of

objects.

The group RU ε(Λ) is the colimit of groups RU ε(Λr) ⊂ Aut(Λ2r),

which are generated by the map ei ↦ ε fi , fi ↦ ei and those simple

isometries of Hr
ε preserving Λr × {0} and inducing a simple isomorph-

ism on Λr × {0}. An element A ∈ RU ε(Λr) acts by mapping (Hr
ε ,V) to

(Hr
ε ,A(V)).

The exact definition of RU ε(Λ) is not important in the following; it

should be remembered that all representatives of elements are simple

isometries of Hr
ε .

The resulting set L2q+1(π,w) is a monoid under orthogonal sum, and it can

be shown that it is actually an abelian group with zero element the class of

0 ∼ (Hr
ε , (Λ × {0})

r).

According to [Kreck99, p. 733], there is an exact sequence

0→ Ls2q+1(π,w) → L2q+1(π,w) →Wh(π), (4)

where the left group is one of Wall’s surgery obstruction groups. If π is a finite

group of odd order and w is trivial, Ls2q+1(π,w) is zero by [Bak], so we are

only concerned with the image of L2q+1 in the Whitehead group.

The map to the Whitehead group is given by the following: Let (α1, . . . , αr)
be the chosen basis of V (up to simple isomorphism) and denote the dual

elements in the free module Hr
ε by (β1, . . . , βr) (so we have λ(αi , β j) = δi j).

The image in the Whitehead group is the Whitehead torsion of the base change

between the standard basis of Hr
ε and the basis (α1, . . . , αr , β1, . . . , βr). This

is the definition given in [Kreck99] but since a permutation of coordinates

has trivial Whitehead torsion, the standard basis can as well be compared

with the basis (α1, β1, α2, β2, . . . , αr , βr). Denote the matrix of such a base

change by A. Instead of a base change, consider A now as an automorphism

of the hyperbolic form Hr
ε = (Λ

2r , λ) with respect to the standard basis. The

advantage of the modified definition for the map to the Whitehead group is

that the representative A is the matrix of an isometry of the hyperbolic form.
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Let L ∈ M(2r × 2r; Λ) be the matrix of λ with respect to the standard basis.

This means that λ(v ,w) is given by

v tL w̅ ∈ Λ

if v ,w denote the coordinate (row) vectors of v resp. w with respect to the

standard basis. Since A is an isometry, we have AtLA̅ = L, and after transposi-

tion

A∗LtA = Lt .

Here, A∗ denotes as usual the conjugate transpose of the matrix A. Con-
jugation refers to the involution on Λ, which was denoted by an overline

before. Considering these matrices in the Whitehead group, we have τ(A∗) +
τ(Lt) + τ(A) = τ(Lt), hence τ(A∗) + τ(A) = 0. This result is also contained in

[CS, Lemma 6.2].

The definition of the involution on Λ = Z[π] in the surgery context involved

the orientation character w. In the present case, however, w is trivial, so the

involution is simply induced by the map g ↦ g−1 on π. This involution (con-

jugation) on π induces an involution on the matrix rings over Z[π] given by

the conjugate transpose, as above. The involution on GLn(Z[π]) continues
through all the steps in the definition of the Whitehead group, so an involution

of the Whitehead group is obtained, which is also referred to as the standard
involution [Oliver, Ch. 5c]. If this involution on Wh(π) is also denoted by a

star, we can thus write τ(A)∗ + τ(A) = 0. If f denotes the map from L2q+1(π,w)
to Wh(π) in (4), the following result can be stated:

f (x)∗ + f (x) = 0 for all x ∈ L2q+1(π,w). (5)

If π is a finite group, then Wh(π) is a finitely generated abelian group

([Oliver, Thm. 2.5 (iii)] with A = Q[π] and I = A = Z[π]). The subgroup

SK1(Z[π]) of Wh(π) is a finite group [Oliver, Thm. 2.5 (ii)], and the quo-

tient Wh(π)/ SK1(Z[π]) is torsion free [Oliver, Thm. 7.4]. Thus, SK1(Z[π])
is the torsion subgroup of Wh(π). If π is finite cyclic, SK1(Z[π]) is zero

[Oliver, Thm. 5.6].

For the present proof, the following proposition is most helpful:

Proposition 87: [Oliver, Cor. 7.5]

Let π be a finite group such that SK1(π) = 0. Then conjugation acts trivially
on Wh(π).

Together with (5), this implies 2 f (x) = 0 and hence f (x) = 0.
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Orientation-reversing

diffeomorphisms of minimal order

Another question in connection with orientation reversal is the following:

If a manifold is amphicheiral, what is the minimal order of an orienta-
tion-reversing diffeomorphism?

