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Introduction

Abstract

The main topic of this work is the definition and investigation of a nonlinear energy for maps
with values in trees and graphs and the analysis of the corresponding nonlinear Dirichlet
problem. The nonlinear energy is defined using a semigroup approach based on Markov
kernels and the nonlinear Dirichlet problem is given as a minimizing problem of the nonlinear
energy. Conditions for the existence and uniqueness of a solution to the nonlinear Dirichlet
problem are presented.
A numerical algorithm is developed to solve the nonlinear Dirichlet problem for maps from
a two dimensional Euclidean domain into trees. The problem is discretized using a suitable
finite element approach and convergence of a corresponding iterative numerical method is
proven.
Furthermore, for graph targets homotopy problems are analyzed. For particular domain
spaces the existence of a minimizer of the nonlinear energy in a given homotopy class is
shown.

A smooth map f : M → N between Riemannian manifolds is called harmonic if its tension
field τ(f) := trace∇(df) vanishes [Jos95]. Well known examples are harmonic functions
(N = IR), geodesics (M ⊂ IR) and minimal surfaces. Harmonic maps play an important role
in many areas of mathematics, see [EL78], [EL88] for a survey. In the last decade, the study
of maps into more general target spaces was developed, e.g. [GS92], [JY93].
Korevaar/Schoen ([KS93], [KS97]) and Jost ([Jos94], [Jos97b]) independently began to de-
velop a theory of harmonic maps into metric spaces of nonpositive curvature in the sense
of Alexandrov (briefly: NPC spaces). These developments are based on the fact that a
canonical extension of the energy functional can be defined for maps with values in NPC
spaces. In the approach by Korevaar/Schoen, the domain space is still a Riemannian mani-
fold. In Jost’s approach, the domain space is a locally compact metric space equipped with
an abstract Dirichlet form, replacing the Riemannian manifold equipped with the classi-
cal Dirichlet form. Eells/Fuglede study harmonic maps between Riemannian polyhedra in
[EF01]. For recent proceedings in the more specific case of maps into Riemannian polyhedra
we refer to [Fug01], [Fug03a], [Fug03b]. Picard has investigated harmonic maps into trees
[Pic04].
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2 Introduction

Besides Riemannian manifolds the most simple NPC spaces are metric trees and in partic-
ular trees with only one branchpoint (”spiders”). To study and understand the nonlinear
effects (e.g. on regularity and stability of harmonic maps) arising from negative curvature
one may restrict oneself to these prototypes of NPC spaces.

In the first two parts of this work we will study the nonlinear Dirichlet problem for harmonic
maps with values in spiders and trees. These studies yield the main module for the analysis
of the nonlinear Dirichlet problem for maps into graphs which is done in the last part of this
work.

In the first chapter, we analyze the nonlinear Dirichlet problem for harmonic maps v : M →
N from a measure space (M,m) with a local regular Dirichlet form on it into a spider N .
Spiders are the simplest examples of trees, they consist of one branchpoint and a finite
number of edges.
Let (M,m) be a measure space with a local regular Dirichlet form E on it with generator
A and semigroup eAt given by a semigroup of Markov kernels pt. We will define a canonical
extension EN of the energy E for maps v : M → N using the semigroup pt by

EN(v) := lim sup
t→0

1

2t

∫
M

∫
M

d2(v(x), v(y))pt(x, dy)m(dx).

This definition yields the identity ∑
E(vi) = EN(v), (1)

whereby vi : M → IR is the projection of v on the i-th edge of the spider N . If the operator
A is the Laplace operator ∆ on IRk then one has

EN(v) =
∑∫

IRk

|∇vi|2.

The nonlinear Dirichlet problem for a given map g with EN(g) <∞ and a subset D ⊂M is
to find a map u with u = g on M\D which minimizes the nonlinear energy EN (either on M
or, equivalently, on D). Such a map is called harmonic on D. Conditions for the existence
and uniqueness of a solution to the nonlinear Dirichlet problem will be given.

In the special case M = IR2, E being the classical Dirichlet form on IR2, D being a polygonal
set we will define a numerical algorithm to solve the nonlinear Dirichlet problem.
Within this case, we fix suitable triangulations Th of D and define a discrete nonlinear energy
EhN for maps v̄h : Nh → N , whereby Nh denotes the set of vertices of the triangulation
Th. This yields a discrete nonlinear Dirichlet problem, i.e., for a map g : IR2 → N with
EN(g) < ∞ one searches a map ūh : Nh → N with ūh = g on ∂D ∩ Nh minimizing the
discrete nonlinear energy EhN . For the construction of the algorithm solving this problem we
mainly use the fact that the maps which minimize the discrete energy can be obtained by
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iteration of nonlinear Markov operators. The latter are defined as barycenters of discrete
probability distributions on the spider.
Furthermore, we define a prolongation operator Jh which extends maps defined on the ver-
tices to maps defined on the whole domain D in such a way that

EN(Jh(ūh)) ≤ EhN(ūh) +Rg,D → EN(u) h→ 0,

with a nonnegative constant Rg,D only depending on the polygonal domain D, the regularity
of the triangulation Th, and the map g. From this the L2-convergence of Jh(ūh) to the
solution u of the nonlinear Dirichlet problem follows as a straightforward consequence.
In addition, we discuss a generalization of the nonlinear energy for maps with values in a
spider with a countable number of edges.

In the second chapter, we will study the nonlinear Dirichlet problem for harmonic maps
v : M → N from a measure space (M,m) with a local regular Dirichlet form on it into finite
trees.
Given a measure space (M,m) with a local regular Dirichlet form E on it with generator
A and semigroup eAt given by a semigroup of Markov kernels pt, we will define a canonical
extension EN of the energy E for maps v : M → N by

EN(v) := sup
ϕ∈Cc(M)
0≤ϕ≤1

lim sup
t→0

1

2t

∫
M

∫
M

ϕ(x)d2(v(x), v(y))pt(x, dy)m(dx) (2)

with Cc(M) being the set of all continuous functions on M with compact support. We will
prove

EN(v) =
∑

µ<vi>(M),

whereby vi : M → IR+ is the projection of v on the i-th edge of the tree N and µ<vi> is the
energy measure of vi. Note that hence definition (2) is consistent with the previous definition
(1) for the case of a spider N . Again, if the operator A is the Laplace operator ∆ on IRk

one has

EN(v) =
∑∫

IRk

|∇vi|2.

To study harmonic maps into trees, Picard (cf. [Pic04]) presented another definition of
nonlinear energy:

ẼN(v) = sup{E(φ ◦ v) : φ non expanding}.

We will prove that our definition of nonlinear energy coincides with the definition of Picard.
Furthermore, we will show in the special case M = IRk or M a Riemannian manifold and E
the classical Dirichlet form the equivalence of our nonlinear energy to the nonlinear energy
given by Korevaar/Schoen in [KS93].
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The nonlinear Dirichlet problem for a given map g with EN(g) <∞ and a subset D ⊂M is
to find a map u with ũ = g̃ quasi everywhere on M\D where ũ, g̃ denote quasi continuous
versions of u and g, resp., which minimizes the nonlinear energy EN . We will present condi-
tions for the existence and uniqueness of a solution to the nonlinear Dirichlet problem.

In the special case M = IR2, E being the classical Dirichlet form on IR2, D being a polygonal
set, we will extend the numerical algorithm from the first chapter to solve the nonlinear
Dirichlet problem for maps with values in finite trees.
Finally, we discuss a generalization of the nonlinear energy for maps with values in trees
with a countable number of edges.

In the last chapter, we will study graph targets. Let (M,m) be a compact measure space
with universal cover M̃ and with a local regular Dirichlet form E on L2(M̃, m̃) given by a
semigroup of Markov kernels pt. In addition, let (N, d) be a graph with a finite number of
edges.
Before we define the nonlinear energy for maps v : M → N we will study equivariant
mapping problems. This is motivated by the fact that any continuous map v : M → N lifts
to an equivariant map ṽ : M̃ → Ñ , whereby the universal cover Ñ of the graph N is a tree
with a countable number of edges.
Given an equivariant map ṽ : M̃ → Ñ we say that two projections ṽi and ṽj are equivalent
(ṽi ∼ ṽj) if there is an element γ of the group of covering transformations of M̃ such that
ṽi = ṽj ◦ γ. This yields an equivalence relation on the set of all projections ṽi, i ∈ IN, and
if there is a projection ṽi ∈ Dloc(E) we will prove for all projections ṽj with ṽi ∼ ṽj that
ṽj ∈ Dloc(E) and

µ<ṽi>(M̃) = µ<ṽj>(M̃).

Therefore, we define the nonlinear energy function EÑ for an equivariant map ṽ : M̃ → Ñ
by

EÑ(ṽ) :=
∑

ṽi∈IF(ṽ)/∼

µ<ṽi>(M̃),

whereby IF(ṽ) denotes the set of all projections of ṽ. We will show that for any fundamental
domain M0 for M , in M̃ , such that M̄0 is compact and ∂M0 has measure zero one has

EÑ(ṽ) :=
∑
i∈IN

µ<ṽi>(M0).

Furthermore, in this context the nonlinear Dirichlet problem for a given map g̃ with EÑ(g̃) <
∞ and a subset D ⊂M0 is to find a map ũ which minimizes the nonlinear energy EÑ . We will
present conditions for the existence and uniqueness of a solution to the nonlinear Dirichlet
problem using results from the second chapter.
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In the next step, we define the nonlinear energy function EN for a map v : M → N which is
the projection of an equivariant map ṽ : M̃ → Ñ by

EN(v) := EÑ(ṽ).

In addition, we define the nonlinear Dirichlet problem for graph-valued maps and we obtain
conditions for the existence and uniqueness of a solution.

Finally, we will analyze homotopy problems. Given a continuous map g : M → N denote
the homotopy class of g by Hom(g). Now, one looks for a map u ∈ Hom(g) which minimizes
the nonlinear energy function EN in this class, i.e.

EN(u) = min
v∈Hom(g)

EN(v).

In the special case that M is a compact manifold with ∂M = ∅ and that pt is the heat
semigroup on M̃ we will show for any given continuous map g : M → N the existence of
such a minimizer in Hom(g). For the proof, we will show that for any map v ∈ Hom(g)
our definition of nonlinear energy coincides with the energy definition introduced by Kore-
vaar/Schoen in [KS93]. Similar results will be obtained in the case that M is a Riemannian
polyhedron.

In the appendix of this work, we will discuss the equivalence of various locality properties
for regular Dirichlet forms, e.g. in the sense of Fukushima (cf. [FOT94]) and in the sense of
Bouleau/Hirsch (cf. [BH91]).

Overview

The major points of this work are

• the definition of the nonlinear energy for maps with values in trees and graphs as a
canonical extension of a given energy,

• the ”energy decomposition” of the nonlinear energy,

• the comparison of our nonlinear energy with other possible definitions of nonlinear
energy,

• the analysis of the corresponding nonlinear Dirichlet problem,

• the construction of a numerical algorithm to solve the nonlinear Dirichlet problem,

• the proof of convergence of this numerical method,

• implementation of the algorithm, visualization of the resulting maps, and

• the analysis of homotopy problems.
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These points will be presented in different generality (related to the target).

Nonlinear Energy: The definition of the nonlinear energy for maps into spiders and trees
is given in Section 1.1 and Section 2.1, resp. In Definition 3.10 we define a nonlinear energy
function for equivariant maps with values in the universal cover of a graph and we prove
that this energy function is equivariant (cf. Theorem 3.11). The nonlinear energy of a map
with values in a graph is given by the energy of the equivariant lift of this map (see Section
3.2).

Energy Decomposition: In Theorem 1.3 and Theorem 2.7 the energy decomposition
for maps into spiders and trees, resp. is given.

Comparison: For maps into trees, we show that our definition of nonlinear energy coincides
with the nonlinear energy defined by Picard (cf. Proposition 2.12). Further comparison re-
sults for tree and graph targets with the nonlinear energy defined by Korevaar/Schoen are
given in Proposition 1.5, Subsection 2.1.1 and Theorem 3.21.

Nonlinear Dirichlet Problem: For spider, tree and graph targets we consider the non-
linear Dirichlet problem and we present conditions for the existence and uniqueness of a
solution (cf. Section 1.2, Section 2.2 and Subsection 3.2.1).

Algorithm: To solve the nonlinear Dirichlet problem for maps from a two dimensional
Euclidean domain into spiders and trees numerical algorithms are developed in the Subsec-
tions 1.3.1 – 1.3.2 and the Subsections 2.3.1 – 2.3.3, resp.

Convergence: For both numerical methods the convergence is proven in Subsection 1.3.3
and Subsection 2.3.4.

Implementation: In Subsection 1.3.4 we discuss the expected order of convergence of
the numerical algorithm in the case of a spider target. Furthermore, for spider and tree tar-
gets we present visualizations of solutions to the nonlinear Dirichlet problem in Subsection
1.3.4 and Subsection 2.3.4.

Homotopy problems: For graph targets homotopy problems are analyzed in Subsection
3.2.2. For particular domain spaces the existence of a minimizer of the nonlinear energy in
a given homotopy class is proven.



Chapter 1

Spiders

In this chapter, we analyze harmonic maps v : M → N from a measure space (M,m) with
a local regular Dirichlet form E on it into a spider (N, d). Let A be the generator of E and
let the semigroup eAt be given by a semigroup of Markov kernels pt. We define a canonical
extension EN of the energy E for maps v : M → N by

EN(v) := lim sup
t→0

1

2t

∫
M

∫
M

d2(v(x), v(y))pt(x, dy)m(dx).

One of the main issues is the following ”energy decomposition”∑
E(vi) = EN(v),

whereby vi : M → IR is the projection of v on the i-th edge of the spider N .
Defining the nonlinear Dirichlet problem as a minimizing problem of the nonlinear energy we
present conditions for the existence and uniqueness of a solution to the nonlinear Dirichlet
problem.
Another important point is the development of a numerical algorithm to solve the nonlinear
Dirichlet problem for maps from a two dimensional Euclidean domain into a spider. For this
we discretize the problem using a suitable finite element approach and an iterative numerical
method to solve the discrete problem is constructed. Furthermore, we define a prolongation
operator which extends the discrete maps to maps on the whole domain and we prove the
L2-convergence of the extended discrete solutions to the solution to the nonlinear Dirichlet
problem using finite element projection techniques.

Throughout this chapter, we fix a σ-finite measure space (M,m) and a regular Dirichlet form
(E ,D(E)) on L2(M,m). Moreover, we assume

(A1) (E ,D(E)) is local, that is, v, w ∈ D(E), supp[v] and supp[w] are compact, v ≡ 0 on a
neighbourhood of supp[w] ⇒ E(v, w) = 0.

(A2) The semigroup (Tt)t≥0 corresponding to the Dirichlet form (E ,D(E)) is given by a
semigroup of Markov kernels pt(x, dy).

7



8 Spiders

Remark 1.1

(i) Assumption (A2) is always fulfilled if M is a locally compact separable metric space,
and the regular Dirichlet form (E ,D(E)) is conservative. In particular, this assumption
is fulfilled for M = IRk with m being the Lebesgue measure λ on IRk, and (E ,D(E))
being the classical Dirichlet form, i.e. E(u) =

∫
IRk |∇u|2dλ.

(ii) The assumptions (A1) and (A2) yield that for functions v, w ∈ D(E) with v · w = 0
a.e. it holds E(v, w) = 0 (cf. Appendix A.1).

Throughout this chapter, fix n ∈ IN and denote the set {1, . . . , n} by I. We define the
n-spider as the metric space (N, d) where

N := {(i, t) : i ∈ I, t ∈ IR+}/ ∼

with (i, 0) ∼ (j, 0) for every i, j ∈ I. A distance d is defined on N by

d((i, s), (j, t)) =

{
|s− t|, if i = j
s+ t, otherwise.

q���
��

L
L
L
LL

c
c

c
c

#
#

#
#

N1N2

N3

N4

N5

Figure 1.1: The 5-spider

Additionally, we consider the following functions defined on N by

c : N → I ∪ {0}, (i, t) 7→
{
i, if t 6= 0
0, otherwise,

π : N → IR+, (i, t) 7→ t

and

πj : N → IR+, (i, t) 7→ δij · t.

In the sequel, we use the decomposition
⋃
i∈I∪{0}Ni of N , with N0 := o := {(1, 0)} and

Ni := {(i, t) : t ∈ IR+}, i ∈ I. In this way, to each measurable map v : M → N one may
associate a family of functions vi : M → IR, i ∈ I, defined by

vi := πi ◦ v.

The number π(x) plays the role of the modulus of x and c(x) is a generalization of sgn(x)
and interpreted as colour of x.
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Remark 1.2 If n = 2 then N,N1 and N2 can be identified with IR, IR+ and IR−, resp. Then
the functions c(x), π(x), π1(x), π2(x) coincide with sgn(x), |x|, x+, x−, resp. and v1(x), v2(x)
coincide with v+(x), v−(x).

1.1 Nonlinear Energy

In this section, we define the nonlinear energy for maps with values in an n-spider using the
semigroup pt.

Given a measurable map v : M → N we define the nonlinear energy function EN by

EN(v) := lim sup
t→0

1

2t

∫
M

∫
M

d2(v(x), v(y))pt(x, dy)m(dx) (1.1)

with D(EN) := {v : M → N measurable: EN(v) <∞ and vi ∈ L2(M,m), ∀i ∈ I}.

Theorem 1.3 For each map v : M → N the condition v ∈ D(EN) is equivalent to

vi ∈ D(E), ∀i ∈ I and
∑
i∈I

E(vi) <∞.

In this situation, for each v ∈ D(EN) the following equalities hold

EN(v) = lim
t→0

1

2t

∫
M

∫
M

d2(v(x), v(y))pt(x, dy)m(dx) (1.2)

=
∑
i∈I

E(vi) (1.3)

with

E(vi) = lim
t→0

1

2t

∫
M

∫
M

|vi(x)− vi(y)|2pt(x, dy)m(dx).

For a detailed proof see Section 1.4.

Corollary 1.4 On IRk with the Lebesgue measure λ, let (E ,D(E)) be the classical Dirichlet
form. For all v ∈ D(EN) one has

EN(v) =
∑
i∈I

∫
IRk

|∇vi|2dλ. (1.4)

In the next proposition, we will show that our notion of nonlinear energy coincides with the
notion of nonlinear energy introduced by Korevaar/Schoen.
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Proposition 1.5 In the situation of Corollary 1.4, our definition of the nonlinear energy
EN coincides with the definition of energy introduced in [KS93]. That is, for all measurable
v : IRk → N one has

EN(v) = lim
r→0

ck
rk+1

∫
IRk

∫
∂Br(x)

d2(v(x), v(y))σr,x(dy)λ(dx)

where

ck =
k

4πk/2
· Γ(k/2) =

k

4πk/2

∫ ∞

0

xk/2−1 exp(−x)dx

and σr,x denotes the surface measure on the sphere ∂Br(x).

Proof: Let us define for t > 0 and measurable maps v : IRk → N

E tN(v) :=
1

2t

∫
IRk

∫
IRk

d2(v(x), v(y))pt(x, dy)λ(dx).

Using the definitions and notations of [KS93] it holds

E tN(v) =
1

2t

∫
IRk

∫
IRk

d2(v(x), v(y))(2πt)−k/2 exp

(
−|x− y|2

2t

)
dydx

=

∫
IRk


∫ ∞

0

1

2t · (2πt)k/2
exp

(
−r

2

2t

)
·
(∫

∂Br(x)

d2(v(x), v(y))σr,x(dy)

)
︸ ︷︷ ︸

rk+1er(x)

dr

 dx

=

∫
IRk

[∫ ∞

0

(
r2

2t

) k
2
+1

· 1

πk/2
exp

(
−r

2

2t

)
· er(x) ·

1

r
dr

]
dx

=

∫
IRk

[∫ ∞

0

(
r2
) k

2
+1 · 1

πk/2
exp

(
−r2

)
· e√2t·r(x) ·

1

r
dr

]
dx

= ck

∫
IRk

[∫ ∞

0

e√2t·r(x)ν(dr)

]
dx

with

ν(dr) :=
1

ck
· rk+1 1

πk/2
exp

(
−r2

)
dr

and

ck =

∫ ∞

0

rk+1 1

πk/2
exp

(
−r2

)
dr.