Siebenmann presented a 3-manifold that admits an orientation-reversing dif-

feomorphism but none of finite order [Siebenmann, p. 176]. Another example

is obtained by combining two theorems: Kreck proved in [Kreck07] that there

are infinitely many closed simply-connected smooth 6-manifolds on which no

finite group can act effectively. But it was shown in Chapter 4 that every such

manifold is smoothly amphicheiral. We can conclude

Proposition 88

There are infinitely many closed simply-connected smooth 6-manifolds which
admit an orientation-reversing diffeomorphism but none of finite order.

In view of diffeomorphisms of finite order, let f ∶ M → M be an orientation-

reversing diffeomorphism of order 2k ⋅ l with l odd. Then f l is an orientation-

reversing diffeomorphism of order 2k . Thus, only powers of two are important

for the minimal order of an orientation-reversing diffeomorphism, and we ask

the following question:

Given k ≥ 1, is there a manifold which admits an orientation-reversing
diffeomorphism of order 2k but none of order 2k−1?

This question can be answered in the affirmative. The key to one direction

of the solution is the following result about lens spaces.

Proposition 89: see e. g. [Lück, Thm. 2.31]

Let L be a lens space of dimension 2n − 1 with fundamental group Z/r.
There is a self-map of L with degree d ∈ Z and automorphism x ↦ e ⋅ x of
the fundamental group if and only if en ≡ d mod r.

105



106 7 Orientation-reversing diffeomorphisms of minimal order

Corollary 90

A lens space of dimension 2n − 1 with fundamental group of order r > 2 does
not admit an orientation-reversing self-map whose order is a divisor of n.

As immediate examples, we can conclude that no 3-dimensional lens space

admits an orientation-reversing involution and no 7-dimensional lens space

admits an orientation-reversing diffeomorphism of order less than 8.

To complement Corollary 90, we construct lens spaces with orientation-

reversing diffeomorphisms of minimal order. Let L be a lens space of dimen-

sion p − 2 with prime fundamental group Z/p, p ≥ 5. Let p − 1 = 2k ⋅ l be the
factorisation into even and odd parts. By Corollary 90, L has no orientation-

reversing diffeomorphism of order 2k−1.
Since p is prime, the group of multiplicative units in Z/p is a cyclic group

of order p − 1. Let c ∈ (Z/p)× be a primitive root mod p, i. e. a generator of

this group. In the following, abbreviate (p − 1)/2 by n. Consider the lens space
L ∶= Lp(c, c2, . . . , cn). As usual, L is formed as the quotient of the unit sphere

Sp−2 ⊂ Cn under the Z/p-action

(z1, . . . , zn) ↦ (exp ( 2πicp ) ⋅ z1, . . . , exp(
2πicn
p ) ⋅ zn) .

The diffeomorphism

f̃ ∶ Sp−2 → Sp−2

(z1, z2, . . . , zn) ↦ (z2, . . . , zn , z̅1)

preserves the Z/p-orbits. (Here it is needed that cn ≡ −1 mod p because both

sides of the equation are the unique element of order two in the cyclic group

of units.) Moreover, f̃ reverses the orientation, so it induces an orientation-

reversing diffeomorphism f on the lens space L. From the definition follows

f̃ 2n = f̃ p−1 = id. This implies that f l is an orientation-reversing diffeomorphism

of order 2k . (Indeed, the order cannot be smaller, as was shown above.)

By Dirichlet’s theorem, the arithmetic progression

2
k + 1, 3 ⋅ 2k + 1, 5 ⋅ 2k + 1, . . .

contains infinitely many primes. Thus, for every positive integer k, there are

suitable primes p, and we get the following

Theorem 91

For every positive integer k, there are infinitely many lens spaces which admit
an orientation-reversing diffeomorphism of order 2k but no orientation-
reversing self-map of smaller order.
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A.1 The linking form

In this section, the linking form is defined and its properties, as stated in

Theorem 6, are proved. The statement was the following:

Theorem 6

Let M be a closed, oriented topological manifold of odd dimension 2k − 1.
Then there is a nondegenerate, (−1)k-symmetric bilinear form

L ∶ TorHk(X) × TorHk(X) → Q/Z,

which is called the linking form. Furthermore, if f ∶ N → M is a continuous
map then L( f ∗a, f ∗b) = deg( f ) ⋅ L(a, b).

Recall that a bilinear form is called nondegenerate if the two insertion homo-

morphisms

TorHk(X) → Hom(TorHk(X),Q/Z) (1)

given by a ↦ L(a, ⋅ ) and a ↦ L( ⋅ , a) are isomorphisms. Also recall the nota-

tion Afree ∶= A/TorA for any finitely generated abelian group A. Before the

lemma is proved, we need the following lemma.

Lemma 92

Let A be a finitely generated abelian group. Since every map f from a torsion
group to Z is zero, every map A→ Z descends to a map f̅ on the quotient
Afree. Then the map

i ∶ Hom(A,Z) ⊗Q/Z→ Hom(Afree,Q/Z)

f ⊗ q ↦ q ⋅ f̅

is an isomorphism.
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Proof. For the proof of injectivity, let ∑ j f j ⊗ q j ≠ 0. Then there exists an a ∈ A
such that ∑ f j(a) ⊗ q j ≢ 0 in Q/Z. But this implies ∑ q j ⋅ f j(a) ∉ Z, so ∑ q j f̅ j
is nonzero in Hom(Afree,Q/Z).

In order to prove surjectivity, we need that A is finitely generated. Let g be

a map in Hom(Afree,Q/Z) and choose generators a1, . . . , am of Afree. Choose

r j , s j ∈ Z such that g([a j]) ≡ r j/s j mod Z. Let S ∶= ∏ s j and define f ∶ A→ Z

by f ∶= S ⋅ g. Then f ⊗ S−1 is a preimage for g.

Proof of Theorem 6. Consider the following diagram, which will be explained

below.

Hom(Hk−1(M)free,Q/Z) Hom(TorHk−1(M),Q/Z)Hom(Hk−1(M),Q/Z)

Hom(Hk−1(M),Z) ⊗Q/Z

≅i

Hk−1(M) ⊗Q/Z

g⊗1
Hk−1(M;Q/Z) TorHk(M)

β

≅h Φ

The first row of this diagram is one of the universal coefficient theorems

((UCT 4) on page 58) and therefore a natural exact sequence. Following the

construction of this sequence, one can identify the right map as the Bockstein

homomorphism β for the coefficient sequence 0→ Z→ Q→ Q/Z→ 0.

For the second row, consider the exact sequence

0→ TorHk−1(M) → Hk−1(M) → Hk−1(M)free → 0 (2)

and apply the contravariant functor Hom( ⋅ ,Q/Z). We obtain the long exact

Ext-sequence [Munkres, Ex. 52.4, Ex. 41.4]

0→ Hom(Hk−1(M)free,Q/Z) → Hom(Hk−1(M),Q/Z) →

→ Hom(TorHk−1(M),Q/Z) → Ext(Hk−1(M)free,Q/Z) → . . .

Since Q/Z is divisible, the Ext-term is zero, and we have the desired short

exact sequence. Since the sequence (2) is natural in M, also the second row in

the diagram is natural.

The downward homomorphism g is the Kronecker map. It is surjective

with kernel Ext(Hk−2(M),Z) [Munkres, Lemma 45.7, Cor. 53.2]. Tensoring

with Q/Z preserves surjectivity. The map h is also the Kronecker map. Here,

the coefficient group is divisible, so the Ext-term vanishes, and we have an

isomorphism. The Kronecker map is natural in a mixed co-/contravariant sense

but this will become clear when we deal with it later.

The map i is the isomorphism from Lemma 92. It relies on the fact that M
is compact and therefore Hk−1(M) is finitely generated.

Let Ck = Ck(M) (k ∈ N0) denote as usual the singular cochain complex of

M. The left square in the diagram commutes since both ways an element
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[α] ⊗ [q] ∈ Hk−1(M) ⊗Q/Z with representatives α ∈ Ck , q ∈ Q is sent to the

homomorphism

Hk−1(M) → Q/Z

[b] ↦ q ⋅ α(b) (mod Z).

Having checked the commutativity, there is, by an easy diagram chase, a

unique isomorphism

Φ ∶ TorHk(M) → Hom(TorHk−1(M),Q/Z)
ε ↦ h(η) if βη = ε

commuting with the existing maps in the diagram.

Now consider the following homomorphism of exact sequences (cf. [Ranicki,

Ex. 12.44 (i)])

0 TorHk(M)

∩[M] ∆

Hk(M)

∩[M] ≅

Hk(M) ⊗Q

∩[M] ≅

0 TorHk−1(M) Hk−1(M) Hk−1(M) ⊗Q

The middle and right vertical maps are isomorphisms, according to Poincaré

duality. Since the torsion subgroup of any abelian group is preserved by all

homomorphisms, the left vertical map is well-defined. Denote this map by ∆.

By the five-lemma, it is an isomorphism.

The linking isomorphism is now given by the isomorphism Φ, composed

with

Hom(∆, id) ∶ Hom(TorHk−1(M),Q/Z) → Hom(TorHk(M),Q/Z).