The measure ν is a probability measure on IR+. Furthermore, using substitution and partial
integration one can show

ck =
k

4πk/2
· Γ(k/2).
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Now, we define for a sequence (σn)n ↘ 0 the probability measures

νn(dr) :=
1

ck,n
·

((
r

σn

)k+1
1

πk/2
exp

(
− r

2

σ2
n

)
−
(

2

σn

)k+1
1

πk/2
exp

(
− 4

σ2
n

))+
1

σn
dr

with

ck,n :=

∫ ∞

0

((
r

σn

)k+1
1

πk/2
exp

(
− r

2

σ2
n

)
−
(

2

σn

)k+1
1

πk/2
exp

(
− 4

σ2
n

))+
1

σn
dr.

One can assure

supp[νn] ⊂ [0, 2]

by choosing σ1 sufficiently small. Moreover, by monotone convergence it follows∫
IRk

[∫ ∞

0

e√2t
σn

·r(x)νn(dr)

]
n→∞−→

∫
IRk

[∫ ∞

0

e√2t·r(x)ν(dr)

]
. (1.5)

In addition, by Theorem 1.5.1 in [KS93] the limit

lim
t→0

∫
IRk

[∫ ∞

0

e√2t
σn

·r(x)νn(dr)

]
exists for all n and coincides with

lim
r→0

1

rk+1

∫
IRk

∫
∂Br(x)

d2(v(x), v(y))σr,x(dy)λ(dx).

Hence, (1.5) yields the claim. �

1.2 Nonlinear Dirichlet Problem

The nonlinear Dirichlet problem for a given map g with EN(g) <∞ and a subset D ⊂M is
to find a map u with u = g on M\D which minimizes the nonlinear energy EN .

Definition 1.6 (Nonlinear Dirichlet problem) Given a map g ∈ D(EN) and a set D ⊂
M , let us define the class of maps

VN(g) := {v ∈ D(EN) : v = g m-a.e. on M\D}.

A map u ∈ VN(g) is called a solution to the nonlinear Dirichlet problem for g whenever

EN(u) = min
v∈VN (g)

EN(v).
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Remark: A refined definition of the Dirichlet problem would require to replace the class
VN(g) by ṼN(g) := {v ∈ D(EN) : ṽ = g̃ quasi everywhere on M\D} where ṽ, g̃ denote quasi-
continuous versions of v and g, resp. However, in the next sections in our application both
classes coincide since D always will have a ”nice” boundary.

The next result states a sufficient condition for the existence (and uniqueness) of a solution
to the nonlinear Dirichlet problem in terms of the so-called linear spectral bound λD of an
open set D ⊂M , that is,

λD := inf

{
E(v) : v ∈ L2

0(D),

∫
M

v2dm = 1

}
(1.6)

where L2
0(D) := {v ∈ L2(M) : v = 0 m-a.e. on M\D} and E(v) := +∞ if v 6∈ D(E).

Theorem 1.7 Given an open set D ⊂ M such that λD > 0, there exists a unique solution
to the nonlinear Dirichlet problem for any g ∈ D(EN).

Proof: Let L2(M,M,m) denote the space of all square integrable functions v : M → ĪR
with the usual Hilbertian norm || · ||L2 . For D ∈ M we put L2

0(D) := {v ∈ L2(M) : v =
0 m-a.e. on M\D} regarding as a subspace of L2(M).
For measurable maps v, ṽ : M → N we define the (pseudo) distance d2(v, ṽ) := ||d(v, ṽ)||L2 ,
where d(v, ṽ)(x) := d(v(x), ṽ(x)), and for a fixed measurable map g : M → N the space of
maps L2(D,N, g) by

L2(D,N, g) := {f : M → N measurable : d(v, g) ∈ L2
0(D)}.

It holds VN(g) ⊂ L2(D,N, g). For all v ∈ L2(D,N, g)\VN(g) we put EN(v) := ∞.

The metric space (N, d) has nonpositive curvature in the sense of A. D. Alexandrov, that is,
for any two points γ0, γ1 ∈ N and any t ∈ [0, 1] there exists a point γt ∈ N such that for all
z ∈ N

d2(z, γt) ≤ (1− t)d2(z, γ0) + td2(z, γ1)− (1− t)td2(γ0, γ1).

For any two geodesics γ, ϕ : [0, 1] 7→ N and any t ∈ [0, 1], the previous inequality leads to

d2(γt, ϕt) ≤ (1− t)d2(γ0, ϕ0) + td2(γ1, ϕ1)− t(1− t)[d(γ0, γ1)− d(ϕ0, ϕ1)]
2 (1.7)

(cf. Korevaar/Schoen [KS93], Jost [Jos94]).
The set of maps VN(g) is convex, whereby the geodesic vt connecting two maps v0, v1 ∈
VN(g) is defined pointwise as follows: for each x ∈ M , t 7→ vt(x) is the (unique) geodesic
(parameterized by arc length) connecting v0(x), v1(x) ∈ N .
To prove the existence of a unique minimizer u of the energy EN on VN(g), first we show
that EN is lower semicontinuous on L2(D,N, g) and strictly convex on VN(g).
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Given v0, v1 ∈ VN(g) let vt be the geodesic connecting v0 and v1. Inequality (1.7) with
γt = vt(x) and ϕt = vt(y) yields

d2(vt(x), vt(y)) ≤ (1− t)d2(v0(x), v0(y)) + td2(v1(x), v1(y))

−t(1− t)[d(v0(x), v1(x))− d(v0(y), v1(y))]
2.

Integrating both sides w.r.t. ps(x, dy)m(dx) gives

EsN(vt) ≤ (1− t)EsN(v0) + tEsN(v1)− (1− t)tEs(d(v0, v1)), (1.8)

whereby for each s > 0

EsN(v) :=
1

2s

∫
M

∫
M

d2(v(x), v(y))ps(x, dy)m(dx)

and

Es(f) :=
1

2s

∫
M

∫
M

|f(x)− f(y)|2ps(x, dy)m(dx).

Furthermore, v, ṽ ∈ VN(g) implies d(v, ṽ) ∈ D(E). Indeed,

E(d(v, ṽ)) ≤ 2EN(v) + 2EN(ṽ)

since

|d(v(x), ṽ(x))− d(v(y), ṽ(y))| ≤ d(v(x), v(y)) + d(ṽ(x), ṽ(y)).

Taking lim sups→0 in (1.8) yields

EN(vt) ≤ (1− t)EN(v0) + tEN(v1)− (1− t)tE(d(v0, v1)), (1.9)

because E(d(v0, v1)) = lims→0 Es(d(v0, v1)).
On the other hand, by spectral theory, one has

E(d(v, ṽ)) ≥ λ ·
∫
M

d2(v(x), ṽ(x))m(dx)

where λ := λD > 0 by assumption. Thus inequality (1.9) implies

EN(vt) ≤ (1− t)EN(v0) + tEN(v1)− (1− t)tλ · d2
2(v, ṽ) (1.10)

showing that EN is strictly convex on VN(g). To prove that EN is lower semicontinuous, let
us define for all v ∈ L2(D,N, g) and t > 0

Ẽ tN(v) :=
1

2t

∫
M

∫
M

∑
i∈I

|vi(x)− vi(y)|2pt(x, dy)m(dx).
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For each fixed t > 0, Ẽ tN : L2(D,N, g) → IR+ is continuous. Indeed, by the triangle inequality,
for every v, ṽ ∈ L2(D,N, g) and δ > 0 we have

Ẽ tN(v) ≤ 1

2t

∑
i∈I

∫
M

∫
M

|vi(x)− ṽi(x) + ṽi(x)− ṽi(y) + ṽi(y)− vi(y)|2pt(x, dy)m(dx)

≤ (1 + δ)Ẽ tN(ṽ) +
2

t
(1 +

1

δ
)
∑
i∈I

∫
M

|vi(x)− ṽi(x)|2m(dx)

≤ (1 + δ)Ẽ tN(ṽ) +
6

t
(1 +

1

δ
)d2

2(v, ṽ).

Furthermore, Ẽ tN(v) is non-decreasing as t decreases (see e.g. [FOT94]).
Hence,

ẼN := lim
t→0

Ẽ tN

is lower semicontinuous on L2(D,N, g) and due to Theorem 1.3, ẼN coincides with EN on
L2(D,N, g).

Now let (vn)n be a sequence in VN(g) with limn→∞ EN(vn) = infv∈VN (g) EN(v) =: α. Then for
n, k →∞ (see (1.10))

α ≤ 1

2
EN(vk)︸ ︷︷ ︸
→α

+
1

2
EN(vn)︸ ︷︷ ︸
→α

−1

4
λd2

2(vn, vk).

Consequently, d2
2(vn, vk) → 0 for n, k → ∞, i.e., (vn)n is a Cauchy sequence in L2(D,N, g).

Therefore, there exists u = limn→∞ vn ∈ L2(D,N, g). Moreover, lim infn→∞ EN(vn) ≥ EN(u)
by the lower semicontinuity of EN on L2(D,N, g).
Hence, u ∈ VN(g) and u is the minimizer of EN on VN(g).
Uniqueness: Assume that EN(u0) = EN(u1) = infv∈VN (g) EN(v) = α. Inequality (1.10) yields

α ≤ EN(u1/2) ≤
1

2
α+

1

2
α− 1

4
λd2

2(u0, u1)

implying d2
2(u0, u1) = 0. �

1.3 Nonlinear Dirichlet Problem for Polygonal Domains

in IR2

In the special case (M,m) = (IR2, λ) with the corresponding classical Dirichlet form E and
D ⊂ IR2 being a polygonal set we will define a numerical algorithm to solve the nonlinear
Dirichlet problem.
For this, we fix suitable triangulations Th of D and define a discrete nonlinear energy EhN for
maps v̄h : Nh → N , whereby Nh denotes the set of vertices of the triangulation Th. This
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yields a discrete nonlinear Dirichlet problem, i.e., for a map g : IR2 → N with EN(g) < ∞
one searches a map ūh : Nh → N with ūh = g on ∂D∩Nh minimizing the discrete nonlinear
energy EhN . We construct an iterative numerical method to solve this problem. Furthermore,
we define a prolongation operator Jh which extends maps defined on the vertices to maps
defined on the whole domain D in such a way that

EN(Jh(ūh)) ≤ EhN(ūh) +Rg,D → EN(u) h→ 0,

with a nonnegative constant Rg,D only depending on the polygonal domain D, the regularity
of the triangulation Th, and the map g. From this, the L2-convergence of Jh(ūh) to the
solution u of the nonlinear Dirichlet problem follows as a straightforward consequence.

1.3.1 Discrete Nonlinear Dirichlet Problem

In the sequel, let us suppose that an admissible and regular triangulation Th of the polygonal
D in the sense of [Cia78] is given. In addition, we suppose the triangles to be “acute”. This,
means that all interior angles of all triangles of Th are less than or equal to π

2
. Finally,

we assume that for the map g ∈ D(EN), specifying the boundary values for the nonlinear
Dirichlet problem, π ◦ g is the modulus of a linear function on the boundary faces of Th.
For this situation we define, a discrete nonlinear Dirichlet problem which unique solution is
used to approximate the solution of the ”continuous” nonlinear Dirichlet problem.

However, before we start to discuss the nonlinear case, we will have a closer look on the
linear case.

In the sequel, Nh = {x1, . . . , xl} denotes the set of all vertices of the triangulation Th. We
divide Nh into two disjoint sets

N̊h := Nh\∂D and N ∂
h := Nh ∩ ∂D.

Definition 1.8 We denote by V h the standard space of piecewise affine finite elements on
Th and by {φih, 1 ≤ i ≤ l} the corresponding nodal basis of V h, see [Cia78]. Furthermore, we
define a Markov kernel p on Nh by

∀xi, xj ∈ Nh : p(xi, xj) :=

{
− (∇φi

h,∇φ
j
h)

(∇φi
h,∇φ

i
h)
, if xi ∼ xj,

0, otherwise,

where xi ∼ xj means that there is an edge connecting xi and xj and we define a measure µ
on Nh by

∀xi ∈ Nh : µ(xi) := (∇φih,∇φih).
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Remark: Due to the assumptions on the triangulations Th one has (∇φih,∇φ
j
h) ≤ 0 (cf.

[Tho97]). Furthermore, it holds
∑l

j=1 φ
j
h = 1 and for i ∈ {1, . . . , l} one has

0 = (∇1,∇φih) =
l∑

j=1

(∇φjh,∇φ
i
h)

which yields

1 =
l∑

j=1
j 6=i

−(∇φjh,∇φih)
(∇φih,∇φih)

=
∑
xj∈Nh

p(xi, xj).

Lemma 1.9 Given a function vh ∈ V h, for all 1 ≤ i ≤ l define vih := vh(xi). Then∫
D

|∇vh|2 dλ =
1

2

l∑
i=1

l∑
j=1

(vih − vjh)
2p(xi, xj)µ(xi) (1.11)

and, moreover,∫
D

|∇vh|2dλ = −
∑
T∈Th

2∑
i,j=0
i<j

(vh(x
T
i )− vh(x

T
j ))2

∫
T

∇φi,Th ∇φj,Th dλ, (1.12)

whereby xT0 , x
T
1 , x

T
2 ∈ Nh denote the vertices of a triangle T ∈ Th and φi,Th denote the corre-

sponding elements of the standard basis.

The difference between formulas (1.11) and (1.12) is that in (1.11) we sum over all vertices
of the triangulation and in (1.12) we sum over all triangles.

Proof: The identity vh(x) =
∑l

i=1 v
i
hφ

i
h(x) leads to

1

2

l∑
i=1

l∑
j=1

(vih − vjh)
2p(xi, xj)µ(xi)

=
1

2

2
l∑

i=1

(vih)
2

l∑
j=1
j 6=i

[−(∇φih,∇φ
j
h)] + 2

l∑
i=1

l∑
j=1
j 6=i

vihv
j
h(∇φ

i
h,∇φ

j
h)


=

l∑
i=1

l∑
j=1

vihv
j
h(∇φ

i
h,∇φ

j
h)

=

∫
D

|∇vh|2dλ.

A similar procedure shows equation (1.12). �
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Now, we are going to extend our frame from functions v : M → IR to maps v : M → N
where N is the n-spider.

Definition 1.10 (Discrete nonlinear Dirichlet problem) Given a map g : ∂D → N ,
let us define

V̄ h
N(g) :=

{
v̄h : Nh → N : v̄h(x) = ḡh(x) ∀x ∈ N ∂

h

}
with ḡh(x) := g(x),∀x ∈ N ∂

h . A map ūh : Nh → N is called a solution to the discrete
nonlinear Dirichlet problem for g whenever ūh fulfills the following two conditions:

1. ūh ∈ V̄ h
N(g)

2. EhN(ūh) = min
v̄h∈V̄ h

N (g)
EhN(v̄h), where

EhN(v̄h) :=
1

2

∑
xi,xj∈Nh

d2(v̄h(xi), v̄h(xj))p(xi, xj)µ(xi) (1.13)

is called the discrete energy corresponding to Th.

According to [Stu01] we have the following result.

Proposition 1.11 For each g : ∂D → N there is a unique solution to the discrete nonlinear
Dirichlet problem for g.

Given the Markov operator p from Definition 1.8 we define another Markov operator pNh
on

Nh by

pNh
(x, y) := 11N̊h

(x)p(x, y) + 11N ∂
h
(x)δ{x}(y),

where 11· denotes the indicator function of a set and δ{x} is the Dirac measure with mass at
x.

In the sequel, for a given Markov operator q on Nh, we denote by qN the associated nonlinear
Markov operator acting on each map v̄ : Nh → N by

qN v̄(x) = argmin
z∈N

∑
y∈Nh

d2(z, v̄(y))q(x, y),

see [Stu01]. In other words, if (Xn, IPx) is a random walk with transition probability q then

qN v̄(x) = argmin
z∈N

IExd
2(z, v̄(X1)).



18 Spiders

Proposition 1.12 For each v̄h ∈ V̄ h
N(g) the following two conditions are equivalent:

1. pNNh
v̄h = v̄h

2. v̄h is a solution to the discrete nonlinear Dirichlet problem for g.

The proof follows closely the arguments used in [Stu01].

Remark:

1. In the linear case (i.e. N = IR), the matrix A with components Aij = µ(xi)(δij −
p(xi, xj)) is the well–known stiffness matrix and ūh solves a corresponding linear sys-
tem of equations. Furthermore, the matrix Q with entries Qij = p(xi, xj) is the it-
eration matrix of the Jacobi algorithm. Thus, the algorithm itself coincides with the
corresponding Markov process (see below).

2. If v̄h : Nh → N is a map such that v̄h = pNNh
v̄h, then on N̊h the map v̄h is given by

v̄h(x) = argmin
z∈N

{∑
y∈Nh

d2(z, v̄h(y))p(x, y)

}
, x ∈ N̊h.

To solve the discrete nonlinear Dirichlet problem, we construct a nonlinear Markov operator
Q in such a way that for each v̄h ∈ V̄ h

N(g) one has

lim
n→∞

Qnv̄h = ūh.

In order to define this nonlinear Markov operator Q, let us first define the following Markov
operators p1, . . . , pk, k := #N̊h, and q:

pi(x, y) :=


p(x, y), if x = xi and x ∼ y
1, if x 6= xi and x = y
0, otherwise

i = 1, . . . , k

q(x, y) := pk ◦ · · · ◦ p1(x, y).

Lemma 1.13 There exists an exponent r ∈ IN such that

||qr||∞,∞ := sup
{
||qrv||∞ : ||v||∞ = 1, v = 0 on N ∂

h

}
< 1.

Proof: At first, consider v(xi) = v+(xi) = 1 for every interior nodes xi. In each step at least
one nodal value of an interior node decreases. Indeed, this is due to the averaging effect
of the application of pi(·, ·) over neighbouring nodes. But there is only a finite number of
nodes. Hence, there exists a number of iterations r ≤ k after which the initial value 1 on
every node has been decreased. Furthermore, we observe that v ≤ v+ implies qrv ≤ qrv+.
Hence, we are done. �
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Remark: Based on an ordering of the nodes x ∈ N̊h with increasing graph distance from
the boundary nodes on the edge graph of the triangulation we can achieve r = 1 in Lemma
1.13.

Definition 1.14 To each i = 1, . . . , k let pNi be the nonlinear Markov operator associated to
pi. We define the nonlinear Markov operator Q by

Q := pNk ◦ · · · ◦ pN1 .

Proposition 1.15 For each map v̄h ∈ V̄ h
N(g) such that v̄h = Qv̄h, one has

v̄h(x) = argmin
z∈N

{∑
y∈Nh

d2(z, v̄h(y))p(x, y)

}
, ∀x ∈ N̊h.

Proof: By construction of each pi, it follows that

pN1 v̄h(x) =

{
argminz∈N{

∑
y∈Nh

d2(z, v̄h(y))p(x, y)}, if x = x1

v̄h(x), if x 6= x1.

and

pNi v̄h(x1) = v̄h(x1) i = 2, . . . , k

for all v̄h : Nh → N . The equation Qv̄h = v̄h leads to

pN1 v̄h(x1) = v̄h(x1)

and the assertion follows for x1 ∈ N̊h. For xi ∈ N̊h, i > 1, the proof is analogue. �

Proposition 1.16 Let ūh be the solution to the discrete nonlinear Dirichlet problem for g.
Then for each v̄h ∈ V̄ h

N(g) one has

lim
n→∞

d∞(Qnv̄h, ūh) = 0, where d∞(v̄h, w̄h) := sup
x∈Nh

d(v̄h(x), w̄h(x)).