This finishes the construction of the linking form. It is expressed by the first

insertion homomorphism in (1), so this is an isomorphism by construction.

We still have to check that it is (−1)k-symmetric and natural. By the symmetry,

also the second insertion map in (1) is then an isomorphism, so the linking

form is nondegenerate.

For the symmetry, the map TorHk(X) → Hom(TorHk(X),Q/Z) must be

studied on cochain level. Consider [ε] ∈ Hk−1(X;Q/Z) with representative

ε ∈ Ck−1(M ,Q/Z). Let ε̅ ∈ Ck−1(M ,Q) be a lift to Q (which exists since

Ck−1(M ,Q/Z) = Hom(Ck−1,Q/Z) and Ck−1(M) is free). The Bockstein im-

age of [ε] is defined as β[ε] = [δε̅], where δε̅ actually lies in the subgroup

Ck(M ,Z) ⊂ Ck(M ,Q).

Now let [η] be an element in TorHk(M), which is represented by η ∈ Ck ,

and choose ε such that β[ε] = [η]. Likewise, let [κ] ∈ TorHk(M) and choose

γ ∈ Ck−1(M ,Q/Z) such that β[γ] = [κ]. The cup product ε̅ ∪ κ makes sense if

both cochains are regarded as rational cochains and the cup product refers to

the ring structure of Q.
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By the first part of the proof, the linking form L([η], [κ]) is given by the

rational number ⟨ε̅ ∪ κ, [M]⟩,∗ and all choices are irrelevant if it is considered

modulo Z.

By the coboundary formula for the cup product, we have

L([η], [κ]) = ⟨ε̅ ∪ κ, [M]⟩ (mod Z)

= ⟨ε̅ ∪ (δγ̅), [M]⟩
= (−1)k⟨(δε̅) ∪ γ̅ − δ(ε̅ ∪ γ̅), [M]⟩
= (−1)k⟨(δε̅) ∪ γ̅, [M]⟩ − (−1)k⟨ε̅ ∪ γ̅, ∂[M]⟩
= (−1)k ⋅ (−1)k(k−1)⟨γ̅ ∪ (δε̅), [M]⟩
= (−1)kL([κ], [η]).

Naturality is also readily checked. In fact, given a map f ∶ N → M and

[η], [κ] ∈ TorHk(M), choose ε̅ ∈ Ck−1(M ,Q) as before. Then we have β[ f ∗ε] =
f ∗[η], and thus

L( f ∗[η], f ∗[κ]) = ⟨ f ∗ ε̅ ∪ f ∗κ, [N]⟩
= ⟨ε̅ ∪ κ, f∗[M]⟩
= deg f ⋅ ⟨ε̅ ∪ κ, [M]⟩
= deg f ⋅ L([η], [κ]).

When the linking form is antisymmetric, this poses restrictions on the homo-

logy of manifolds, very similar to restrictions obtained from the intersection

form, e. g.

Corollary 93

There is no closed, oriented topological manifold M of dimension 4k + 1
which has TorH2k+1(M) ≅ Z/n and n > 2.

Proof. Let α be a generator of TorH2k+1(M). We have L(α, α) = −L(α, α)
because the linking form is antisymmetric. Since the pairing is nondegenerate,

L(α, α) has order n > 2, a contradiction.

Also, there are immediate consequences concerning the chirality of mani-

folds, see e. g. Lemma 8

∗ The square bracket notation is ambiguous here (though standard): [η] means the cohomology

class of the cochain η but [M] is the fundamental class of the manifold M.
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A.2 Homotopy equivalences between products of

lens spaces

Note on the literature. There are at least three articles containing the full clas-

sification of products of 3-dimensional lens spaces up to unoriented homotopy

equivalence. Unfortunately, all three articles claim conflicting results.

The first work was written by Sieradski [Sieradski] and was corrected by

Huck in [Huck]. In [HM], Huck and Metzler give necessary conditions that

products of lens spaces of arbitrary but equal dimension are homotopy equi-

valent. They also announce that these conditions are sufficient in the case of

3-dimensional lens spaces. In a subsequent paper [Huck], Huck constructs

the claimed homotopy equivalences. However, this last paper wrongly states

an additional condition in the main theorem.∗ This condition only appears

in the statement of the theorem and is not backed up in the proof, so it can

safely be removed from the statement without compromising the otherwise

valid conclusions of [Huck] and [HM].

The correct theorem appears in the second-newest paper [HM], and we refer

to this classification in the following.

Careful inspection of the proofs in [HM] and [Huck] reveals that very few

modifications are necessary in order to improve the statements to the oriented

versions. In the following, we state the adapted theorems and give the necessary

information to complement the proofs.