Proof: According to Theorem 5.2 in [Stu01] and Lemma 1.13

d∞(Qrv̄h, Q
rw̄h) ≤ ||qr(d(v̄h, w̄h))||∞ ≤ ||qr||∞,∞ · d∞(v̄h, w̄h)

for all v̄h, w̄h ∈ V̄ h
N(g). Hence, there exists a map w̄h ∈ V̄ h

N(g) such that w̄h = Qw̄h and for
all v̄h ∈ V̄ h

N(g) it holds

d∞(Qnv̄h, w̄h) → 0 n→∞

(cf. proof of Theorem 6.4 in [Stu01]). Therefore, by Propositions 1.11, 1.12, and 1.15, one
obtains w̄h = ūh. �
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Remark:

1. The previous construction combined with Proposition 1.16 yields the following algo-
rithm:

v̄h = g|Nh

do
w̄h = v̄h
for j = 1 to k

v̄h(xj) = pNj v̄h(xj) = argminz∈N{
∑

y∈Nh
d2(z, v̄h(y))p(xj, y)}

until (maxxj∈Nh
d(v̄h(xj), w̄h(xj)) ≤ EPS).

Here EPS is a user prescribed threshold value. This algorithm provides an approx-
imation to the exact solution ūh of the discrete nonlinear Dirichlet problem for the
boundary value map g.

2. There is an easy way to calculate

argmin
z∈N

∑
x∈N

d2(z, x)q(x),

whereby q(x) is a discrete probability distribution on N with finite support.
For each i ∈ I = {1, . . . , n} define the numbers

ri(q) :=
∑
x∈Ni

d(o, x)q(x) and bi(q) := ri(q)−
∑
j∈I
j 6=i

rj(q).

It holds bi(q) > 0 for at most one i ∈ I. If bi(q) > 0 for any i ∈ I one has

argmin
z∈N

∑
x∈N

d2(z, x)q(x) = (i, bi(q)).

On the other hand, if bi(q) ≤ 0 for all i ∈ I it holds

argmin
z∈N

∑
x∈N

d2(z, x)q(x) = o.

1.3.2 Extending Maps on Vertices to Maps on the Domain

By means of a proper prolongation procedure, to each map in V̄ h
N(g) we are going to associate

a map in VN(g). In other words, each map v̄h which is defined on the vertices of the
triangulation Th will be extended to a map vh, defined on the whole domain D, with almost
the same energy, i.e., for each v̄h ∈ V̄ h

N(g) we will verify that

EN(vh) ≤ EhN(v̄h) +Rg,D,

with a nonnegative constant Rg,D only depending on the polygonal domain D, the regularity
of the triangulation Th, and the map g.
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As before, let us consider the sets D, Th,Nh = {x1, . . . , xl}, and a map g ∈ D(EN). Given
a vector v̄h ∈ N l our aim is to construct a continuous map vh : D̄ → N , affine on each
triangle T ∈ Th (or better affine on appropriate subtriangles of each triangle T ), such that
vih := vh(xi) = v̄h(xi) for all i = 1, . . . , l. Hence, we will define vh on each triangle T ∈ Th
separately. Let T ∈ Th be given with vertices a0, a1, a2. To define vh|T we have to distinguish
the following cases:

(i) #({c(v̄h(aj))}j∈{0,1,2}) = 1

(ii) #({c(v̄h(aj))}j∈{0,1,2}) = 2 and ∃j ∈ {0, 1, 2} : c(v̄h(aj)) = 0

(iii) #({c(v̄h(aj))}j∈{0,1,2}) = 2 and ∀j ∈ {0, 1, 2} : c(v̄h(aj)) > 0

(iv) #({c(v̄h(aj))}j∈{0,1,2}) = 3 and ∃j ∈ {0, 1, 2} : c(v̄h(aj)) = 0

(v) #({c(v̄h(aj))}j∈{0,1,2}) = 3 and ∀j ∈ {0, 1, 2} : c(v̄h(aj)) > 0

case (i):
We define an affine function l : T → IR with l(aj) = π(v̄h(aj)), j = 0, 1, 2 and for each x ∈ T
we set vh|T (x) := (c(v̄h(a0)), l(x)).

case (ii):
Without loss of generality, we may assume that c(v̄h(a0)) > 0. Then we define an affine
function l : T → IR by l(aj) := π(v̄h(aj)), j = 0, 1, 2 and for each x ∈ T we set vh|T (x) :=
(c(v̄h(a0)), l(x)).

case (iii):
Without loss of generality, we may assume that c(v̄h(a0)) = c(v̄h(a2)). Then we define the
points a0,1 and a1,2 by

ai−1,i = γi−1,iai + (1− γi−1,i)ai−1,

where

γi−1,i =
π(v̄h(ai−1))

π(v̄h(ai)) + π(v̄h(ai−1))
i ∈ {1, 2}

In addition, on the triangle T1 := ∆a0,1a1a1,2 we define an affine function l : T1 → IR by
l(a1) := π(v̄h(a1)), l(a0,1) := l(a1,2) := 0 and on R0,2 := T\T1 we define a bilinear function
b : R0,2 → IR by b(a0) := π(v̄h(a0)), b(a2) := π(v̄h(a2)), b(a0,1) := b(a1,2) := 0. Then we set

vh|T (x) :=

{
(c(v̄h(a1)), l(x)), if x ∈ T1

(c(v̄h(a0)), b(x)), if x ∈ R0,2.

case (iv):
Without loss of generality, we may assume that c(v̄h(a1)) = 0. We define the point a0,2 by

a0,2 = γ0,2a0 + (1− γ0,2)a2, where γ0,2 =
π(v̄h(a2))

π(v̄h(a0)) + π(v̄h(a2))
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and we construct on the triangles T0 := ∆a0a1a0,2 and T2 := ∆a0,2a1a2 two affine functions
l0 : T0 → IR by l(a0) := π(v̄h(a0)), l(a1) := l(a0,2) := 0 and l2 : T2 → IR by l(a2) :=
π(v̄h(a2)), l(a1) := l(a0,2) := 0. Then we define

vh|T (x) :=

{
(c(v̄h(a0)), l0(x)), if x ∈ T0

(c(v̄h(a2)), l2(x)), if x ∈ T2.

case (v):
In the sequel, we interpret all the indices i as i mod (3).
We define the points ai,i+1, i ∈ {0, 1, 2} by

ai,i+1 = γi,i+1ai + (1− γi,i+1)ai+1,

where

γi,i+1 =
π(v̄h(ai+1))

π(v̄h(ai)) + π(v̄h(ai+1))
i ∈ {0, 1, 2}

and on the triangles Ti := ∆aiai,i+1ai,i+2, i ∈ {0, 1, 2} we define the affine functions li : Ti →
IR, li(ai) := π(v̄h(ai)), lj(ai,i+1) := lj(ai,i+2) := 0, for i ∈ {0, 1, 2}.
Moreover we define T0,1,2 := ∆a0,1a0,2a1,2 and we set

vh|T (x) :=

{
(c(v̄h(ai)), li(x)), if x ∈ Ti i ∈ {0, 1, 2}
(1, 0), if x ∈ T0,1,2.

The five cases described above are graphically summarized in the following figures. In all

these cases, points of the spider are described by a colour (
∧
= axis) and a height (

∧
= distance

from origin). The black colour describes the origin.

Figure 1.2: case (i) Figure 1.3: case (ii) Figure 1.4: case (iii)

Figure 1.5: case (iv) Figure 1.6: case (v)
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Definition 1.17 We define an injective mapping Jh : V̄ h
N(g) → VN(g) by

Jh(v̄h)(x) :=

{
vh(x), if x ∈ D
g(x), otherwise,

for v̄h ∈ V̄ h
N(g). In the sequel, we will denote the prolongation Jh(v̄h) of v̄h just by vh.

Remark: Note that for each v̄h ∈ V̄ h
N(g) one has∫

D

|∇(πi(vh))|2dλ <∞, ∀i ∈ {1, . . . , n}

and

vh(x) = g(x), ∀x ∈ IR2\D.

Therefore, vh is well defined as an element of the space VN(g). In fact, according to Corollary
1.4 one has

EN(vh) =
n∑
j=1

[∫
D

|∇(πj(vh))|2dλ+

∫
IR2\D

|∇(πj(g))|2dλ
]

Proposition 1.18 For every v̄h ∈ V h
N(g) one has

EN(vh) ≤ EhN(v̄h) +Rg,D, (1.14)

where

Rg,D :=
n∑
i=1

∫
IR2\D

|∇(πi(g))|2dλ. (1.15)

Proof: Observe that due to (1.12) the discrete nonlinear energy EhN(v̄h) may be rewritten as

EhN(v̄h) = −1

2

∑
T∈Th

∑
xi,xj∈Nh

d2(v̄h(xi), v̄h(xj))

∫
T

∇φi,Th ∇φj,Th dλ.

By the definition of Jh and Corollary 1.4,

EN(vh) =
n∑
i=1

[∫
IR2\D

|∇(πi(vh))|2 +
∑
T∈Th

∫
T

|∇(πi(vh))|2
]

= Rg,D +
∑
T∈Th

n∑
i=1

∫
T

|∇(πi(vh))|2.

Thus, the rest of the proof amounts to show that for each T ∈ Th with vertices a0, a1, a2

with vih := vh(ai), i ∈ {0, 1, 2}, the following inequality holds:
n∑
j=1

∫
T

|∇πj(vh)|2 dλ ≤ −d2(v0
h, v

1
h)

∫
T

∇φ0,T
h ∇φ1,T

h dλ

−d2(v1
h, v

2
h)

∫
T

∇φ1,T
h ∇φ2,T

h dλ

−d2(v0
h, v

2
h)

∫
T

∇φ0,T
h ∇φ2,T

h dλ. (1.16)
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By the definition of Jh, to each v̄h ∈ V̄ h
N one has to prove (1.16) for the five different

cases described at the beginning of this section. The cases (i)− (iv) can be reduced to the
well known linear case, holding the equality in (1.16). Indeed, if at most two colours are
involved we can apply the identification discussed in Remark 1.2. To treat the case (v), let
us introduce the notation αi = c(vih), i ∈ {0, 1, 2}. We obtain

n∑
j=1

∫
T

|∇πj(vh)|2 dλ =
2∑
i=0

∫
Ti

|∇παi
(vh)|2 dλ.

For i = 0, 1, 2 one obtains ∇παi
(vh) ≡ βi for some constant βi. Hence,∫

Ti

|∇παi
(vh)|2 dλ =

λ(Ti)

λ(T )

∫
T

β2
i .

Furthermore, βi = ∇wih, where wih is affine on T with nodal values wih(ai) = παi
(vih) and

wih(ai±1) = −παi±1
(vi±1
h ), again due to the identification in Remark 1.2 on distinct edges.

Hence, by formula (1.12) we obtain∫
Ti

|∇παi
(vh)|2 dλ =

λ(Ti)

λ(T )

∫
T

∣∣∇wih∣∣2 dλ
= −

[
d2(vih, v

i+1
h )

∫
T

∇φi,Th ∇φi+1,T
h dλ + d2(vi+1

h , vi+2
h )

∫
T

∇φi+1,T
h ∇φi+2,T

h dλ

+d2(vih, v
i+2
h )

∫
T

∇φi,Th ∇φi+2,T
h dλ

]
· λ(Ti)/λ(T ), i ∈ {0, 1, 2},

which completes the proof, since λ(T0 ∪ T1 ∪ T2) ≤ λ(T ). �

1.3.3 Convergence

In what follows, we will consider a sequence of successively refined, regular triangulations
Th and ask for the convergence of the resulting discrete harmonic maps uh ∈ VN(g) to the
solution u of the continuous problem for h→ 0. For the ease of presentation, we here restrict
to homogeneously refined meshes, i.e. we assume

min
T∈Th

h(T ) ≥ c max
T∈Th

h(T )

with h(T ) = diam(T ). In our applications we generate the sequence of triangulation applying
an iterative subdivision of triangles into four congruent triangles [Bra92]. In the sequel p
resp. µ denote the Markov kernel resp. the measure defined in Subsection 1.3.1 corresponding
to the given triangulation Th. Furthermore, we will use a generic constant C.

Theorem 1.19 Let ūh be the solution to the discrete nonlinear Dirichlet problem for a map
g as described above and let Jh : V̄ h

N(g) → VN(g) be the mapping defined in Subsection 1.3.2.
Then

lim
h→0

EN(uh) = EN(u). (1.17)
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For the proof of Theorem 1.19 we need a couple of preliminary definitions and lemmata.

Definition 1.20 For a triangulation Th we define the set

Si := ∪{T ∈ Th : xi ∈ T}, xi ∈ Nh

called the patch for the vertex xi.

Definition 1.21 Given a function v ∈ H1,2(D), let pi be the local L2-projection of v|Si
to the

set P1(Si) of all affine functions on Si. The corresponding Clement interpolation operator
Ih is defined by

Ihv :=
l∑

i=1

pi(xi)φ
i
h .

In [Cle75] this interpolation operator is discussed and interpolation error estimates are proven
in Sobolev norms. In what follows, we require interpolation error estimates in Hölder norms
given in the following Lemma.

Lemma 1.22 Suppose v is a Hölder continuous function on D̄, i.e. for some 0 < α < 1 the
estimate |v(x) − v(y)| ≤ Cα|x − y|α holds for all x, y ∈ D̄, then there is a constant CI > 0
independent of h such that

|Ihv(x)− v(x)| ≤ CI · hα, ∀x ∈ D̄.

Proof: At first we show that for every Si the local L2 projection pi defined above is Hölder
continuous with respect to the Hölder exponent α. Indeed, let us first fix a set Si and
consider candidates q ∈ P1 for the best L2 projection pi on Si. We observe that if ‖∇q‖ ≥
C maxx,y∈Si

|v(x) − v(y)| for C large enough, then the constant function q̃ := |Si|−1
∫
Si
v

leads to a smaller projection error. Hence, we immediately observe that ‖∇pi‖ ≤ Chα. Due
to the regularity of the triangulation the constant C can be chosen independent of Si and
i. Next, we observe that by the mean value theorem there is a point yi ∈ Si such that
pi(yi) = v(yi). Thus, we get

|pi(x)− v(x)| ≤ |pi(x)− pi(yi)|+ |v(yi)− v(x)| ≤ C |x− yi|α ≤ C hα .

Finally, on each triangle T ∈ Th the operator Ih is a convex combination of pi values. Thus,
we obtain the desired result. �

Due to our homogeneity assumption we obtain

Lemma 1.23 The total number nh of triangles T ∈ Th with T ∩ ∂D 6= ∅ may be bounded by

nh ≤ ch−1

with a constant c independent of the triangulations.
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Proof of Theorem 1.19:
Since g is Lipschitz continuous on ∂D one has that the solution to the nonlinear Dirichlet
problem u is Hölder continuous with α > log4 3 (cf. [Ser94] and Proposition 1.5). In the
following, we will denote the Hölder constant of the map u by Cα. Now we define

N0 := {x ∈ D : u(x) = o}

and
Nh

0 := {y ∈ D : dist(y,N0) ≤ γ · h}
for a constant γ > 0. Then

(πi(u)− δh)
+(x) = 0 ∀x ∈ Nh

0

holds for all i ∈ {1, . . . , n} with δh := Cαγ
α · hα.

By this construction we ensure that the black region (π ≡ 0) is a fat strip which is of the
minimal width 2γ · h. Hence, choosing γ large enough we are able to avoid an interference
of the involved local L2 projections in the construction of a comparison function.
For each i ∈ {1, . . . , n} we define Iδh,i(u) := Ih((πi(u)− δh)

+). It holds

||Iδh,i(u)− (πi(u)− δh)
+||1,2 = ν(h)

h→0−→ 0 ∀i ∈ {1, . . . , }

(cf. [Cle75] and Corollary 1.4). Moreover, one has∣∣∣∣∫
D

|∇((πi(u)− δh)
+)|2dλ−

∫
D

|∇(πi(u))|2dλ
∣∣∣∣→ 0 h→ 0.

Thus, it follows ∫
D

|∇(Iδh,i(u))|2dλ ≤
∫
D

|∇(πi(u))|2dλ+ β(h), (1.18)

where β(h) is converging to 0 for h→ 0.

Observe that the functions (πi(u) − δh)
+, 1 ≤ i ≤ n, are Hölder-continuous with the same

constants α and Cα as u. Hence, according to Lemma 1.22, the following inequalities hold
for each i ∈ {1, . . . , n}, x, y ∈ T :

|Iδh,i(u)(x)− Iδh,i(u)(y)| ≤ |Iδh,i(u)(x)− (πi(u)− δh)
+(x)|

+|(πi(u)− δh)
+(x)− (πi(u)− δh)

+(y)|
+|(πi(u)− δh)

+(y)− Iδh,i(u)(y)|
≤ (2CI + Cα) · hα

and

|Iδh,i(u)(x)− (πi(u))(y)| ≤ |Iδh,i(u)(x)− Iδh,i(u)(y)|+ |Iδh,i(u)(y)− (πi(u)− δh)
+(y)|

+|(πi(u)− δh)
+(y)− (πi(u))(y)|

≤ |Iδh,i(u)(x)− Iδh,i(u)(y)|+ (CI + Cαγ
α)hα
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as well as

|(πi(u))(x)− (πi(u))(y)| ≤ |(πi(u))(x)− Iδh,i(u)(x)|+ |Iδh,i(u)(x)− Iδh,i(u)(y)|
+|Iδh,i(u)(y)− (πi(u))(y)|

≤ |Iδh,i(u)(x)− Iδh,i(u)(y)|+ C · hα.

By means of Iδh,i(u) one can now introduce a piecewise affine function ξhi on D̄, which
obeys the imposed boundary conditions on the nodes. Thus, we define its nodal values:

ξhi (xj) :=

{
Iδh,i(u)(xj), if xj 6∈ ∂D
(πi(u))(xj), if xj ∈ ∂D

for all xj ∈ Nh.

On any triangle T ∈ Th with T ∩ ∂D = ∅ one has ξhi ≡ Iδh,i(u). Thus, to compare the

energy of ξhi with the energy of Iδh,i(u) it is sufficient to analyze the differences on ”bound-
ary triangles”. For a given triangle T ∈ Th with T ∩ ∂D 6= ∅, with vertices a0, a1, a2, and
i ∈ {1, . . . , n}, we obtain

∫
T

|∇ξhi |2dλ
(1.12)
=

2∑
s,t=0
s<t

−|ξhi (as)− ξhi (at)|2 ·
∫
T

∇φs,Th ∇φt,Th dλ

≤
2∑

s,t=0
s<t

−(|Iδh,i(u)(as)− Iδh,i(u)(at)|+ C · hα)2 ·
∫
T

∇φs,Th ∇φt,Th dλ

≤
2∑

s,t=0
s<t

[
−|Iδh,i(u)(as)− Iδh,i(u)(at)|2 ·

∫
T

∇φs,Th ∇φt,Th dλ

+2 |Iδh,i(u)(as)− Iδh,i(u)(at)|C · hα + (C · hα)2

]
≤

∫
T

|∇Iδh,i(u)|2 + C · h2α

where we have the scaling behavior of the local stiffness matrix in two dimensions

−
∫
T

∇φi,Th ∇φj,Th ≤ C,

for all triangles T ∈ Th and nodes xi, xj ∈ Nh. According to Lemma 1.23 we obtain∫
D

|∇ξhi |2dλ =
∑
T∈Th

∫
T

|∇ξhi |2dλ ≤
∑
T∈Th

∫
T

|∇(Iδh,i(u))|2dλ+ nh · C · h2α (1.19)
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for all i ∈ {1, . . . , n}. Furthermore, we can estimate nh ≤ ch−1 and, hence, nh · C · h2α ≤
Ch2α−1. Finally, we verify that 2α − 1 > 2 log4 3 − 1 ≥ 0.5849.. . Hence, the effect of our
correction in the neighbourhood of the boundary ∂D on the energy tends to zero as h→ 0.
Using the functions ξhi our aim is now to construct a map v̄h ∈ V̄ h

N(g). For this purpose
we will use the fact that the functions Iδh,i(u) are not interfering with each other and that

ξhi (x) = (πi(g))(x) for all x ∈ N ∂
h . We define the map v̄h ∈ V̄ h

N(g) by

v̄h(x) :=

{
(j, ξhj (x)), if ∃ j ∈ {1, . . . , n} : ξhj (x) 6= 0
o, otherwise

for all x ∈ Nh. We observe that this definition is not ambiguous. Indeed, by construction
there is at most one j with ξhj (x) 6= 0.
Due to (1.12), the discrete nonlinear energy EhN(w̄h) of a map w̄h ∈ V̄ h

N(g) can be written as

EhN(w̄h) =
∑
T∈Th

−1

2

∑
xi,xj∈Nh

d2(w̄h(xi), w̄h(xj))

∫
T

∇φi,Th ∇φj,Th dλ︸ ︷︷ ︸
:=Eh

T (w̄h)

.

To obtain an estimate of the discrete nonlinear energy of v̄h we have to investigate Eh
T (v̄h) for

all T ∈ Th. Let us denote byHh the set of all triangles T ∈ Th such that T∩∂D 6= ∅ and there
exist two vertices x, y of the triangle T with x, y ∈ ∂D such that 0 6= c(g(x)) 6= c(g(y)) 6= 0 .
Due to our assumption on g, we know that #Hh ≤ C independent of h. We observe

Eh
T (v̄h) ≤

{ ∑n
i=1

∫
T
|∇ξhi |2dλ, if T ∈ Th\Hh

2 ·
∑n

i=1

∫
T
|∇ξhi |2dλ, if T ∈ Hh,

leading to

EhN(v̄h) ≤
n∑
i=1

∑
T∈Th

∫
T

|∇ξhi |2dλ+
n∑
i=1

∑
T∈Hh

∫
T

|∇ξhi |2dλ. (1.20)

Furthermore, we observe that EhN(ūh) ≤ EhN(v̄h) because ūh is the minimizer of the discrete
nonlinear energy EhN . Hence, it follows

EN(uh)
(1.14)

≤ EhN(ūh) +Rg,D

≤ EhN(v̄h) +Rg,D

(1.20)

≤
n∑
i=1

∫
D

|∇ξhi |2dλ+
n∑
i=1

∑
T∈Hh

∫
T

|∇ξhi |2dλ+Rg,D

(1.19)

≤
n∑
i=1

∫
D

|∇(Iδh,i(u))|2dλ+
n∑
i=1

∑
T∈Hh

∫
T

|∇ξhi |2dλ+ C · h2α−1 +Rg,D

(1.18)

≤
n∑
i=1

∫
IR2

|∇(πi(u))|2dλ+ θ(h)

(1.4)
= EN(u) + θ(h)
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where

θ(h) :=
n∑
i=1

∑
T∈Hh

∫
T

|∇ξhi |2dλ+ C · h2α−1 + β(h).

Obviously, θ(h) → 0 as h→ 0. This yields the desired result limh→0 EN(uh) = EN(u). �

Corollary 1.24 For h → 0 the discrete finite element solutions uh converge in L2 to the
solution u of the continuous nonlinear Dirichlet problem.

Proof: Given v0, v1 ∈ VN(g) let vt be the geodesic connecting v0 and v1. Then inequality
(1.10) in the proof of Theorem 1.7 yields

EN(vt) ≤ (1− t)EN(v0) + tEN(v1)− (1− t)tλD · d2
2(v, ṽ) (1.21)

with λD > 0 which shows that EN is strictly convex on VN(g).
Now, let uh,t be the geodesic connecting u and uh. Then the last inequality yields

EN(u) ≤ EN(uh, 1
2
) ≤ 1

2
EN(u) +

1

2
EN(uh)−

1

4
λDd

2
2(u, uh),

and, thus,

1

2
λDd

2
2(u, uh) ≤ EN(uh)− EN(u).

Hence, the claimed convergence follows from Theorem 1.19. �

1.3.4 Numerical Results

Before we present a couple of numerical results for different boundary data, let us discuss
the expected order of convergence of the numerical method. Let us consider the following
explicit harmonic map. Let (N, d) be a 3-spider and D := [−2, 2]2 ⊂ IR2. Then the map
u : D → N given by

u(x, y) =


(1, |x3 − 3xy2|/10), if − π ≤ arctan(x, y) < −4π/6
(1, |x3 − 3xy2|/10), if 0 ≤ arctan(x, y) < 2π/6
(2, |x3 − 3xy2|/10), if − 4π/6 ≤ arctan(x, y) < 0
(2, |x3 − 3xy2|/10), if 2π/6 ≤ arctan(x, y) < 4π/6
(3, |x3 − 3xy2|/10), otherwise

is a harmonic function on D. Now, we define the boundary data g as a Lagrangian interpo-
lation of u|∂D onto the piecewise linear and continuous functions on ∂D. In particular, we
interpolate u at boundary nodes of the triangulations Th. Next, we have numerically solved
the corresponding discrete nonlinear Dirichlet problem and computed the norm of the error
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uh−u for a sequence of successively refined grids, with grid sizes hk = 0.21, 0.10, 0.06, 0.03.
Finally, we evaluate the experimental order of convergence

EOC =
log ‖π(uhk+1

)− π(u)‖ − log ‖π(uhk
)− π(u)‖

log hk+1 − log hk
,

where we either consider the L2 or the H1,2 norm evaluated via numerical quadrature. The
following tables lists the corresponding results

h ||u− uh||L2 EOC ||u− uh||H1,2 EOC

0.21 6.838e-3 2.0071 3.119e-1 0.5665
0.10 1.620e-4 2.0023 1.066e-2 1.4924
0.06 5.171e-4 2.0004 6.011e-2 1.0049
0.03 1.611e-4 1.9877 3.336e-2 1.0043

Obviously, the EOC reflects a second order convergence in the L2 norm and a first order
convergence in the H1,2 norm and thus equals the expected convergence rate of the pure
interpolation error. Hence, we observe optimal convergence in the class of piecewise linear
approximations.

Figure 1.7 now shows the numerical results for different boundary data and Figure 1.8 depicts
a couple of intermediate results corresponding to different iteration steps of our numerical
method.

Figure 1.7: We depict various discrete harmonic maps vh ∈ VN(g) for different boundary
data g
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Figure 1.8: For different steps of our relaxation scheme we show intermediate results (from
left to right and from top to bottom the steps 0, 1, 5, 10, 50, 250 are displayed)

1.4 Proof of Theorem 1.3

For the proof of Theorem 1.3 we need a couple of preliminary definitions and lemmata. In
the sequel, we assume that assumptions (A1) and (A2) are fulfilled.

Lemma 1.25 Assume that n = 2. In this case N is equivalent to IR and (EN ,D(EN))
coincides with the given Dirichlet form (E ,D(E)). In other words one has

E(u) = lim
t→0

1

2t

∫
M

∫
M

|u(x)− u(y)|2 pt(x, dy)m(dx) for each u ∈ D(E). (1.22)

Proof. The Dirichlet form (E ,D(E)) may be characterized by

D(E) =
{
u ∈ L2(M,m) : lim

t→0

1

t
(u− Ttu, u) <∞

}
and

E(u, v) = lim
t→0

1

t
(u− Ttu, v), u, v ∈ D(E),
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see e.g. [FOT94], [MR92]. Assumption (A2) and the symmetry of the measure pt(x, dy)m(dx)
imply

1

t
(u− Ttu, u) =

1

t

∫
M

(
u(x)−

∫
M

u(y)pt(x, dy)

)
· u(x)m(dx)

=
1

t

∫
M

(∫
M

u2(x)pt(x, dy)−
∫
M

u(x)u(y)pt(x, dy)

)
m(dx)

=
1

2t

∫
M

∫
M

u2(x)− 2u(x)u(y) + u2(y)pt(x, dy)m(dx)

=
1

2t

∫
M

∫
M

|u(x)− u(y)|2 pt(x, dy)m(dx).

This is enough to prove this lemma, because for each u ∈ L2(M,m) the inner product
1
t
(u− Ttu, u) is non-decreasing as t decreases. �

Lemma 1.26 For all u, v ∈ D(E) such that u · v = 0 a.e. one has

lim
t→0

2

t

∫
M

∫
M

u(x)v(y)pt(x, dy)m(dx) = 0. (1.23)

Proof. Assumption (A1) and (A2) yield

E(u+ v) = E(u) + 2E(u, v) + E(v) = E(u) + E(v).

A direct application of the previous Lemma leads to the required result. �

Definition 1.27 For all u, v ∈ D(E) such that u · v = 0 a.e. we define the family of sets

Du := {x ∈M : u(x) 6= 0}, Dv := {x ∈M : v(x) 6= 0},
Dv,u

0 := M\(Dv ∪Du).

Lemma 1.28 For all u, v ∈ D(E) such that u · v = 0 a.e., the following equalities hold

E(u) = lim
t→0

1

2t

[∫
Du

∫
Du

|u(x)− u(y)|2pt(x, dy)m(dx)

+ 2

∫
Du

∫
M\Du

u2(x)pt(x, dy)m(dx)

]
(1.24)

and

lim
t→0

2

t

∫
Du

∫
Dv

u(x)v(y)pt(x, dy)m(dx) = 0. (1.25)
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Proof. Let u ∈ D(E) be given. Then equality (1.22) yields

E(u) = lim
t→0

1

2t

∫
M

∫
M

|u(x)− u(y)|2pt(x, dy)m(dx)

= lim
t→0

1

2t

[∫
Du

∫
Du

|u(x)− u(y)|2pt(x, dy)m(dx)

+

∫
Du

∫
M\Du

u2(x)pt(x, dy)m(dx) +

∫
M\Du

∫
Du

u2(y)pt(x, dy)m(dx)

+

∫
M\Du

∫
M\Du

0 pt(x, dy)m(dx)

]
= lim

t→0

1

2t

[∫
Du

∫
Du

|u(x)− u(y)|2pt(x, dy)m(dx)

+ 2

∫
Du

∫
M\Du

u2(x)pt(x, dy)m(dx)

]
.

This proves the first assertion. The second one is a consequence of Lemma 1.26. Indeed, we
obtain

lim
t→0

2

t

∫
Du

∫
Dv

u(x)v(y)pt(x, dy)m(dx) = lim
t→0

2

t

∫
M

∫
M

u(x)v(y)pt(x, dy)m(dx) = 0.

�

Remark 1.29 For all u ∈ L2(M,m) the function

1

2t

[∫
Du

∫
Du

|u(x)− u(y)|2pt(x, dy)m(dx)

+ 2

∫
Du

∫
M\Du

u2(x)pt(x, dy)m(dx)

]
is non-decreasing as t decreases. Moreover, the condition

u ∈ D(E)

is equivalent to the condition

lim
t→0

1

2t

[∫
Du

∫
Du

|u(x)− u(y)|2pt(x, dy)m(dx)

+ 2

∫
Du

∫
M\Du

u2(x)pt(x, dy)m(dx)

]
<∞.

Proof of Theorem 1.3:

Given a measurable map v : M → N , let us define the sets

Di := {x ∈M : vi(x) > 0}, i ∈ I, and D0 := M\(∪i∈IDi).
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The definition of the metric d and the symmetry of the measure pt(x, dy)m(dx) yield∫
M

∫
M

d2(v(x), v(y))pt(x, dy)m(dx)

=
∑
i∈I

[∫
Di

∫
Di

(vi(x)− vi(y))
2pt(x, dy)m(dx)

+
∑
j∈I
j 6=i

∫
Di

∫
Dj

(vi(x) + vj(y))
2pt(x, dy)m(dx) +

∫
Di

∫
D0

v2
i (x)pt(x, dy)m(dx)

]

+
∑
j∈I

[∫
D0

∫
Dj

v2
j (y)pt(x, dy)m(dx)

]
.

Concerning the last three terms, note that for each i, j ∈ I, i 6= j, one may write∫
Di

∫
Dj

(vi(x) + vj(y))
2pt(x, dy)m(dx)

=

∫
Di

∫
Dj

v2
i (x)pt(x, dy)m(dx) +

∫
Di

∫
Dj

v2
j (y)pt(x, dy)m(dx)

+2

∫
Di

∫
Dj

vi(x)vj(y)pt(x, dy)m(dx).

Thus, the sum

∑
i∈I

∑
j∈I
j 6=i

∫
Di

∫
Dj

(vi(x) + vj(y))
2pt(x, dy)m(dx)


+2
∑
j∈I

[∫
D0

∫
Dj

v2
j (y)pt(x, dy)m(dx)

]

is equal to

2
∑
i∈I

∑
j∈I∪{0}

j 6=i

[∫
Di

∫
Dj

v2
i (x)pt(x, dy)m(dx)

]

+2
∑
i,j∈I
i6=j

∫
Di

∫
Dj

vi(x)vj(y)pt(x, dy)m(dx)

= 2
∑
i∈I

∫
Di

∫
M\Di

v2
i (x)pt(x, dy)m(dx)

+4
∑
i,j∈I
i<j

∫
Di

∫
Dj

vi(x)vj(y)pt(x, dy)m(dx).
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In this way, we obtain

1

2t

∫
M

∫
M

d2(v(x), v(y))pt(x, dy)m(dx)

=
1

2t

∑
i∈I

[∫
Di

∫
Di

(vi(x)− vi(y))
2pt(x, dy)m(dx)

+ 2

∫
Di

∫
M\Di

v2
i (x)pt(x, dy)m(dx)

]
+

2

t

∑
i,j∈I
i<j

[∫
Di

∫
Dj

vi(x)vj(y)pt(x, dy)m(dx)

]
.

Now, assume that vi ∈ D(E) for each i ∈ I. For all i ∈ I let us consider the non-decreasing
function as t decreases

1

2t

[∫
Di

∫
Di

(vi(x)− vi(y))
2pt(x, dy)m(dx)

+ 2

∫
Di

∫
M\Di

v2
i (x)pt(x, dy)m(dx)

]
(see Remark 1.29).

By equality (1.24) in Lemma 1.28 we obtain

lim
t→0

∑
i∈I

1

2t

[∫
Di

∫
Di

(vi(x)− vi(y))
2pt(x, dy)m(dx)

+ 2

∫
Di

∫
M\Di

v2
i (x)pt(x, dy)m(dx)

]
=

∑
i∈I

lim
t→0

1

2t

[∫
Di

∫
Di

(vi(x)− vi(y))
2pt(x, dy)m(dx)

+ 2

∫
Di

∫
M\Di

v2
i (x)pt(x, dy)m(dx)

]
=

∑
i∈I

E(vi).

On the other hand, one has

lim sup
t→0

∑
i,j∈I
i<j

2

t

[∫
Di

∫
Dj

vi(x)vj(y)pt(x, dy)m(dx)

]

≤
∑
i,j∈I
i<j

lim sup
t→0

2

t

[∫
Di

∫
Dj

vi(x)vj(y)pt(x, dy)m(dx)

]
= 0.
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Hence, one can conclude that

lim sup
t→0

1

2t

∫
M

∫
M

d2(v(x), v(y))pt(x, dy)m(dx)

= lim
t→0

1

2t

∫
M

∫
M

d2(v(x), v(y))pt(x, dy)m(dx)

=
∑
i∈I

E(vi) <∞.

In this way, we have proven the necessary condition. To show the inverse implication let us
consider a function v ∈ D(EN). Then,∑

i∈I

lim
t→0

1

2t

[∫
Di

∫
Di

(vi(x)− vi(y))
2pt(x, dy)m(dx)

+ 2

∫
Di

∫
M\Di

v2
i (x)pt(x, dy)m(dx)

]
≤ lim sup

t→0

1

2t

∫
M

∫
M

d2(v(x), v(y))pt(x, dy)m(dx) <∞

and the proof follows by Remark 1.29. �

1.5 Generalizations to Spiders with a Countable Num-

ber of Edges

In this section, we will generalize the definition of the nonlinear energy to the case where
(N, d) is a spider with a countable number of edges

N := {(i, t) : i ∈ IN, t ∈ IR+}/ ∼

with (i, 0) ∼ (j, 0) for every i, j ∈ IN. The distance d is defined on N by

d((i, s), (j, t)) =

{
|s− t|, if i = j
s+ t, otherwise.

As before, we define for j ∈ IN projections

πj : N → IR+, (i, t) 7→ δij · t

such that to each measurable map v : M → N one may associate a family of functions
vi : M → IR, i ∈ IN, defined by

vi := πi ◦ v.

Throughout this section, for k ≥ 1 we will denote by Nk the ”subspiders” of N with k edges
such that Nk ⊂ Nk+1.
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Given a measurable map v : M → N , we define maps vk : M → Nk, k ≥ 1, by

vk(x) :=

{
v(x), if v(x) ∈ Nk

o, otherwise

with o := {(1, 0)} and denoting for k ≥ 1 the projections of Nk by πk,i we define

vk,i := πk,i ◦ vk 1 ≤ i ≤ k.

Then one obtains

Lemma 1.30 For each k ≥ 1 and for each measurable map v : M → N it holds vk,i =
vi,∀i ∈ {1, . . . , k}.

This leads to the following definition of the nonlinear energy function EN :

Definition 1.31 Denoting the nonlinear energy function for maps with values in Nk by EkN
we define for measurable maps v : M → N the nonlinear energy function EN by

EN(v) := lim
k→∞

EkN(vk) (1.26)

with D(EN) := {v : M → N measurable : vk ∈ D(EkN),∀k ≥ 1, and EN(v) <∞}.

Also in this context, we can prove an ”energy decomposition” as we did before for the
n-spider.

Theorem 1.32 For each map v : M → N the condition v ∈ D(EN) is equivalent to

vi ∈ D(E),∀i ∈ IN and
∑
i∈IN

E(vi) <∞.

In this situation, for each v ∈ D(EN) the following equality holds

EN(v) =
∑
i∈IN

E(vi).

Proof: Let v ∈ D(EN) by given. Then it follows from Theorem 1.3 for all k ≥ 1 that
vi = vk,i ∈ D(E),∀i ≤ k. Furthermore one has∑

i∈IN

E(vi) ≤ EN(v).

Given a measurable map v : M → N such that vi ∈ D(E),∀i ∈ IN, it holds for all k ≥ 1

EkN(vk) =
k∑
i=1

E(vi)

and by Definition 1.31 one obtains

EN(v) =
∑
i∈IN

E(vi).

�



Chapter 2

Trees

In this chapter, we study harmonic maps v : M → N form a measure space (M,m) with a
local regular Dirichlet form E on it into a finite tree (N, d). Let A be the generator of E and
let the semigroup eAt be given by a semigroup of Markov kernels pt. We define the nonlinear
energy EN function for maps v : M → N by

EN(v) := sup
ϕ∈Cc(M)
0≤ϕ≤1

lim sup
t→0

1

2t

∫
M

∫
M

ϕ(x)d2(v(x), v(y))pt(x, dy)m(dx)

with Cc(M) being the set of all continuous functions on M with compact support. One of
the main issues is an ”energy decomposition” of the following form:

EN(v) =
∑

µ<vi>(M)

whereby vi : M → IR+ is the projection of v on the i-th edge of the tree N and µ<vi> is the
energy measure of vi. Using this result we prove that our nonlinear energy coincides with
the nonlinear energy defined by Picard.
Furthermore, conditions for the existence and uniqueness of a solution to the corresponding
nonlinear Dirichlet problem are presented.
Another important point is the extension of the numerical algorithm from the first chapter
to solve the nonlinear Dirichlet problem for maps from a two dimensional Euclidean domain
into a finite tree. The problem is discretized in the same way as in chapter one and the
convergence of the corresponding numerical method is proven. In addition, we show the
Hölder continuity of the solution to the nonlinear Dirichlet problem.
Finally, a generalization to trees with a countable number of edges is discussed.

Throughout this chapter, we fix a locally compact separable measure space (M,m) with m
being a Radon measure and a regular Dirichlet form (E ,D(E)) on L2(M,m). Moreover, we
assume

(A1) (E ,D(E)) is local, that is, v, w ∈ D(E), supp[v] and supp[w] are compact, v ≡ 0 on a
neighbourhood of supp[w] ⇒ E(v, w) = 0.

38
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(A2) The semigroup (Tt)t≥0 corresponding to the Dirichlet form (E ,D(E)) is given by a
semigroup of Markov kernels pt(x, dy).

(A3) It holds pt(x, dy)m(dx) � m(dy)m(dx) ∀t > 0.

Remark 2.1

(i) Assumption (A2) is always fulfilled if M is a locally compact separable metric space, and
the regular Dirichlet form (E ,D(E)) is conservative. In particular, these assumptions
are fulfilled for M = IRk with m being the Lebesgue measure λ on IRk, and (E ,D(E))
being the classical Dirichlet form, i.e. E(u) =

∫
IRk |∇u|2dλ.