Theorem 94: oriented version of [HM, p. 13]

If there is an oriented homotopy equivalence between two products of lens
spaces of dimension 2n − 1

s
∏
i=1

L2n−1m i
(r1(i), . . . , rn(i)) and

s
∏
i=1

L2n−1m′i
(r′1(i), . . . , r

′
n(i)),

the following two conditions hold:

1. the fundamental groups are isomorphic:

s
⊕
i=1

Z/mi ≅
s
⊕
i=1

Z/m′i

(Note that this implies gcd(m1, . . . ,ms) = gcd(m′1, . . . ,m
′
s). Abbrevi-

ate this by gcd.)

∗ To correct the statement, remove the phrase “If −1 is a square mod p j or” from the theorem,

likewise in the German statement on p. 68.
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2. (a) if n is odd, the congruence relation

s
∏
i=1

r1(i) ⋅ . . . ⋅ rn(i) ≡ kn ⋅
s
∏
i=1

r′1(i) ⋅ . . . ⋅ r
′
n(i) mod gcd

for some k ∈ Z;
(b) if n is even, for each maximal prime power divisor px jj of gcd the
congruence relation

s
∏
i=1

r1(i) ⋅ . . . ⋅ rn(i) ≡ ε jkn ⋅
s
∏
i=1

r′1(i) ⋅ . . . ⋅ r
′
n(i) mod px jj ,

where the signs ε j ∈ {+1,−1} for the different prime divisors are de-
termined as follows:

The sequences (m1, . . . ,m2) and (m′1, . . . ,m
′
2) determine sequences

of corresponding maximal prime power divisors

px i jj ∣ mi resp. p
x′i j
j ∣ m

′
i .

By condition 1, (x′1 j , . . . , x
′
s j) is a permutation of (x1 j , . . . , xs j), and

the permutation is uniquely determined if these prime power exponents
are pairwise distinct. We get the following conditions on the signs ε j in
the system of congruence equations above: If xi j = xl j for some i ≠ l ,
then the sign ε j is arbitrary; otherwise, the sign has to be equal to the
sign of the corresponding permutation of prime power exponents.

Proof. The proof in [HM] can be carried over almost unchanged. One only has

to restrict the signs at the right places from ±1 to +1, so we state the necessary

changes to this paper.

Every map f between products of lens spaces induces a map f̃ of their

universal coverings (which are products of spheres S2n−1). The key information

is that the degree of f̃ is given by the determinant ∣(di j)∣ in equation (2)

(p. 16). Accordingly, if a homotopy equivalence preserves the orientation, the

determinant is +1, not ±1 (p. 17, l. 6). This implies that the ± signs in the

following two displayed equations (lines 11 and 13) can be removed.

Further examination of the proof shows that this was the only place where

the sign of the degree entered the formulas. Therefore, some ± signs can be

removed from the statement of the theorem, too: there is no sign in condition

2. (a) (p. 13), and ε = ±1 is replaced by ε = 1 (p. 13, l. 14).
At last, note two small typographical errors: In equation (1) on p. 14, replace

“mod n” by “mod m′” (see e. g. [Olum, Thm. V] for the correct statement), and

on p. 19, l. 12, the condition (p − 1) ∣ (n − 1) should be (p − 1) ∤ (n − 1).
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Theorem 95: oriented version of [Huck, main theorem]

In the case n = 2 (i. e. 3-dimensional lens spaces), the conditions in Theorem
94 are sufficient.

Proof. Here, the proof in [Huck] can be carried over without any change. The

statement of the theorem has to be adapted, of course, so that the conditions

equal 1 and 2 (b) of Theorem 94 above. Also, the homotopy equivalences of

a single factor, Le1(r′) ≃ Le1(±k2r′) (p. 72, l. −11), must be restricted to the

orientation-preserving ones, i. e. Le1(r′) ≃ Le1(k2r′). (Huck uses a slightly dif-

ferent notation: Le1(r′) in [Huck] is written Le1(1, r′) in this text.) All other

homotopy equivalences in the proof preserve the orientation, although Huck

does not emphasise this.

Huck composes every homotopy equivalence of maps which he calls “elemen-

tare Homogenitätstransformationen”. Their degree is given by the determinant

of a matrix

(
h1 h2
h3 h4

)

(top of p. 78). The maps in a certain subset of these homotopy equivalences

(“spezielle Homogenitätstransformationen”, bottom of p. 78) have degree 1 since

their matrices of partial degrees are shear matrices ( 1 ∗0 1 ) or (
1 0∗ 1 ).

With the more complicated transformations, Huck explicitly constructs maps

of degree +1. The relevant information is on p. 81 (last displayed equation

with right hand side 1), p. 86, l. −10 and −7 and p. 89, l. −11. Note also a

typographical error which is relevant in this context: the correction term on

p. 87, l. −6 is −s(kgV)2, not −s′(kgV)2.
Every occurrence of a homotopy equivalence can thus be understood in the

orientation-preserving sense.

From Theorem 94 and Theorem 95, we can deduce when products of 3-

dimensional lens spaces are amphicheiral.

Corollary 96

Consider a product of 3-dimensional lens spaces

L ∶= Lm1
(1, r1) × . . . × Lms(1, rs).

The sequence (m1, . . . ,ms) determines, for each prime p j, a sequence of
corresponding maximal prime power divisors px i jj of mi . The product L is
homotopically amphicheiral if and only if for each maximal prime power
divisor py jj of gcd ∶= gcd(m1, . . . ,ms), we have xi j = xl j for some i ≠ l , or
−1 is a square mod py jj .
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A.3 Diffeomorphisms between products of lens

spaces

Metzler constructs in his dissertation [Metzler] various diffeomorphisms be-

tween products of 3-dimensional lens spaces. He uses the Lie group structure on

S3 as the unit quaternions to construct sophisticated diffeomorphisms between

products of S3 which respect the equivalence relations given by the respective

covering transformations. A common feature of his results is that one of the

lens space factors must always be Lm(1, 1) or Lm(1,−1), otherwise he has no

constructions.

As with the results of Huck, Metzler and Sieradski in the previous section,

Metzler states and proves his results only with regard to unoriented diffeo-

morphism. His methods, however—at least in the theorems which are cited

here and whose proofs were carefully checked—produce orientation-preserving

diffeomorphisms. Evidence for the fact that Metzler really means the unori-

ented statements is given by the proof of his Theorem 5 (quoted as Theorem 99

below): Here, the orientation changes during the proof (without any hint, and

rightly so, since Metzler does not need it for his conclusions). However, the

orientation changes twice in total, thus the theorem finally yields an orientation-

preserving diffeomorphism.

We state Metzler’s results that are of interest for our work and indicate why

they are true even with respect to oriented diffeomorphisms. We also draw

the conclusions about amphicheirality of products of lens spaces that can be

obtained from Metzler’s results.

Theorem 97: [Metzler, Satz 1]

Lm(1, 1) × Ln(1, r) is diffeomorphic to S3 × Lmn(1, 1) for (m, n) = 1.

(As usual, (m, n) denotes the greatest common divisor.) Since the second

product is clearly smoothly amphicheiral, the statement above holds with regard

to both orientation-preserving and orientation-reversing diffeomorphisms. We

can conclude

Corollary 98

The product of 3-dimensional lens spaces Lm(1, 1) × Ln(1, r) is smoothly
amphicheiral if (m, n) = 1.

Obviously, the products Lm(1,−1) × Ln(1, r) and Lm(1, s) × Ln(1,±1) are then
amphicheiral, too. In the following, we do not mention the extensions that

result from simply reversing the orientation or interchanging the factors. Also

the isomorphisms that only change the preferred generator of the fundamental

group (Ln(r, s) ≅ Ln(kr, ks) for all k ∈ (Z/n)×) are not taken into account.
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Theorem 99: [Metzler, Satz 5]

Lm(1, r) × Ln(1, 1) is diffeomorphic to Lm(1, 1) × Ln(1, r) for (r,mn) = 1.

Here, it is important to know if the diffeomorphism can be chosen to be ori-

entation-preserving. Metzler does not consider this question in his dissertation

but by tracing his construction it can be seen that he indeed gives an orienta-

tion-preserving diffeomorphism. In fact, the diffeomorphism in Theorem 99

is given on the universal covering as a composition of five diffeomorphisms

f1, . . . , f5 ∶ S3 × S3 → S3 × S3.
The diffeomorphisms f1 to f3 are all given by the scheme

fi ∶ S3 → S3, (z1, z2) ↦ (g(z1, z2) ⋅ z1 ⋅ h(z1, z2), z2)
or (z1, g(z1, z2) ⋅ z2 ⋅ h(z1, z2))

(3)

for z1, z2 ∈ S3 ⊂ H, certain maps g , h ∶ S3 × S3 → S3 and multiplication under-

stood in the quaternions H. Hence, the induced map on H3(S3 × S3) is given
(with the obvious basis) by a triangular matrix ( 1 0∗ 1 ) or (

1 ∗
0 1 ), so f1 to f3

preserve the orientation.