(ii) The assumptions (A1) and (A2) yield that the Dirichlet form (E ,D(E)) is also strongly
local (cf. Appendix A.1).

In the sequel, we denote by Dloc(E) the set of functions v which are locally in D(E) (i.e.
on each relatively compact open subset of M there exists a function of D(E) which coin-
cides with v.) In D(E) one can consider energy measures µ<v,u> and µ<v> = µ<v,v> such
that E(v) is the total mass µ<v>(M). These measures can also be defined for functions in
Dloc(E). Thus, one can define the energy for functions in Dloc(E) by E(v) = µ<v>(M) (finite
or infinite). In addition, we denote by Db

loc(E) the subspace of Dloc(E) consisting of bounded
functions with finite energy. For details see e.g. [BM95].

Furthermore, let (N, d) be a finite tree. This means N consists of a finite number of edges,
which are isometric to closed intervals of IR, glued together at some endpoints such that N is
a connected and simply connected space without loops. The distance d between two points
x, y ∈ N is given by the length of the unique injective path connecting x and y.
The endpoints of the edges are the vertices of the tree. Vertices which belong to only one
edge are the leaves of the tree and we will call a vertex which belongs to more than one edge
branchpoint.
In the following, A and V denote the set of edges and vertices, resp., of the finite tree (N, d)
and we fix a leave as the root o of the tree.

Additionally, we consider the following function defined on the set of edges A by

do : A → IR, a 7→ inf
x∈a

d(o, x)

which describes the distance between the edge a and the root o. Since N is a finite tree, do
is a function with values in a discrete set {ζ0 = 0, ζ1, . . . , ζm} ⊂ IR+.
Let us denote by Ai, i ∈ {0, . . . ,m} the set of all edges a ∈ A with do(a) = ζi and by
ni := #Ai, n := #A the number of edges in Ai, A, resp. To simplify the proofs of the major
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Figure 2.1: Example of a Finite Tree

results, we will renumber the edges in A such that

a1 ∈ A0

a2, . . . , an1+1 ∈ A1

an1+2, . . . , an1+n2+1 ∈ A2

...

an1+···+nm−1+2, . . . , an1+···+nm+1 ∈ Am.

From now on, we will denote the geodesic between two points x, y ∈ N by γx,y.

Definition 2.2 Given a tree (N, d) we define the function

ξ : A×A → IN

(ai, aj) 7→ ξ(ai, aj)

where ξ(ai, aj) is the number of edges a ∈ A, a 6= ai and a 6= aj with a ⊂ γx,y for some (hence
all) x ∈ ai and for some (hence all) y ∈ aj.

In the sequel, we will denote the endpoints of an edge ai by e−i and e+i , whereby we assume
d(o, e−i ) < d(o, e+i ) and we will use a disjoint decomposition

⋃n
i=1 ãi of N , with ã1 := a1

and ãi := ai\{e−i }, 2 ≤ i ≤ n. In this way, each point x ∈ N can be described by a tuple

(c, h) ∈ {1, . . . , n} × IR+. Let us assume that x is element of ãi, then x
∧
= (i, d(e−i , x)).

Given two edges ai, aj we write ai ∼ aj if ãi ∩ γo,x 6= ∅ for some (hence all) x ∈ aj or
ãj ∩ γo,y 6= ∅ for some (hence all) y ∈ ai and ai 6∼ aj otherwise.

Definition 2.3 For i ∈ {1, . . . , n} we define projections πi : N → [0, d(e−i , e
+
i )], 1 ≤ i ≤ n,

by

πi(x) :=


d(e−i , x), if x ∈ ãi
d(e−i , e

+
i ), if x ∈ ãj, j 6= i, ai ⊂ γo,x

0, otherwise.
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Furthermore, we define π : N → IR+ by

π(x) := d(o, x).

In this way, to each measurable map v : M → N one may associate a family of functions
vi : M → IR+, i ∈ {1, . . . , n}, defined by

vi := πi ◦ v.

We will call these functions vi projections of v.

2.1 Nonlinear Energy

In this section, we define a nonlinear energy for maps with values in a finite tree using the
semigroup pt.

Given a measurable map v : M → N we define the energy function EN by

EN(v) := sup
ϕ∈Cc(M)
0≤ϕ≤1

lim sup
t→0

1

2t

∫
M

∫
M

ϕ(x)d2(v(x), v(y))pt(x, dy)m(dx) (2.1)

with D(EN) := {v : M → N measurable : EN(v) < ∞} and Cc(M) being the set of all
continuous functions on M with compact support.

Before we formulate the main theorem of this section, let us deduce some properties of the
maps of D(EN).

Proposition 2.4 Let v ∈ D(EN) be given. Then one has

vi ∈ Db
loc(E) ∀i ∈ {1, . . . , n}.

In addition, it holds∫
M

ϕ(x)µ<vi>(dx) = lim
t→0

1

2t

∫
M

∫
M

ϕ(x)|vi(x)− vi(y)|2pt(x, dy)m(dx) ∀ϕ ∈ Cc(M).

Proof: For all i ∈ {1, . . . , n} one has

|vi(x)− vi(y)| ≤ d(v(x), v(y)) ∀x, y ∈M.

Hence,

lim sup
t→0

1

2t

∫
M

∫
M

ϕ(x)|vi(x)− vi(y)|2pt(x, dy)m(dx) <∞ ∀ϕ ∈ Cc(M), 0 ≤ ϕ ≤ 1.
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Since the Dirichlet form E is regular, for every relatively compact open subset A of M there
is a function ψ ∈ Cc(M), 0 ≤ ψ ≤ 1 with ψ ≡ 1 on Ā and ψ ∈ D(E). Defining w := ψ · vi it
holds w ∈ L2(M,m), w ≡ vi on A, supp[w] ⊆ supp[ψ] and w is bounded.
Choosing a compact subset K of M with supp[ψ] ⊂ K and dist(supp[ψ], ∂K) > 0 it follows
from the symmetry of pt(x, dy)m(dx) that

lim
t→0

1

2t

∫
M

∫
M

|w(x)− w(y)|2pt(x, dy)m(dx)

= lim
t→0

1

2t

[∫
K

∫
K

|w(x)− w(y)|2pt(x, dy)m(dx) +

∫
K

∫
M\K

|w(x)− w(y)|2pt(x, dy)m(dx)

+

∫
M\K

∫
K

|w(x)− w(y)|2pt(x, dy)m(dx)

]
= lim

t→0

1

2t

[∫
K

∫
K

|w(x)− w(y)|2pt(x, dy)m(dx) + 2

∫
supp[ψ]

∫
M\K

w2(x)pt(x, dy)m(dx)

]
.

Since the Dirichlet form E is local, it holds

lim
t→0

1

2t

∫
supp[ψ]

∫
M\K

w2(x)pt(x, dy)m(dx) = 0

which yields

lim
t→0

1

2t

∫
M

∫
M

|w(x)− w(y)|2pt(x, dy)m(dx)

= lim
t→0

1

2t

∫
K

∫
K

|w(x)− w(y)|2pt(x, dy)m(dx).

Furthermore, one has

lim
t→0

1

2t

∫
K

∫
K

|(ψ · vi)(x)− (ψ · vi)(y)|2pt(x, dy)m(dx)

≤ lim sup
t→0

1

2t
· C
[∫

K

∫
K

|ψ(x)− ψ(y)|2pt(x, dy)m(dx)

+

∫
K

∫
K

|vi(x)− vi(y)|2pt(x, dy)m(dx)

]
≤ C · E(ψ) + C · lim sup

t→0

1

2t

∫
M

∫
M

φ(x)|vi(x)− vi(y)|2pt(x, dy)m(dx)

with φ ∈ Cc(M), 0 ≤ φ ≤ 1 and φ ≡ 1 on K. Hence, w ∈ D(E) and vi ∈ Dloc(E)∩L∞(M,m).
For all u ∈ D(E) ∩ L∞(M,m) it holds (see [BM95])∫

M

ϕ(x)µ<u>(dx) = lim
t→0

1

2t

∫
M

∫
M

ϕ(x)|ũ(x)− ũ(y)|2pt(x, dy)m(dx) ∀ϕ ∈ Cc(M),

where ũ is the quasi-continuous modification of u. From assumption (A3) and by localization
one obtains∫

M

ϕ(x)µ<vi>(dx) = lim
t→0

1

2t

∫
M

∫
M

ϕ(x)|vi(x)− vi(y)|2pt(x, dy)m(dx) ∀ϕ ∈ Cc(M).
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In addition, one has

µ<vi>(M) = sup
ϕ∈Cc(M)
0≤ϕ≤1

lim
t→0

1

2t

∫
M

∫
M

ϕ(x)|vi(x)− vi(y)|2pt(x, dy)m(dx) <∞

which yields vi ∈ Db
loc(E). �

For the proof of the next proposition we need the following lemma.

Lemma 2.5 Given two functions u, v ∈ Db
loc(E) with u ≡ c on supp[v] it holds

lim
t→0

1

t

∫
M

∫
M

ϕ(x)(u(x)− u(y)) · (v(x)− v(y))pt(x, dy)m(dx) = 0 ∀ϕ ∈ Cc(M). (2.2)

Proof: Since the Dirichlet form (E ,D(E)) is also strongly local one has (cf. [Pic04])

µ<u+v> = µ<u> + µ<v>

and it holds∫
M

ϕ(x)µ<u>(dx) = lim
t→0

1

2t

∫
M

∫
M

ϕ(x)|u(x)− u(y)|2pt(x, dy)m(dx) (2.3)

for all ϕ ∈ Cc(M) (see [BM95] and Proof of Proposition 2.4). Therefore, for any ϕ ∈ Cc(M)
and sufficient small t > 0 the equations

1

2t

∫
M

∫
M

ϕ(x)|(u+ v)(x)− (u+ v)(y)|2pt(x, dy)m(dx)

=
1

2t

∫
M

∫
M

ϕ(x)|(u(x)− u(y)) + (v(x)− v(y))|2pt(x, dy)m(dx)

=
1

2t

∫
M

∫
M

ϕ(x)|u(x)− v(y)|2pt(x, dy)m(dx)

+
1

2t

∫
M

∫
M

ϕ(x)|v(x)− v(y)|2pt(x, dy)m(dx)

+
1

2t

∫
M

∫
M

2 · ϕ(x)(u(x)− u(y)) · (v(x)− v(y))pt(x, dy)m(dx)

lead to

lim
t→0

1

t

∫
M

∫
M

ϕ(x)(u(x)− u(y)) · (v(x)− v(y))pt(x, dy)m(dx) = 0.

�

Proposition 2.6 Let v ∈ D(EN) be given. Defining Di = v−1(ãi), i = 1, . . . , n, it holds

ξ(ai, aj) > 0 ⇒ lim
t→0

1

t

∫
Di

∫
Dj

ϕ(x)pt(x, dy)m(dx) = 0 ∀ϕ ∈ Cc(M).



44 Trees

Proof: Let ai, aj ∈ A with ξ(ai, aj) > 0 be given. By definition of the function ξ there
is an vertex â := ak ∈ A with â ⊂ γx,y for some x ∈ ai and for some y ∈ aj and we
denote the midpoint of this vertex â by m̂. Given a point x ∈ â with d(o, m̂) < d(o, x) we
may assume without restrictions that infy∈ai

d(m̂, y) < infy∈ai
d(x, y). Now, we define two

bounded functions φi, φj : N → IR+ by

φj(x) :=


d(m̂, x), if x ∈ â and d(o, m̂) ≤ d(o, x)
d(m̂, x), if x ∈ ãl, l > k, ak ∼ al
0, otherwise

and

φi(x) :=


d(m̂, x), if x ∈ â and d(o, x) ≤ d(o, m̂)
0, if x ∈ â and d(o, m̂) ≤ d(o, x)
0, if x ∈ ãl, l > k, ak ∼ al
d(m̂, x), otherwise.

Defining vφi := φi ◦ v, vφj := φj ◦ v one has vφi ≥ 0, vφj ≥ 0 and

vφi , v
φ
j ∈ Db

loc(E),

because of |vφi (x) − vφi (y)| ≤ d(v(x), v(y)), |vφj (x) − vφj (y)| ≤ d(v(x), v(y)) for all x, y ∈ M

(see proof of Proposition 2.4). Furthermore, by construction of φi and φj it holds vφi · v
φ
j = 0

and, thus, (cf. Lemma 2.5)

lim
t→0

1

t

∫
M

∫
M

|ϕ(x)|[vφi (x)v
φ
j (y) + vφi (y)v

φ
j (x)]pt(x, dy)m(dx) = 0 ∀ϕ ∈ Cc(M).

Hence, it follows

0 = lim
t→0

1

t

∫
M

∫
M

|ϕ(x)| · [vφi (x)v
φ
j (y) + vφi (y)v

φ
j (x)]pt(x, dy)m(dx)

≥ lim
t→0

1

t

∫
Di

∫
Dj

|ϕ(x)| · vφi (x) · v
φ
j (y)pt(x, dy)m(dx)

≥ lim
t→0

c

t

∫
Di

∫
Dj

|ϕ(x)|pt(x, dy)m(dx)

≥ lim
t→0

c

t

∣∣∣∣∣
∫
Di

∫
Dj

ϕ(x)pt(x, dy)m(dx)

∣∣∣∣∣ ≥ 0 ∀ϕ ∈ Cc(M),

because of vφi ≥ d(m̂, e−k ) on Di and vφj ≥ d(m̂, e+k ) on Dj. Therefore, it holds

lim
t→0

1

t

∫
Di

∫
Dj

ϕ(x)pt(x, dy)m(dx) = 0 ∀ϕ ∈ Cc(M).

�
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Theorem 2.7 For each map v : M → N the condition v ∈ D(EN) is equivalent to

vi ∈ Db
loc(E),∀i ∈ {1, . . . , n}

and

lim
t→0

1

t

∫
v−1(ãi)

∫
v−1(ãj)

ϕ(x)pt(x, dy)m(dx) = 0 (2.4)

for all ai, aj ∈ A with ξ(ai, aj) > 0 and for all ϕ ∈ Cc(M). In this situation, for each
v ∈ D(EN) the following equalities hold

EN(v) = sup
ϕ∈Cc(M)
0≤ϕ≤1

lim
t→0

1

2t

∫
M

∫
M

ϕ(x)d2(v(x), v(y))pt(x, dy)m(dx)

=
n∑
i=1

µ<vi>(M). (2.5)

For a detailed proof see Section 2.4.

Remark 2.8 Given a map v : M → N with vi ∈ Db
loc(E), i ∈ {1, . . . , n}, and two points

x, y ∈ N denote the projection of v on the geodesic γx,y by vx,y. Then equation (2.4) ensures
that

vx,y ∈ Db
loc(E).

A descriptive interpretation is that condition (2.4) prevents jumps of the map v from one
edge to another edge which are not adjacent to each other.

2.1.1 Other Definitions of Nonlinear Energy

Now, we will compare our definition of nonlinear energy with the definitions given by Kore-
vaar/Schoen (cf. [KS93]) and Picard (cf. [Pic04]).

Korevaar/Schoen developed a theory of harmonic maps into NPC spaces by defining a canon-
ical extension EN of the energy functional for maps with values in an NPC space (X, d). In
this approach, the domain space M is a k-dimensional Riemannian manifold and

EN(v) = sup
ϕ∈Cc(M)
0≤ϕ≤1

lim
r→0

ck
rk+1

∫
M

∫
∂Br(x)

ϕ(x)d2(v(x), v(y))σr,x(dy)m(dx) (2.6)

where

ck =
k

4πk/2
· Γ(k/2) =

k

4πk/2

∫ ∞

0

xk/2−1 exp(−x)dx

and σr,x denotes the surface measure on the sphere ∂Br(x).
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Proposition 2.9 On IRk with the Lebesgue measure λ, let (E ,D(E)) be the classical Dirichlet
form and let (N, d) be a finite tree. For all v ∈ D(EN) one has

EN(v) =
n∑
i=1

∫
IRk

|∇vi|2dλ

= sup
ϕ∈Cc(IRk)

0≤ϕ≤1

lim
r→0

ck
rk+1

∫
M

∫
∂Br(x)

ϕ(x)d2(v(x), v(y))σr,x(dy)m(dx)

= EN(v)

Proof: The first equation follows easily from Theorem 2.7 and the proof of the second equa-
tion works out in a similar way as the proof of Proposition 1.5. �

Proposition 2.10 Let M be a connected compact Riemannian manifold without boundary
and let (E ,D(E)) be the classical Dirichlet form on M given by the Laplace-Beltrami operator.
Then, our definition of the nonlinear energy EN coincides with definition of energy introduced
by Korevaar/Schoen in [KS93].

For the proof it is sufficient to show that for any map v : M → N with finite energy in the
sense of Korevaar/Schoen one has

EN(v) =
n∑
i=1

∫
M

|∇vi(x)|2dµ(x)

where µ is the Riemannian volume measure on M . For details see Subsection 2.1.2.

Another possible definition of nonlinear energy for maps with values in a finite tree N is
given by Picard (see [Pic04]).

Definition 2.11 The set Db
N is the space of N-valued maps such that ϕ ◦ v is in Db

loc(E) for
any Lipschitz function ϕ : N → IR. For v in this space define

ẼN(v) := sup {E(ϕ ◦ v) : ϕ non expanding } .

In the next proposition, we will prove that this definition coincides with our definition of
nonlinear energy.

Proposition 2.12 It holds

D(EN) = Db
N

and

EN(v) = ẼN(v) ∀v ∈ D(EN).
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Proof: Let v ∈ D(EN) be given. It follows from Proposition 2.4 that vi ∈ Db
loc(E), 0 ≤ 1 ≤ n.

Lemma 5.1.10 in [Pic04] yields v ∈ Db
N and

ẼN(v) =
n∑
i=1

µ<vi>(M)
(2.5)
= EN(v).

Given any map v ∈ Db
N one has vi ∈ Db

loc(E), 0 ≤ 1 ≤ n. Furthermore, the functions φj and
φi defined in the proof of Proposition 2.6 are Lipschitz functions. Hence φi ◦ v and φj ◦ v are
in Db

loc(E) and with the same arguments as in the proof of Proposition 2.6 one can show that
(2.4) holds for any map in Db

N . Then Theorem 2.7 yields v ∈ D(EN) and again by Lemma
5.1.10 in [Pic04] one obtains EN(v) = ẼN(v). �

2.1.2 Decomposition of the Energy from Korevaar/Schoen

In this section, we will prove the energy decomposition of the nonlinear energy given by
Korevaar/Schoen for tree-valued maps.

In the sequel, let Ω be a Riemannian domain, that is, Ω is a connected, open subset of a
k-dimensional Riemannian manifold M having the property that its metric completion Ω̄
is a compact subset of M and let µ be the Riemannian volume measure on M . Without
restrictions, we assume that the length of all edges of the finite tree N is equal to one.

For the readers convenience let us repeat some notations and definitions from the work
[KS93] of Korevaar/Schoen.

Definition 2.13 We define the space L2(Ω, N) as the set of Borel-measurable maps v : Ω →
N for which ∫

Ω

d2(u(x), q)dµ(x) <∞

for some q ∈ N .

The space L2(Ω, N) is a complete metric space, with distance function D defined by

D2(u, v) =

∫
Ω

d2(u(x), v(x))dµ(x).

Definition 2.14 (Nonlinear Energy of Korevaar/Schoen) Let v ∈ L2(Ω, N) be given
and let Cc(Ω) be the set of all continuous functions on Ω with compact support. Then, for
ε > 0 and f ∈ Cc(Ω) define

Eε,f (v) = ck ·
∫

Ωε

f(x)

∫
S(x,ε)

ε−k−1d2(v(x), v(y)) dσx,ε(y)︸ ︷︷ ︸
eε(x)

dµ(x)
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with Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}, S(x, ε) = {y ∈ Ω : |y − x| = ε}, dσx,ε(y) the
(k − 1)-dimensional surface measure on S(x, ε) and

ck =

∫
Sk−1

|x1|2dσ(x)

(where x = (x1, . . . , xk) ∈ IRk and Sk−1 = {|x| = 1}).
The map v has finite (nonlinear) energy (and one writes v ∈ W 1,2(Ω, N)), if

sup
f∈Cc(Ω)
0≤f≤1

(
lim sup
ε→0

Eε,f (v)

)
≡ E(v) <∞.