The map f4 is the product of the identity in the first factor and a map of

degree −1 in the second factor (compare [Metzler, eq. (37)]), hence it reverses

the orientation. This is compensated by f5, which simply interchanges the two

spheres. Altogether, Metzler constructs an orientation-preserving diffeomorph-

ism.

Since the parameter r in Theorem 99 can be changed freely modulo m in

one product and modulo n in the other, we can vary the parameter modulo

(m, n):

Lemma 100

The products Lm(1, 1) × Ln(1, r1) and Lm(1, 1) × Ln(1, r2) are oriented dif-
feomorphic if r1 − r2 is a multiple of (m, n).

Proof. Implicitly, we have (r1, n) = 1. Let g ∶= (m, n). Choose x , y ∈ Z such

that xn + ym
g = 1 − r1. Then we have

(r1 + xn, mg ) = 1

and (r1 + xn, n) = (r1, n) = 1 ⇒ (r1 + xn, g) = 1.

Both lines together imply (r1 + xn,m) = 1. Hence, we can replace r1 by
s1 ∶= r1 + xn and have thus Ln(1, r1) = Ln(1, s1), (s1, n) = 1 and additionally

(s1,m) = 1. Likewise, we replace r2 by s2 such that (s2,m) = (s2, n) = 1.
Let a, b be integers such that s2 − s1 = an + bm. We have the following chain

of orientation-preserving diffeomorphisms

Lm(1, 1) × Ln(1, s1) = Lm(1, 1) × Ln(1, s1 + an) → Lm(1, s1 + an) × Ln(1, 1)
= Lm(1, s1 + an + bm) × Ln(1, 1) = Lm(1, s2) × Ln(1, 1) → Lm(1, 1) × Ln(1, s2)
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The two arrows in this formula are given by Theorem 99. For the first arrow,

we have to check that (s1 + an,mn) = 1 in order to apply Theorem 99. Since

(s1, n) = 1 and (s2,m) = 1, we have

(s1 + an, n) = 1
and (s1 + an,m) = (s2 − bm,m) = (s2,m) = 1

Both lines together imply (r + bn,mn) = 1, so Theorem 99 applies. For the

second arrow, we already ensured (s2,mn) = 1.

This enables us to extend Corollary 98 to the case (m, n) = 2.

Proposition 101

The product of 3-dimensional lens spaces Lm(1, 1) × Ln(1, r) is smoothly
amphicheiral if (m, n) ≤ 2.

Proof. By Lemma 100, the product Lm(1, 1) × Ln(1, r) is clearly oriented diffeo-

morphic to Lm(1, 1) × Ln(1,−r).

Theorem 102: [Metzler, Satz 7], restricted to two factors

The product Lm1n(1, r1)× Lm2
(1, 1) is diffeomorphic to Lm1

(1, 1)× Lm2n(1, r2)
if (m1, n) = (m2, n) = 1 and

r1 ≡ {
1 mod m1

−1 mod n, r2 ≡ {
1 mod m2

−1 mod n.

Again, it is important to know whether the constructed diffeomorphism

preserves the orientation. Metzler proves the theorem with a composite of two

maps on the universal covering f2 ○ f1 ∶ S3 × S3 → S3 × S3. Both maps were

designed according to the scheme (3), so they preserve the orientation. In the

first half of the proof, he also states the covering transformations on S3 × S3 (on
both ends of the map) carefully, thereby identifying the fundamental groups

Z/(m1n) ⊕ Z/m2 and Z/m1 ⊕ Z/(m2n). By checking these actions one sees

that Metzler really generates the space Lm1
(1, 1) × Lm2n(1, r2) with its canonical

orientation on the right hand side and not, e. g. the unoriented diffeomorphic

space Lm1
(1,−1) × Lm2n(1, r2).

This shows that Theorem 102 can in fact be read with an orientation-

preserving diffeomorphism understood, which gives us some amphicheiral

products of lens spaces that were not yet covered by Theorems 97 and 99. The

other theorems in [Metzler] do not add to the present results.

Proposition 103

Let a, b, c be pairwise coprime integers and let r ≡ 1 mod a. Then the
product L ∶= Lab(1, r) × Lac(1, 1) is smoothly amphicheiral.
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Proof. By Lemma 100, L is oriented diffeomorphic to L2 ∶= Lab(1, r2) × Lac(1, 1)
with

r2 ≡ {
1 mod a
−1 mod b.

Thus, we can apply Theorem 102 with m1 = a, n = b and m2 = ac. This gives

a diffeomorphism to La(1, 1) × Labc(1, r3) with

r3 ≡
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 mod a
−1 mod b
1 mod c.

Since a, b and c are pairwise coprime, we can apply Lemma 100 again and

obtain a diffeomorphism to La(1, 1) × Labc(1, r4) with

r4 ≡
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 mod a
1 mod b
−1 mod c.

Theorem 102, applied this time with m1 = a, n = c and m2 = ab, gives
L5 ∶= Lac(1, r5) × Lab(1, 1) with

r5 ≡ {
1 mod a
−1 mod b.

By Lemma 100, L2 is oriented diffeomorphic to Lab(1, 1) × Lac(1, 1), and L5
is oriented diffeomorphic to Lac(1, 1) × Lab(1, 1). Since these are products of

odd-dimensional manifolds with their factors interchanged, this proves that L
is amphicheiral.
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Summary

We study the phenomenon of orientation reversal of manifolds. An orientable

manifold is called amphicheiral if it admits an orientation-reversing self-map

and chiral if it does not. Many familiar manifolds like spheres or orientable

surfaces are amphicheiral: they can be embedded mirror-symmetrically into

Rn, as the following figure illustrates.

Reflect at the equator:

Similarly

and

On the other hand, examples of chiral manifolds have been known for many

decades, e. g. the complex projective spaces CP2k or some lens spaces in dimen-

sions congruent 3 mod 4. However, this phenomenon has not been analysed

systematically.

Chiral manifolds can be studied in various categories by restricting the

orientation-reversing map to homotopy equivalences, homeomorphisms or dif-

feomorphisms. The various notions of chirality do not coincide, and we extend

the definition of chiral and amphicheiral manifolds by attributes, e. g. “topolo-

gically chiral” or “smoothly amphicheiral” that express the various restrictions

on the orientation-reversing map.

We start with a survey of known results and examples of chiral manifolds,

observing the basic facts that the point in dimension 0 is chiral and every

closed, orientable 1- and 2-dimensional manifold is amphicheiral. A funda-

mental question is whether there are chiral manifolds in every dimension ≥ 3,

and we prove this as the first main result. Our general aim is to produce

manifolds which are chiral in the strongest sense, so we construct manifolds in

every dimension ≥ 3 which do not admit a self-map of degree −1.

The obstruction to orientation reversal in the constructed manifolds lies in

the fundamental group since, e. g., the odd-dimensional examples are Eilenberg-

MacLane spaces, and the proof of chirality uses as a substantial ingredient
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that the effect of a self-map on homology is completely determined by the

induced map on the fundamental group. Therefore, we next ask for obstructions

other than the fundamental group und restrict the analysis to simply-connected

manifolds.

In dimensions 3, 5 and 6, every simply-connected (closed, orientable, smooth)

manifold is amphicheiral by a diffeomorphism, and a topological 4-manifolds

is amphicheiral if and only if its signature is zero. In all dimensions ≥ 7, we

prove the existence of a simply-connected manifold which does not allow a

self-map of degree −1.

Next, in order to further characterise the properties of manifolds which

allow or prevent orientation reversal, we consider the question whether every

manifold is bordant to a chiral one. This allows also an approximation to the

(not mathematically precise) question “how many” manifolds are chiral or if

“the majority” of manifolds is chiral or amphicheiral. We prove that in every

dimension ≥ 3, every closed, smooth, oriented manifold is oriented bordant to

a manifold of this type which is connected and chiral.

The majority of the theorems so far aimed at proving that certain manifolds

or families of manifolds are chiral. The opposite problem, however, namely

proving amphicheirality in nontrivial circumstances, is also an interesting ques-

tion. In general, this is even more challenging since not only one obstruction

to orientation reversal must be identified and realised but for the opposite

direction every possible obstruction must vanish. By using surgery theory, we

prove the following theorem: Every product of 3-dimensional lens spaces whose

orders of the fundamental groups are odd and coprime admits an orientation-

reversing self-diffeomorphism.

In the last chapter, we add a new facet to the results by showing that the

order of an orientation-reversing map can be relevant: For every positive integer

k, there are infinitely many lens spaces which admit an orientation-reversing

diffeomorphism of order 2k but no orientation-reversing self-map of smaller

order.

Conclusion
With analogies to chiral molecules in chemistry and chiral knots in knot theory

in mind, it seems a very natural question whether an orientable manifold

with its two orientations yields “the same” or “different” objects. Although

the manifolds one usually imagines (spheres and 2-dimensional surfaces) are

amphicheiral, we show that chiral manifolds exist in every dimension greater

than two. Furthermore, the results give a little insight into the variety of mech-

anisms that can obstruct orientation reversal, particularly in the homotopy

type. Aiming in the opposite direction, we prove that products of lens spaces

can have orientation-reversing diffeomorphisms in nontrivial circumstances.
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