Remark 2.15 For the constant ck from the previous definition one has

ck =
k

4πk/2
· Γ(k/2) =

k

4πk/2

∫ ∞

0

xk/2−1 exp(−x)dx

=
1

πk/2

∫ ∞

0

xk+1 exp
(
−x2

)
dx.

Now, we will show that for any map v ∈ W 1,2(Ω, N) one has

E(v) =
n∑
i=1

∫
Ω

|∇vi(x)|2dµ(x) (2.7)

with vi, 1 ≤ i ≤ n, being the projections of v on the i-th edge of the tree N .

For this, we need a couple of preliminary results.

Lemma 2.16 Let x, y ∈ N be given. For the distance d between x and y it holds

d(x, y) =


|πi(x)− πi(y)|, if x, y ∈ ãi
1− πi(x) + πj(y) + ξ(ai, aj), if x ∈ ãi, y ∈ ãj, j ∼ i, j > i
1− πj(y) + πi(x) + ξ(ai, aj), if x ∈ ãi, y ∈ ãj, j ∼ i, j < i
πi(x) + πj(y) + ξ(ai, aj), if x ∈ ãi, y ∈ ãj, j 6∼ i

Proof: This follows by the definition of the metric d, the Definitions 2.2 and 2.3 and by the
assumption of the length of the edges. �

Proposition 2.17 It holds

W 1,2(Ω, IR) = W 1,2(Ω).

Furthermore, the energy densities coincide. Thus, given v ∈ L2(Ω, IR) with finite energy
E(v) the measure ck eε(x)dλ(x) converges weakly to |∇v(x)|2dλ(x).
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Proof: See Theorem 1.5.1, 1.6.2 in [KS93].

Lemma 2.18 Given v ∈ W 1,2(Ω, N) one has vi ∈ W 1,2(Ω) for all i ∈ {1, . . . , n}.

Proof: This follows easily from |vi(x)− vi(y)| ≤ d(v(x), v(y)). �

Lemma 2.19 Given two functions in u, v ∈ W 1,2(Ω) with u ≡ c on supp[v] one has

lim
ε→0

∫
Ωε

∫
S(x,ε)

f(x) · ε−k−1(u(x)− u(y)) · (v(x)− v(y)) dσx,ε(y) dµ(x) = 0

for all f ∈ Cc(Ω).

Proof: It holds

|∇(u+ v)|2 = |∇u|2 + |∇v|2.

Therefore, one has for any f ∈ Cc(Ω)∫
Ωε

∫
S(x,ε)

f(x) · ε−k−1|(u+ v)(x)− (u+ v)(y)|2 dσx,ε(y) dµ(x)

=

∫
Ωε

∫
S(x,ε)

f(x) · ε−k−1|u(x)− u(y)|2 dσx,ε(y) dµ(x)

+

∫
Ωε

∫
S(x,ε)

f(x) · ε−k−1|v(x)− v(y)|2 dσx,ε(y) dµ(x)

+

∫
Ωε

∫
S(x,ε)

2 · f(x) · ε−k−1(u(x)− u(y)) · (v(x)− v(y)) dσx,ε(y) dµ(x).

With Proposition 2.17 one obtains

lim
ε→0

∫
Ωε

∫
S(x,ε)

f(x) · ε−k−1(u(x)− u(y)) · (v(x)− v(y)) dσx,ε(y) dµ(x) = 0.

�

Lemma 2.20 Given u, v ∈ W 1,2(Ω) such that u · v = 0 one has

lim
ε→0

[∫
Ωu∩Ωε

∫
S(x,ε)∩Ωv

f(x)ε−k−1u(x)v(y) dσx,ε(y) dµ(x)

+

∫
Ωv∩Ωε

∫
S(x,ε)∩Ωu

f(x)ε−k−1u(y)v(x) dσx,ε(y) dµ(x)

]
= 0 ∀f ∈ Cc(Ω)

with Ωu := {x ∈ Ω : u(x) 6= 0} and Ωv := {x ∈ Ω : v(x) 6= 0}.
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Proof: Lemma 2.19 leads to

lim
ε→0

∫
Ωε

∫
S(x,ε)

f(x) · ε−k−1(u(x)− u(y)) · (v(x)− v(y)) dσx,ε(y) dµ(x) = 0 ∀f ∈ Cc(Ω)

or, equivalently,

lim
ε→0

[
−
∫

Ωu∩Ωε

∫
S(x,ε)∩Ωv

f(x)ε−k−1u(x)v(y) dσx,ε(y) dµ(x)

−
∫

Ωv∩Ωε

∫
S(x,ε)∩Ωu

f(x)ε−k−1u(y)v(x) dσx,ε(y) dµ(x)

]
= 0 ∀f ∈ Cc(Ω).

�

Lemma 2.21 Let v ∈ W 1,2(Ω, N) be given. Defining Ωi = v−1(ãi), i = 1, . . . , n, it holds

ξ(ai, aj) > 0 ⇒ lim
ε→0

∫
Ωε∩Ωi

∫
S(x,ε)∩Ωj

f(x)ε−k−1 dσx,ε(y) dµ(x) = 0 ∀f ∈ Cc(Ω).

Proof: Let ai, aj ∈ A with ξ(ai, aj) > 0 be given. By definition of the function ξ there
is an vertex â := ak ∈ A with â ⊂ γx,y for some x ∈ ai and for some y ∈ aj and we
denote the midpoint of this vertex â by m̂. Given a point x ∈ â with d(o, m̂) < d(o, x) we
may assume without restrictions that infy∈ai

d(m̂, y) < infy∈ai
d(x, y). Now, we define two

bounded functions φi, φj : N → IR+ by

φj(x) :=


d(m̂, x), if x ∈ â and d(o, m̂) ≤ d(o, x)
d(m̂, x), if x ∈ ãl, l > k, ak ∼ al
0, otherwise

and

φi(x) :=


d(m̂, x), if x ∈ â and d(o, x) ≤ d(o, m̂)
0, if x ∈ â and d(o, m̂) ≤ d(o, x)
0, if x ∈ ãl, l > k, ak ∼ al
d(m̂, x), otherwise.

Defining vφi := φi ◦ v, vφj := φj ◦ v one has vφi ≥ 0, vφj ≥ 0 and

vφi , v
φ
j ∈ W 1,2(Ω),

because of |vφi (x)− v
φ
i (y)| ≤ d(v(x), v(y)), |vφj (x)− v

φ
j (y)| ≤ d(v(x), v(y)) for all x, y ∈ Ω (cf.

Lemma 2.18). Furthermore, by construction of φi and φj it holds vφi · v
φ
j = 0 and, thus, (cf.

Lemma 2.19)

lim
ε→0

∫
Ωε

∫
S(x,ε)

f(x) · ε−k−1(vφi (x)− vφi (y)) · (v
φ
j (x)− vφj (y)) dσx,ε(y) dµ(x) = 0.
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Hence, it follows

0 = lim
ε→0

ε−k−1

∫
Ωε

∫
S(x,ε)

|f(x)| · |vφi (x)v
φ
j (y) + vφi (y)v

φ
j (x)| dσx,ε(y) dµ(x)

≥ lim
ε→0

ε−k−1

∫
Ωε∩Ωi

∫
S(x,ε)∩Ωj

|f(x)| · vφi (x) · v
φ
j (y) dσx,ε(y) dµ(x)

≥ lim
ε→0

c · ε−k−1

∫
Ωε∩Ωi

∫
S(x,ε)∩Ωj

|f(x)| dσx,ε(y) dµ(x)

≥ lim
ε→0

c · ε−k−1

∣∣∣∣∣
∫

Ωε∩Ωi

∫
S(x,ε)∩Ωj

f(x) dσx,ε(y) dµ(x)

∣∣∣∣∣ ≥ 0 ∀f ∈ Cc(Ω),

because of vφi ≥ d(m̂, e−k ) on Ωi and vφj ≥ d(m̂, e+k ) on Ωj. Therefore, it holds

lim
ε→0

ε−k−1

∫
Ωε∩Ωi

∫
S(x,ε)∩Ωj

f(x) dσx,ε(y) dµ(x) = 0 ∀f ∈ Cc(Ω).

�

Lemma 2.22 Let v ∈ W 1,2(Ω, N) be given. Defining Ωi = v−1(ãi), i = 1, . . . , n, it holds for
any measurable bounded function u

ξ(ai, aj) > 0 ⇒ lim
ε→0

∫
Ωε∩Ωi

∫
S(x,ε)∩Ωj

f(x)u(x)ε−k−1 dσx,ε(y) dµ(x) = 0 ∀f ∈ Cc(Ω).

Lemma 2.23 Let v ∈ W 1,2(Ω, N) be given. For two projections vi, vj of v such that i ∼
j, i < j one has

lim
ε→0

[∫
Ωi∩Ωε

∫
Ωj∩S(x,ε)

f(x)ε−k−1(1− vi(x))vj(y) dσx,ε(y) dµ(x)

+

∫
Ωj∩Ωε

∫
Ωi∩S(x,ε)

f(x)ε−k−1(1− vi(y))vj(x) dσx,ε(y) dµ(x)

]
= 0 ∀f ∈ Cc(Ω)

with Ωi := v−1(ãi) and Ωj := v−1(ãj).

Proof: Lemma 2.19 and Lemma 2.22 yield

0 = lim
ε→0

∫
Ωε

∫
S(x,ε)

f(x) · ε−k−1(vi(x)− vi(y)) · (vj(x)− vj(y)) dσx,ε(y) dµ(x)

= lim
ε→0

[∫
Ωi∩Ωε

∫
Ωj∩S(x,ε)

f(x)ε−k−1(1− vi(x))vj(y) dσx,ε(y) dµ(x)

+

∫
Ωj∩Ωε

∫
Ωi∩S(x,ε)

f(x)ε−k−1(1− vi(y))vj(x) dσx,ε(y) dµ(x)

]
for all f ∈ Cc(Ω). �
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Lemma 2.24 Let v ∈ W 1,2(Ω, N) be given. For two projections vi, vj of v such that i 6∼ j
one has

lim
ε→0

[∫
Ωi∩Ωε

∫
Ωj∩S(x,ε)

f(x)ε−k−1vi(x)vj(y) dσx,ε(y) dµ(x)

+

∫
Ωj∩Ωε

∫
Ωi∩S(x,ε)

f(x)ε−k−1vi(y)vj(x) dσx,ε(y) dµ(x)

]
= 0

for all f ∈ Cc(Ω) with Ωi := v−1(ãi) and Ωj := v−1(ãj).

Proof: This follows from Lemma 2.20, Ωi ⊂ Ωvi
,Ωj ⊂ Ωvj

and vi ≥ 0, vj ≥ 0. �

Proof of Equation(2.7):

Lemma 2.16 yields for a measurable map v : Ω → N

d(v(x), v(y)) =


|vi(x)− vi(y)|, if x, y ∈ Ωi

1− vi(x) + vj(y) + ξ(ai, aj), if x ∈ Ωi, y ∈ Ωj, j ∼ i, j > i
1− vj(y) + vi(x) + ξ(ai, aj), if x ∈ Ωi, y ∈ Ωj, j ∼ i, j < i
vi(x) + vj(y) + ξ(ai, aj), if x ∈ Ωi, y ∈ Ωj, j 6∼ i

with Ωi := v−1(ãi), i ∈ {1, . . . , n}.

Thus, one has

Eε,f (v) = ε−k−1

∫
Ωε

f(x)

∫
S(x,ε)

d2(v(x), v(y)) dσx,ε(y) dµ(x)

= ε−k−1

n∑
i=1

[∫
Ωi∩Ωε

∫
Ωi∩S(x,ε)

f(x)|vi(x)− vi(y)|2 dσx,ε(y) dµ(x)

+
∑
i6∼j

∫
Ωi∩Ωε

∫
Ωj∩S(x,ε)

f(x)|ξ(ai, aj) + vj(x) + vi(x)|2 dσx,ε(y) dµ(x)

+
∑
j<i
i∼j

∫
Ωi∩Ωε

∫
Ωj∩S(x,ε)

f(x)|ξ(ai, aj) + 1− vj(x) + vi(x)|2 dσx,ε(y) dµ(x)

+
∑
j>i
i∼j

∫
Ωi∩Ωε

∫
Ωj∩S(x,ε)

f(x)|ξ(ai, aj) + 1− vi(x) + vj(x)|2 dσx,ε(y) dµ(x)

]

= ε−k−1

[
n∑
i=1

∫
Ωi∩Ωε

∫
Ωi∩S(x,ε)

f(x)|vi(x)− vi(y)|2 dσx,ε(y) dµ(x)

+
n∑
i=1

∑
i6∼j

∫
Ωi∩Ωε

∫
Ωj∩S(x,ε)

f(x)[v2
i (x) + v2

j (y) + ξ2(ai, aj) + 2vi(x)ξ(ai, aj)

+2vj(y)ξ(ai, aj) + 2vi(x)vj(y)] dσx,ε(y) dµ(x)
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+
n∑
i=1

∑
j<i
i∼j

∫
Ωi∩Ωε

∫
Ωj∩S(x,ε)

f(x)[1 + ξ2(ai, aj) + v2
j (y) + v2

i (x)

−2vj(y) + 2vi(x) + 2ξ(ai, aj)− 2vj(y)vi(x)

−2vj(y)ξ(ai, aj) + 2vi(x)ξ(ai, aj)] dσx,ε(y) dµ(x)

+
n∑
i=1

∑
j>i
i∼j

∫
Ωi∩Ωε

∫
Ωj∩S(x,ε)

f(x)[1 + ξ2(ai, aj) + v2
j (y) + v2

i (x)

+2vj(y)− 2vi(x) + 2ξ(ai, aj)− 2vj(y)vi(x)

+2vj(y)ξ(ai, aj)− 2vi(x)ξ(ai, aj)] dσx,ε(y) dµ(x)

]
Using Lemma 2.21 it holds

lim
ε→0

Eε,f (v) = lim
ε→0

ε−k−1

[
n∑
i=1

∫
Ωi∩Ωε

∫
Ωi∩S(x,ε)

f(x)|vi(x)− vi(y)|2 dσx,ε(y) dµ(x)

+
n∑
i=1

∑
i6∼j

∫
Ωi∩Ωε

∫
Ωj∩S(x,ε)

f(x)[v2
i (x) + v2

j (y) + 2vi(x)vj(y)] dσx,ε(y) dµ(x)

+
n∑
i=1

∑
j<i
i∼j

∫
Ωi∩Ωε

∫
Ωj∩S(x,ε)

f(x)[1 + v2
j (y) + v2

i (x)

−2vj(y) + 2vi(x)(1− 2vj(y))] dσx,ε(y) dµ(x)

+
n∑
i=1

∑
j>i
i∼j

∫
Ωi∩Ωε

∫
Ωj∩S(x,ε)

f(x)[1 + v2
j (y) + v2

i (x)

−2vi(x) + 2vj(y)(1− vi(x))] dσx,ε(y) dµ(x)

]
and with Lemma 2.23 and Lemma 2.24 one obtains

lim
ε→0

Eε,f (v) = lim
ε→0

ε−k−1

[
n∑
i=1

∫
Ωi∩Ωε

∫
Ωi∩S(x,ε)

f(x)|vi(x)− vi(y)|2 dσx,ε(y) dµ(x)

+
n∑
i=1

∑
i6∼j

∫
Ωi∩Ωε

∫
Ωj∩S(x,ε)

f(x)[v2
i (x) + v2

j (y)] dσx,ε(y) dµ(x)

+
n∑
i=1

∑
j<i
i∼j

∫
Ωi∩Ωε

∫
Ωj∩S(x,ε)

f(x)[|1− vj(y)|2 + v2
i (x)] dσx,ε(y) dµ(x)

+
n∑
i=1

∑
j>i
i∼j

∫
Ωi∩Ωε

∫
Ωj∩S(x,ε)

f(x)[|1− vi(x)|2 + v2
j (y)] dσx,ε(y) dµ(x)

]
.
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Furthermore, for a projection vi of a map v ∈ W 1,2(Ω, N) one has

Eε,f (vi) = ε−k−1

∫
Ωi∩Ωε

∫
Ωi∩S(x,ε)

f(x)|vi(x)− vi(y)|2 dσx,ε(y) dµ(x)

+ε−k−1

[∑
i6∼k

∫
Ωi∩Ωε

∫
Ωk∩S(x,ε)

f(x)v2
i (x) dσx,ε(y) dµ(x)

+
∑
k<i
i∼k

∫
Ωi∩Ωε

∫
Ωk∩S(x,ε)

f(x)v2
i (x) dσx,ε(y) dµ(x)

+
∑
k>i
i∼k

∫
Ωi∩Ωε

∫
Ωk∩S(x,ε)

f(x)|1− vi(x)|2 dσx,ε(y) dµ(x)

+
∑
i6∼k

∫
Ωk∩Ωε

∫
Ωi∩S(x,ε)

f(x)v2
i (y) dσx,ε(y) dµ(x)

+
∑
k<i
i∼k

∫
Ωk∩Ωε

∫
Ωi∩S(x,ε)

f(x)v2
i (y) dσx,ε(y) dµ(x)

+
∑
k>i
i∼k

∫
Ωk∩Ωε

∫
Ωi∩S(x,ε)

f(x)|1− vi(y)|2 dσx,ε(y) dµ(x)

]
.

Thus,

n∑
i=1

lim
ε→0

Eε,f (vi) = lim
ε→0

Eε,f (v)

which yields (cf. Proposition 2.17)

E(v) =
n∑
i=1

∫
Ω

|∇vi(x)|2dµ(x). (2.8)

Hence, if M is a connected compact Riemannian manifold without boundary and if (E ,D(E))
is the classical Dirichlet form on M given by the Laplace-Beltrami operator our definition of
the nonlinear energy EN coincides with definition of energy introduced by Korevaar/Schoen.
This follows easily from equation (2.8) (with Ω = M) and Theorem 2.7.

2.1.3 Special Case that m is a Finite Measure

Throughout this subsection, let m be a finite measure on M . In this special case, one can
simplify the definition of the nonlinear energy function.

Given a measurable map v : M → N we define the energy function ÊN by

ÊN(v) := lim sup
t→0

1

2t

∫
M

∫
M

d2(v(x), v(y))pt(x, dy)m(dx) (2.9)
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with D(ÊN) := {v : M → N measurable : ÊN(v) <∞}.

In this more simple case, all measurable bounded functions are in L2(M,m) and one can
deduce that the projections vi of a map v ∈ D(ÊN) are elements of D(E).

Proposition 2.25 Let v ∈ D(ÊN) be given. Then one has

vi ∈ D(E), ∀i ∈ {1, . . . , n}.
Proof: For all i ∈ {1, . . . , n} it holds

|vi(x)− vi(y)| ≤ d(v(x), v(y)) ∀x, y ∈M.

Hence,

lim sup
t→0

1

2t

∫
M

∫
M

|vi(x)− vi(y)|2pt(x, dy)m(dx) <∞ ∀i ∈ {1, . . . , n}

which yields together with vi ∈ L2(M,m) (cf. [FOT94]) the claim. �

Similar to Theorem 2.7 one obtains the following result.

Theorem 2.26 For each map v : M → N the condition v ∈ D(ÊN) is equivalent to

vi ∈ D(E),∀i ∈ {1, . . . , n}
and

lim
t→0

1

t

∫
v−1(ãi)

∫
v−1(ãj)

pt(x, dy)m(dx) = 0 ∀ai, aj ∈ A with ξ(ai, aj) > 0. (2.10)

In this situation, for each v ∈ D(ÊN) the following equalities hold

ÊN(v) = lim
t→0

1

2t

∫
M

∫
M

d2(v(x), v(y))pt(x, dy)m(dx)

=
n∑
i=1

E(vi). (2.11)

with

E(vi) = lim
t→0

1

2t

∫
M

∫
M

|vi(x)− vi(y)|2pt(x, dy)m(dx).

Proof: The proof works out in the same way as the proof of Theorem 2.7. �

Corollary 2.27 Let M be a compact subset of IRk with smooth boundary, let pMt be the heat
semigroup on M reflected on ∂M and let E be the corresponding Dirichlet form. For all
v ∈ D(ÊN) one has

ÊN(v) =
n∑
i=1

∫
M

|∇vi|2dλ. (2.12)

Remark 2.28 In the situation that m is a finite measure the nonlinear energy definition
given in (2.9) coincides with the definition of nonlinear energy given by Picard.
Furthermore, it holds

ÊN = EN and D(ÊN) = D(EN).
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2.2 Nonlinear Dirichlet Problem

The nonlinear Dirichlet problem for a given map g with EN(g) <∞ and a subset D ⊂M is
to find a map u with ũ = g̃ quasi everywhere on M\D where ũ, g̃ denote quasi-continuous
versions of u and g, resp., which minimizes the nonlinear energy EN .

Definition 2.29 (Nonlinear Dirichlet problem) Let (E ,D(E)) be a regular Dirichlet
form on L2(M,m) which fulfills the conditions (A1) - (A3). Given a map g ∈ D(EN) and a
set D ⊂M , let us define the class of maps

ṼN(g) := {v ∈ D(EN) : ṽ = g̃ quasi everywhere on M\D}

where ṽ, g̃ denotes quasi-continuous versions of v and g, resp. A map u ∈ ṼN(g) is called
solution to the nonlinear Dirichlet problem for g whenever

EN(u) = min
v∈ṼN (g)

EN(v).

The next result (based on a result in [Pic04]) states a sufficient condition for the existence
and uniqueness of a solution to the nonlinear Dirichlet problem.

Theorem 2.30 Let (E ,D(E)) be a regular Dirichlet form on L2(M,m) which fulfills the
conditions (A1) - (A3) with diffusion Xt. Given a relatively compact open subset D such
that Xt quits D during its lifetime and a quasi-continuous map g ∈ D(EN) there exists a
unique (up to modifications) map u ∈ D(EN) which solves the nonlinear Dirichlet problem
for g and D.

Proof: Proposition 2.12 yields (EN ,D(EN)) = (ẼN ,Db
N) and, thus, the claim is a consequence

of Proposition 5.2.6 in [Pic04]. �

2.3 Nonlinear Dirichlet Problem for Polygonal Domains

in IR2

In this section, let D be a polygonal subset of IR2 and let M ⊂ IR2 as described in Corollary
2.27 with D ⊂M and dist(D, ∂M) > 0 be given. Furthermore, let pMt be the heat semigroup
reflected on ∂M , let E be the corresponding Dirichlet form on (M,λ) and let us define the
nonlinear energy function EN as in (2.9) (see Remark 2.28).
The nonlinear Dirichlet problem we will analyze is the following:

Definition 2.31 Given the set D and a map g ∈ D(EN), let us define the class of maps

VN(g) := {v ∈ D(EN) : v = g m-a.e. on M\D}.

A map u ∈ VN(g) is called a solution to the nonlinear Dirichlet problem for g whenever

EN(u) = min
v∈VN (g)

EN(v).
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Remark:

1. The classes VN(g) and ṼN(g) (cf. Definition 2.29) coincide, because D has a ”nice”
boundary.

2. There exists a unique solution to the nonlinear Dirichlet problem.

To solve the nonlinear Dirichlet problem we discretize the problem and construct an iterative
numerical method in the same way as described in Subsection 1.3.1. Then, we define a
prolongation operator which extends discrete maps to maps defined on the whole domain
D similar as in Subsection 1.3.2. Furthermore, we will prove the L2-convergence of the
extended discrete solutions to the solution to the nonlinear Dirichlet problem.

2.3.1 Discrete Nonlinear Dirichlet Problem

In the sequel, let us suppose that an admissible and regular triangulation Th of D in the
sense of [Cia78] is given. In addition, we suppose the triangles to be “acute”. This, means
that all interior angles of all triangles of Th are less than or equal to π

2
. Finally, we assume

that for the map g ∈ D(EN), specifying the boundary values for the nonlinear Dirichlet
problem, π ◦ g is the modulus of a linear function on the boundary faces of Th and that for
each triangle T with at least two vertices x, y ∈ ∂D it holds ξ(g(x), g(y)) = 0. (One can
assure this by choosing the triangulation Th fine enough.)

Having a closer look on Subsection 1.3.1 one will notice that all definitions and results in
this section can be transferred one by one to the case where (N, d) is a finite tree instead
of an n-spider. Due to this, we will repeat only the main definitions and results using the
notations of Subsection 1.3.1.

Definition 2.32 (Discrete nonlinear Dirichlet problem) Given a map g : ∂D → N let
us define

V̄ h
N(g) :=

{
v̄h : Nh → N : v̄h(x) = ḡh(x) ∀x ∈ N ∂

h

}
with ḡh(x) := g(x),∀x ∈ N ∂

h . A map ūh : Nh → N is called a solution to the discrete
nonlinear Dirichlet problem for g whenever ūh fulfills the following two conditions:

1. ūh ∈ V̄ h
N(g)

2. EhN(ūh) = min
v̄h∈V̄ h

N (g)
EhN(v̄h), where

EhN(v̄h) :=
1

2

∑
xi,xj∈Nh

d2(v̄h(xi), v̄h(xj))p(xi, xj)µ(xi) (2.13)

is called the discrete energy corresponding to Th.
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According to [Stu01] we have the following result.

Proposition 2.33 For each g : ∂D → N there is a unique solution to the discrete nonlinear
Dirichlet problem for g.

Definition 2.34 We define Markov operators p1, . . . , pk, k := #N̊h by

pi(x, y) :=


p(x, y), if x = xi and x ∼ y
1, if x 6= xi and x = y
0, otherwise

i = 1, . . . , k

and a nonlinear Markov operator Q by

Q := pNk ◦ · · · ◦ pN1 .

Proposition 2.35 Let ūh be the solution to the discrete nonlinear Dirichlet problem for g.
Then for each v̄h ∈ V̄ h

N(g) one has

lim
n→∞

d∞(Qnv̄h, ūh) = 0, where d∞(v̄h, w̄h) := sup
x∈M

d(v̄h(x), w̄h(x)).

Also the algorithm to get an approximation to the exact solution ūh to the discrete nonlinear
Dirichlet problem for the boundary value map g is the same:

v̄h = g|Nh

do
w̄h = v̄h
for j = 1 to k

v̄h(xj) = pNj v̄h(xj) = argminz∈N{
∑

y∈Nh
d2(z, v̄h(y))p(xj, y)}

until (maxxj∈Nh
d(v̄h(xj), w̄h(xj)) ≤ EPS).

Here EPS is a user prescribed threshold value.

Obviously, it is more complicated to determine the barycenter of a discrete probability
distribution on a tree than on a spider.
An algorithm to calculate argminz∈N{

∑
y∈Nh

d2(z, v̄h(y))p(xj, y)} is given in the next sub-
section.

2.3.2 Barycenters on Finite Trees

Without restrictions, we will assume that the length of all edges of the finite tree (N, d)
is equal to one. Furthermore, let q be a discrete probability distribution on N with finite
support.
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Just to remember, the point

b(q) := argmin
z∈N

∑
x∈N

d2(z, x)q(x) (2.14)

is called barycenter of q. For details see [Stu01].

To develop the algorithm to calculate the barycenter of a discrete probability distribution
on N with finite support we will present an identification of this barycenter.

Let z be a vertex of the tree N . The set N\{z} decomposes into a finite disjoint fam-
ily Kz of connected components Nz,i, i ∈ Kz, and for each i ∈ Kz we define the numbers

rz,i(q) :=
∑
x∈Nz,i

d(z, x)q(x), bz,i(q) := rz,i(q)−
∑
j∈Kz
j 6=i

rz,j(q).

Note that bz,i(q) > 0 for at most one i ∈ Kz.

Proposition 2.36 If bz,i(q) ∈]0, 1
2
] for some z ∈ V and for some i ∈ Kz then b(q) is

the unique point x ∈ N with x ∈ Nz,i and d(z, x) = bz,i(q). If bz,i(q) ∈]0, 1
2
[ one has

bz,i(q) < maxj∈Kz̃
bz̃,j(q) for all other points z̃ ∈ V , z̃ 6= z. If bz,i(q) = 1

2
there is exactly one

other point z̃ ∈ V with bz̃,j(q) = 1
2
, j ∈ Kz̃ and for all other ẑ ∈ V , ẑ 6= z, ẑ 6= z̃ it holds

bz,i(q) < maxj∈Kẑ
bẑ,j(q). If bz,i(q) ≤ 0 for some z ∈ V and for all i ∈ Kz then b(q) = z.

Proof: Let b(q) 6∈ V and let us denote by zq the point in V with d(zq, b(q)) ∈ ]0, 1
2
] minimal.

Without restrictions, we assume that b(q) ∈ Nzq ,1. Then∑
x∈N

d2(b(q), x)q(x)

=
∑

x∈Nzq,1

(d(zq, b(q))− d(zq, x))
2q(x) +

∑
j∈Kzq

j 6=1

∑
x∈Nzq,j

(d(zq, b(q)) + d(zq, x))
2q(x)

is minimal. Thus, r 7→ F (r), where

F (r) :=
∑

x∈Nzq,1

(r − d(zq, x))
2q(x) +

∑
j∈Kzq

j 6=1

∑
x∈Nzq,j

(r + d(zq, x))
2q(x),

attains its minimum on ]0, 1[ in r = d(zq, b(q)). This implies

0 =
1

2
F ′(d(zq, b(q))) = d(zq, b(q))− rzq ,1(q) +

∑
j∈Kzq

j 6=1

rzq ,j(q)

= d(zq, b(q))− bzq ,1(q)
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and, thus, d(zq, b(q)) = bzq ,1.

If b(q) is not the midpoint of an edge then bzq ,1(q) ∈]0, 1
2
[. Now, let z ∈ V ∩Nzq ,i, i 6= 1, be

given and let us assume without restrictions that zq ∈ Nz,1. Then one has

bz,1(q) =
∑
x∈Nz,1

d(z, x)q(x)−
∑
j∈Kz
j 6=1

∑
x∈Nz,j

d(z, x)q(x)

≥
∑

j∈Kzq
j 6=i

∑
x∈Nzq,j

(d(zq, z) + d(zq, x))q(x) +
∑

x∈Nzq,j∩Nz,1

(d(zq, z)− d(zq, x))q(x)

−
∑

x∈Nzq,j\Nz,1

(d(zq, x)− d(zq, z))q(x)

= d(zq, z) +
∑

j∈Kzq
j 6=i

∑
x∈Nzq,j

d(zq, x)q(x)−
∑

x∈Nzq,i

d(z, x)q(x)

≥ d(zq, z) + bzq ,1(q) ≥ 1 + bzq ,1(q).

Given z ∈ V ∩Nzq ,1, let us assume without restrictions zq ∈ Nz,1. Then

bz,1(q) =
∑
x∈Nz,1

d(z, x)q(x)−
∑
j∈Kz
j 6=1

∑
x∈Nz,j

d(z, x)q(x)

≥
∑

i∈Kzq
i6=1

∑
x∈Nzq,i

(d(zq, z) + d(zq, x))q(x) +
∑

x∈Nzq,1∩Nz,1

(d(zq, z)− d(zq, x))q(x)

−
∑

x∈Nzq,1\Nz,1

(d(zq, x)− d(zq, z))q(x)

= d(zq, z) +
∑

i∈Kzq
i6=1

∑
x∈Nzq,i

d(zq, x)q(x)−
∑

x∈Nzq,1

d(zq, x)q(x)

= d(zq, z) +
∑

i∈Kzq
i6=1

rzq ,i(q)− rzq ,1(q)

= d(zq, z)− bzq ,1(q)

> d(zq, z)︸ ︷︷ ︸
≥1

−bzq ,1(q)−
1

2︸ ︷︷ ︸
>−1

+bzq ,1(q) > bzq ,1(q).

If b(q) is the midpoint of an edge of the tree it follows, that there are two points zq, z̃q ∈ V
with d(zq, b(q)) = d(z̃q, b(q)) = 1

2
. Thus, one has maxi∈Kzq

bzq ,i(q) = maxj∈Kz̃q
bz̃q ,j(q) = 1

2

and with the same arguments as before one can show maxi∈Kzq
bzq ,i(q) < maxj∈Kz bz,j(q), z ∈

V , z 6= zq, z 6= z̃q.

Similarly, b(q) ∈ V , implies F ′(0) ≥ 0 with

F (r) :=
∑
x∈N

(r + d(zq, x))
2q(x)
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and, thus, 0 ≥ bzq ,i(q). �

The previous proposition yields the following algorithm to calculate the barycenter of a dis-
crete probability distribution q on a tree N with finite support:

Vc := ∅
do

z ∈ V\Vc
b = maxi∈Kz bz,i(q)
cc = argmaxi∈Kz

bz,i(q)
Vc = Vc ∪ {z}

until (b ≤ 1
2
)

if b ≤ 0
b(q) = z

else if
b(q) = x with x ∈ Nz,cc and d(x, z) = b

2.3.3 Extending Maps on Vertices to Maps on the Domain

By means of a proper prolongation procedure, to each map in V̄ h
N(g) we are going to associate

a map in VN(g). In other words, each map v̄h which is defined on the vertices of the
triangulation Th will be extended to a map vh, defined on the whole domain D, with almost
the same energy, i.e. for each v̄h ∈ V̄ h

N(g) one has

EN(vh) ≤ EhN(v̄h) +Rg,D,

with a nonnegative constant Rg,D only depending on the polygonal domain D, the regularity
of the triangulation Th, and the map g.

Let us consider the set D, the triangulation Th, the set of all vertices of the triangulation
Nh = {x1, . . . , xl}, and a map g ∈ D(EN) as described above. For simplicity, we will assume
that the length of of all edges of the tree is equal to one.
Given a vector v̄h ∈ N l our aim is to construct a continuous map vh : D̄ → N , affine
on each triangle T ∈ Th (or better affine on appropriate subtriangles of each triangle T ),
such that vih := vh(xi) = v̄h(xi) for all i = 1, . . . , l. For this purpose it is enough to
define vh on each triangle T ∈ Th. Let T ∈ Th be given with vertices x0, x1, x2 and let
v̄h(x0) ∈ ãi, v̄h(x1) ∈ ãj, v̄h(x2) ∈ ãk. To define vh|T we have to distinguish the following
cases:

(i) i ∼ j, i ∼ k and j ∼ k

(ii) i ∼ j, i 6∼ k and j 6∼ k

(iii) i ∼ j, i ∼ k and j 6∼ k

(iv) i 6∼ j, i 6∼ k and j 6∼ k
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Figure 2.2: case (i) Figure 2.3: case (ii) Figure 2.4: case (iii)

Figure 2.5: case (iv)

Before defining the prolongation, let us introduce the following definitions:

• Given an edge a ∈ A and a point x ∈ N we define d(x, a) := infy∈a d(x, y).

• Given k edges ai1 , . . . , aik ∈ A we define the branchpoints b̃i1...ik ∈ V and b̂i1...ik ∈ V by

b̃i1...ik := argmax
z∈V∩S̃i1...ik

{d(o, z)}

b̂i1...ik := argmax
z∈V∩Ŝi1...ik

{d(o, z)}

with

S̃i1...ik :=

ik⋂
j=i1

γo,e−j and Ŝi1...ik :=

ik⋂
j,l=i1

j>l

γxj ,xl
, xr ∈ ar, r ∈ {i1, . . . , ik}.

case(i): Without restriction, we may assume that d(o, ai) ≤ d(o, aj) ≤ d(o, ak) and we set
n := ξ(ai, ak). Furthermore, let al1 , . . . , aln be the edges a ∈ A with a ⊂ γx,y, x ∈ ai, y ∈ ak,
whereby we assume that d(x, al1) ≤ . . . d(x, aln).
Now, we define an affine function β : T → IR+ with β(xj) = π(v̄h(xj)), j = 0, 1, 2.
Let us assume that v̄h(x0) ∈ ai. Then we set for each x ∈ T

vh|T (x) :=



(i, β(x)), if β(x0) ≤ β(x) ≤ [β(x0) + 1]
(l1, β(x)), if [β(x0) + 1] < β(x) ≤ [β(x0) + 2]
...
(ln, β(x)), if [β(x0) + n] < β(x) ≤ [β(x0) + (n+ 1)]
(k, β(x)), if [β(x0) + (n+ 1)] < β(x)
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with [z]
∧
= largest integer less or equal than z.

In the case v̄h(x0) ∈ N\{o} we set for each x ∈ T

vh|T (x) :=



e+i , if β(x) = β(x0)
(l1, β(x)), if β(x0) < β(x) ≤ β(x0) + 1
...
(ln, β(x)), if β(x0) + n < β(x) ≤ β(x0) + (n+ 1)
(k, β(x)), if β(x0) + (n+ 1) < β(x)

and if v̄h(x0) = o we set for each x ∈ T

vh|T (x) :=



o, if β(x) = 0
(i, β(x)), if 0 < β(x) ≤ 1
(l1, β(x)), if 1 < β(x) ≤ 2
...
(ln, β(x)), if n < β(x) ≤ n+ 1
(k, β(x)), if n+ 1 < β(x)

case(ii): Without restriction, we may assume d(o, ai) ≤ d(o, aj). Furthermore, let al1 , . . . , aln
be the edges a ∈ A with a ∩ γb̃ijk,y

6= ∅, y ∈ ak, whereby we assume that d(x, al1) ≤
· · · ≤ d(x, aln) and let ak1 , . . . , akm be the edges a ∈ A with a ∩ γb̃ijk,y

6= ∅, y ∈ aj, and

d(x, ak1) ≤ · · · ≤ d(x, akm).
Now, we define an affine function β : T → IR with β(xr) = π(v̄h(xr))− π(b̃ijk), r = 0, 1 and
β(x2) = −(π(v̄h(x2))− π(b̃ijk)) and for each x ∈ T we set

vh|T (x) :=



b̃ijk if β(x) = 0

(l1,−β(x) + π(b̃ijk)), if − 1 ≤ β(x) < 0
...

(ln,−β(x) + π(b̃ijk)) if β(x) < −(n− 1)

(k1, β(x) + π(b̃ijk)) if 0 < β(x) ≤ 1
...

(km, β(x) + π(b̃ijk)) if (m− 1) < β(x)

case(iii): In the sequel, we interpret all the indices i as i mod (3).
We define the points xi,i+1, i ∈ {0, 1, 2} by

xi,i+1 = γi,i+1xi + (1− γi,i+1)xi+1,

where

γi,i+1 =
π(v̄h(xi+1))− π(bjk)

π(v̄h(xi)) + π(v̄h(xi+1))− 2π(bjk)
i ∈ {0, 1, 2}
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and on the triangles Ti := ∆xixi,i+1xi,i+2, i ∈ {0, 1, 2} we define the maps wi : Ti → N , as
described in case(i), with w(xi) := v̄h(xi), w(xi,i+1) := wi(xi,i+2) := b̃jk, for i ∈ {0, 1, 2}.
Moreover, we define T0,1,2 := ∆x0,1x0,2x1,2 and we set

vh|T (x) :=

{
wi(x), if x ∈ Ti i ∈ {0, 1, 2}
b̃jk, if x ∈ T0,1,2.

case(iv): Without restriction, we may assume, that b̂ijk 6∈ γo,x and that b̂ijk ∈ γo,y ∩ γo,z.
We define the points xi,i+1, i ∈ {0, 1, 2} by

xi,i+1 = γi,i+1xi + (1− γi,i+1)xi+1,

where

γi,i+1 =
π(v̄h(xi+1))− π(b̂ijk)

π(v̄h(xi)) + π(v̄h(xi+1))− 2π(b̂ijk)
i ∈ {0, 1, 2}

and on the triangles Ti := ∆xixi,i+1xi,i+2, i ∈ {1, 2} we define the maps wi : Ti → N , as

described in case(i), with wi(xi) := v̄h(xi), wi(xi,i+1) := wi(xi,i+2) := b̂ijk, for i ∈ {1, 2}.
Moreover, we define on the triangle T0 := ∆x0x0,1x0,2 a map w0 : T0 → N , as described in

case(ii), with w0(x0) := v̄h(x0), w0(x0,1) := w0(x0,2) := b̂ijk, and we set

vh|T (x) :=

{
wi(x), if x ∈ Ti i ∈ {0, 1, 2}
b̂ijk, if x ∈ T0,1,2

with T0,1,2 := ∆x0,1x0,2x1,2.

The four cases described above are graphically summarized in the following figures. In all

these cases, points of the tree are described by a colour (
∧
= edge) and a height (

∧
= distance

from root). The black colour for different heights describes the branchpoints.

Figure 2.6: case (i) Figure 2.7: case (ii) Figure 2.8: case (iii)

Figure 2.9: case (iv)
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Definition 2.37 We define an injective mapping Jh : V̄ h
N(g) → VN(g) by

Jh(v̄h)(x) :=

{
vh(x), if x ∈ D
g(x), otherwise,

for v̄h ∈ V̄ h
N(g). In the sequel, we will denote the prolongation Jh(v̄h) of v̄h just by vh.

Remark: Note that for each v̄h ∈ V̄ h
N(g) one has∫

D

|∇(πi(vh))|2dλ <∞ ∀i ∈ {1, . . . , n}

and

vh(x) = g(x) ∀x ∈M\D.

Therefore, vh is well defined as an element of the space VN(g). In fact, according to Corollary
2.27 one has

EN(vh) =
n∑
i=1

[∫
D

|∇(πi(vh))|2dλ+

∫
M\D

|∇(πi(g))|2dλ
]
.

Proposition 2.38 For every v̄h ∈ V̄ h
N(g) one has

EN(vh) ≤ EhN(v̄h) +Rg,D. (2.15)

where

Rg,D :=
n∑
i=1

∫
M\D

|∇(πi(g))|2dλ. (2.16)

Proof: Observe that due to (1.12) the discrete nonlinear energy EhN(v̄h) may be rewritten as

EhN(v̄h) = −1

2

∑
T∈Th

∑
xi,xj∈Nh

d2(v̄h(xi), v̄h(xj))

∫
T

∇φi,Th ∇φj,Th dλ.

Furthermore, by definition of Jh and Corollary 2.27,

EN(vh) =
∑
T∈Th

n∑
i=1

∫
T

|∇(πi(vh))|2dλ+Rg,D.

Thus, the rest of the proof amounts to show that for each T ∈ Th with vertices a0, a1, a2 and
with vih := vh(ai), i ∈ {0, 1, 2}, the following inequality holds:

n∑
j=1

∫
T

|∇πj(vh)|2 dλ ≤ −d2(v0
h, v

1
h)

∫
T

∇φ0,T
h ∇φ1,T

h dλ

−d2(v1
h, v

2
h)

∫
T

∇φ1,T
h ∇φ2,T

h dλ − d2(v0
h, v

2
h)

∫
T

∇φ0,T
h ∇φ2,T

h dλ. (2.17)
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By the definition of Jh, to each v̄h ∈ V̄ h
N one has to prove (2.17) for the four different cases

described at the beginning of this subsection. The cases (i) and (ii) can be reduced to the
well known linear case, holding the equality in (2.17). The proofs in the cases (iii) and (iv)
are similar such that we will only treat case (iv).
By construction of vh, it holds for i = {0, 1, 2} that

n∑
j=1

∫
Ti

|∇(πj(vh))|2dλ =

∫
Ti

β2
i dλ =

λ(Ti)

λ(T )

∫
T

β2
i dλ

for some constant βi.
Furthermore, βi = ∇wih, where wih is affine on T with nodal values wih(ai) = d(vih, b̂ijk) and

wih(ai±1) = −d(vi±1
h , b̂ijk).

Given a function w affine on T it holds (cf. (1.12))∫
T

|∇w|2dλ = −
∑
i,j=0
i<j

(w(ai)− w(aj))
2

∫
T

∇φi,Th ∇φj,Th dλ (2.18)

Hence, one obtains∫
Ti

β2
i dλ =

λ(Ti)

λ(T )

∫
T

|∇wih|2dλ

= −
[
d2(vih, v

i+1
h )

∫
T

∇φi,Th ∇φi+1,T
h dλ+ d2(vi+1

h , vi+2
h )

∫
T

∇φi+1,T
h ∇φi+2,T

h dλ

+d2(vih, v
i+2
h )

∫
T

∇φi,Th ∇φi+2,T
h dλ

]
· λ(Ti)/λ(T ), i ∈ {0, 1, 2},

which completes the proof, since λ(T0 ∪ T1 ∪ T2) ≤ λ(T ). �

2.3.4 Convergence

In what follows, we will consider a sequence of successively refined, regular triangulations
Th and ask for the convergence of the resulting discrete harmonic maps uh ∈ VN(g) to
the solution u of the continuous problem for h → 0. For simplicity we here restrict to
homogeneously refined meshes, i.e. we assume

min
T∈Th

h(T ) ≥ c max
T∈Th

h(T )

with h(T ) = diam(T ). As in Subsection 1.3.3 we generate the sequence of triangulation
applying an iterative subdivision of triangles into four congruent triangles and we will use a
generic constant C.

Theorem 2.39 Let ūh be the solution to the discrete nonlinear Dirichlet problem for a map
g as described above and let Jh : V̄ h

N(g) → VN(g) be the mapping defined in Section 2.3.3.
Then

lim
h→0

EN(uh) = EN(u). (2.19)
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The proof works out in a similar way as the proof of Theorem 1.19. For the readers conve-
nience let us recall that Si is the patch for the vertex xi (cf. Definition 1.20) and that Ih
denotes the Clement operator (cf. Definition 1.21). Furthermore, for the proof of Theorem
2.39 we need the following lemma.

Lemma 2.40 Let v be a Hölder continuous function on D̄ and let δh < 1 with δh ↘ 0 for
h→ 0 be given. Then there is a constant CI > 0 independent of h such that

|Ih(
1

1− δh
v(x))− 1

1− δh
v(x)| ≤ CI · hα, ∀x ∈ D̄.

Proof: This result is a consequence of Lemma 1.22 using the fact that the local L2-projection
phi of 1

1−δh
v|Si

on Si is 1
1−δh

· pi and that 1
1−δh

is bounded from above for all h by a constant
c. �

Proof of Theorem 2.39:
For simplicity, we will assume that the length of all edges of the tree is equal to one.
With similar arguments as used in Section 2.1.2 one can show that for any map v : D → N
with finite energy in the sense of Korevaar/Schoen (cf. [KS93]) it holds

EN(v) =
n∑
i=1

∫
D

|∇vi(x)|2dλ(x)

with vi being the projections of v. Thus, from Corollary 2.27, from the Lipschitz continuity
of g on ∂D and from [Ser94] it follows that the solution to the nonlinear Dirichlet problem
u is Hölder continuous on D̄ with α > log4 3.
In the sequel, we will denote the Hölder constant of the map u by Cα. Now, we define

N i
0 := {x ∈ D : u(x) = e−i }

and
N i,h

0 := {y ∈ D : dist(y,N i
0) ≤ γ · h}

for a constant γ > 0. Then (for sufficiently small h)

1

1− δh

(
(πi(u)− δh)

+
)
(x) = 0 ∀x ∈ N i,h

0

holds for all i ∈ {1, . . . , n} with δh := Cαγ
α · hα.

By this construction, we ensure that the regions where u ≡ e−i are fat strips which are of the
minimal width γ · h. Hence, choosing γ large enough we are able to avoid an interference of
the involved local L2 projections in the construction of a comparison function.
For each i ∈ {1, . . . , n} we define Iδh,i(u) := Ih( 1

1−δh
((πi(u)− δh)

+)). It holds

||Iδh,i(u)−
1

1− δh
((πi(u)− δh)

+)||1,2 = ν(h)
h→0−→ 0 ∀i ∈ {1, . . . , n}
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(cf. [Cle75] and Corollary 2.27). Moreover, one has∣∣∣∣∫
D

|∇(
1

1− δh
((πi(u)− δh)

+))|2dλ−
∫
D

|∇(πi(u))|2dλ
∣∣∣∣→ 0 h→ 0.

Thus, it follows ∫
D

|∇(Iδh,i(u))|2dλ ≤
∫
D

|∇(πi(u))|2dλ+ β(h) (2.20)

where β(h) is converging to 0 for h→ 0.

Observe that the functions 1
1−δh

((πi(u) − δh)
+), 1 ≤ i ≤ n, are Hölder continuous with the

same Hölder coefficient α as u and the Hölder constant 1
1−δh

·Cα. Hence, according to Lemma

2.40, the following inequalities hold for each i ∈ {1, . . . , n}, x, y ∈ T :

|Iδh,i(u)(x)− Iδh,i(u)(y)| ≤ |Iδh,i(u)(x)−
1

1− δh
((πi(u)− δh)

+)(x)|

+| 1

1− δh
((πi(u)− δh)

+)(x)− 1

1− δh
((πi(u)− δh)

+)(y)|

+| 1

1− δh
((πi(u)− δh)

+)(y)− Iδh,i(u)(y)|

≤ (2CI +
1

1− δh
· Cα) · hα

and

|Iδh,i(u)(x)− (πi(u))(y)| ≤ |Iδh,i(u)(x)− Iδh,i(u)(y)|

+|Iδh,i(u)(y)−
1

1− δh
((πi(u)− δh)

+)(y)|

+| 1

1− δh
((πi(u)− δh)

+)(y)− (πi(u))(y)|

≤ |Iδh,i(u)(x)− Iδh,i(u)(y)|+ (CI +
1

1− δh
· Cαγα)hα

as well as

|(πi(u))(x)− (πi(u))(y)| ≤ |(πi(u))(x)− Iδh,i(u)(x)|+ |Iδh,i(u)(x)− Iδh,i(u)(y)|
+|Iδh,i(u)(y)− (πi(u))(y)|

≤ |Iδh,i(u)(x)− Iδh,i(u)(y)|+ C · hα.

(Notice that 1
1−δh

is bounded from above for all h sufficiently small).

By means of Iδh,i(u) one can now introduce a piecewise affine function ξhi on D̄, which
obeys the imposed boundary conditions on the nodes. Thus, we define its nodal values:

ξhi (xj) :=

{
Iδh,i(u)(xj), if xj 6∈ ∂D
(πi(u))(xj), if xj ∈ ∂D
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for all xj ∈ Nh.

With similar arguments as in the proof of Theorem 1.19 we can show

∫
D

|∇ξhi |2dλ =
∑
T∈Th

∫
T

|∇ξhi |2dλ ≤
∑
T∈Th

∫
T

|∇(Iδh,i(u))|2dλ+ η(h) (2.21)

for all i ∈ {1, . . . , n} with η(h) → 0 as h→ 0.

Using the functions ξhi our aim is now to construct a map v̄h ∈ V̄ h
N(g). For this purpose,

we will use the fact that the functions Iδh,i(u) are not interfering with each other and that

ξhi (x) = (πi(g))(x) for all x ∈ N ∂
h . We define the map v̄h ∈ V̄ h

N(g) by

v̄h(x) :=


(j, ξhj (x)), if ∃ j ∈ {1, . . . , n} : 0 < ξhj (x) < 1

e+j ,
if ξhk (x) ∈ {0, 1} ∀k, ξhk (x) = 1 ∀k < j, k ∼ j

and ξhk (x) = 0 ∀k > j, k ∼ j
o, otherwise

for all x ∈ Nh. We observe that this definition is not ambiguous. Indeed, by construction
there is at most one j with 0 < ξhj (x) < 1.

Due to (1.12), the discrete nonlinear energy EhN(w̄h) of a map w̄h ∈ V̄ h
N(g) can be written as

EhN(w̄h) =
∑
T∈Th

−1

2

∑
xi,xj∈Nh

d2(w̄h(xi), w̄h(xj))

∫
T

∇φi,Th ∇φj,Th dλ︸ ︷︷ ︸
:=Eh

T (w̄h)

.

To obtain an estimate of the discrete nonlinear energy of v̄h we have to investigate Eh
T (v̄h)

for all T ∈ Th. Let us denote by Hh the set of all triangles T ∈ Th which have two vertices
x, y of T such that v̄h(x) ∈ ãi and v̄h(y) ∈ ãj for any i, j ∈ {1, . . . , n} with i 6= j. Due
to our assumption on g, the chosen iterative subdivision, and γ large enough we know that
#Hh ≤ C independent of h. We observe

Eh
T (v̄h) ≤

{ ∑n
i=1

∫
T
|∇ξhi |2dλ, if T ∈ Th\Hh

2 ·
∑n

i=1

∫
T
|∇ξhi |2dλ, if T ∈ Hh,

leading to

EhN(v̄h) ≤
n∑
i=1

∑
T∈Th

∫
T

|∇ξhi |2dλ+
n∑
i=1

∑
T∈Hh

∫
T

|∇ξhi |2dλ. (2.22)
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Furthermore, we observe that EhN(ūh) ≤ EhN(v̄h) because ūh is the minimizer of the discrete
nonlinear energy EhN . Hence, it follows

EN(uh)
(2.15)

≤ EhN(ūh) +Rg,D

≤ EhN(v̄h) +Rg,D

(2.22)

≤
n∑
i=1

∫
D

|∇ξhi |2dλ+
n∑
i=1

∑
T∈Hh

∫
T

|∇ξhi |2dλ+Rg,D

(2.21)

≤
n∑
i=1

∫
D

|∇(Iδh,i(u))|2dλ+
n∑
i=1

∑
T∈Hh

∫
T

|∇ξhi |2dλ+ η(h) +Rg,D

(2.20)

≤
n∑
i=1

∫
M

|∇(πi(u))|2dλ+ θ(h)

(2.12)
= EN(u) + θ(h)

where

θ(h) :=
n∑
i=1

∑
T∈Hh

∫
T

|∇ξhi |2dλ+ η(h) + β(h).

Obviously, θ(h) → 0 as h→ 0. This yields the desired result limh→0 EN(uh) = EN(u). �

Corollary 2.41 For h → 0 the discrete finite element solutions uh converge in L2 to the
solution u of the continuous nonlinear Dirichlet problem.

Proof: Given v0, v1 ∈ VN(g) let vt be the geodesic connecting v0 and v1. Using the arguments
from the proof Theorem 1.7 one can show

EN(vt) ≤ (1− t)EN(v0) + tEN(v1)− (1− t)tλD · d2
2(v, ṽ) (2.23)

with λD > 0. Now, let uh,t be the geodesic connecting u and uh. Then the last inequality
yields

EN(u) ≤ EN(uh, 1
2
) ≤ 1

2
EN(u) +

1

2
EN(uh)−

1

4
λDd

2
2(u, uh),

and, thus,

1

2
λDd

2
2(u, uh) ≤ EN(uh)− EN(u).

Hence, the claimed convergence follows from Theorem 2.39. �

Now, we will present a couple of numerical results for the following tree (see Figure 2.10).
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Figure 2.10: Finite Tree with 5 Edges and and 2 Branchpoints

Let us repeat that a point of the tree is described by a colour which represents an edge and
a height which is the distance from the root. The vertices of the tree are described by the
black colour.

Figure 2.11 shows the numerical results for different boundary data and Figure 2.12 depicts
a couple of intermediate results corresponding to different iteration steps of our numerical
method.

Figure 2.11: We depict various discrete harmonic maps vh ∈ VN(g) for different boundary
data g
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Figure 2.12: For different steps of our relaxation scheme we show intermediate results (from
left to right and from top to bottom the steps 0, 1, 5, 10, 50, 250 are displayed)

2.4 Proof of Theorem 2.7

For the proof of Theorem 2.7 we need a couple of preliminary lemmata. Without restrictions,
we assume that the length of all edges of the tree N is equal to one.

Lemma 2.42 For all u, v ∈ Db
loc(E) such that u · v = 0 one has

lim
t→0

1

t

[∫
Du

∫
Dv

ϕ(x)u(x)v(y)pt(x, dy)m(dx)

+

∫
Dv

∫
Du

ϕ(x)u(y)v(x)pt(x, dy)m(dx)

]
= 0 ∀ϕ ∈ Cc(M) (2.24)

with Du := {x ∈M : u(x) 6= 0} and Dv := {x ∈M : v(x) 6= 0}.

Proof: Lemma 2.5 leads to

lim
t→0

1

t

∫
M

∫
M

ϕ(x)[−u(y)v(x)− u(x)v(y)]pt(x, dy)m(dx) = 0 ∀ϕ ∈ Cc(M)

or, equivalently,

lim
t→0

1

t

[
−
∫
Du

∫
Dv

ϕ(x)u(x)v(y)pt(x, dy)m(dx)

−
∫
Dv

∫
Du

ϕ(x)u(y)v(x)pt(x, dy)m(dx)

]
= 0 ∀ϕ ∈ Cc(M) (2.25)

�
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Lemma 2.43 Let v ∈ D(EN) be given. Defining Di = v−1(ãi), i = 1, . . . , n, it holds for any
measurable bounded function u

ξ(ai, aj) > 0 ⇒ lim
t→0

1

t

∫
Di

∫
Dj

ϕ(x)u(x)pt(x, dy)m(dx) = 0. (2.26)

Proof: This follows from Proposition 2.6. �

Lemma 2.44 Let v ∈ D(EN) be given. For two projections vi, vj of v such that i ∼ j, i < j
one has

lim
t→0

1

t

[∫
Di

∫
Dj

ϕ(x)(1− vi(x))vj(y)pt(x, dy)m(dx)

+

∫
Dj

∫
Di

ϕ(x)(1− vi(y))vj(x)pt(x, dy)m(dx)

]
= 0 ∀ϕ ∈ Cc(M)

with Di := v−1(ãi), Dj := v−1(ãj).

Proof: With Dl := v−1(ãl), l ∈ {1, . . . , n} we define

A := ∪Dl with l 6∼ i or l ∼ i, l < i

B := ∪Dl with i < l < j, l ∼ j or l ∼ i, l 6∼ j

C := ∪Dl with j < l, l ∼ j.

Then A∪Di∪B∪Dj∪C is a disjoint decomposition of M and one obtains for any ϕ ∈ Cc(M)

1

t

∫
M

∫
M

ϕ(x)(vi(x)− vi(y)) · (vj(x)− vj(y))pt(x, dy)m(dx)

=
1

t

∫
A

∫
Dj

ϕ(x)vj(y)pt(x, dy)m(dx) +
1

t

∫
A

∫
C

ϕ(x)pt(x, dy)m(dx)

+
1

t

∫
Di

∫
Dj

ϕ(x)(1− vi(x))vj(y)pt(x, dy)m(dx)

+
1

t

∫
Di

∫
C

ϕ(x)(1− vi(x))pt(x, dy)m(dx)

+
1

t

∫
Dj

∫
A

ϕ(x)vj(x)pt(x, dy)m(dx) +
1

t

∫
C

∫
A

ϕ(x)pt(x, dy)m(dx)

+
1

t

∫
Dj

∫
Di

ϕ(x)(1− vi(y))vj(x)pt(x, dy)m(dx)

+
1

t

∫
C

∫
Di

ϕ(x)(1− vi(y))pt(x, dy)m(dx).
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Lemma 2.43 and Lemma 2.5 yield

0 = lim
t→0

1

t

∫
M

∫
M

ϕ(x)(vi(x)− vi(y)) · (vj(x)− vj(y))pt(x, dy)m(dx)

= lim
t→0

1

t

[∫
Di

∫
Dj

ϕ(x)(1− vi(x))vj(y)pt(x, dy)m(dx)

+

∫
Dj

∫
Di

ϕ(x)(1− vi(y))vj(x)pt(x, dy)m(dx)

]
.

�

Lemma 2.45 Let v ∈ D(EN) be given. For two projections vi, vj of v such that i 6∼ j one
has

lim
t→0

1

t

[∫
Di

∫
Dj

ϕ(x)vi(x)vj(y)pt(x, dy)m(dx) +

∫
Dj

∫
Di

ϕ(x)vi(y)vj(x)pt(x, dy)m(dx)

]
= 0

for all ϕ ∈ Cc(M) with Di := v−1(ãi), Dj := v−1(ãj).

Proof: This follows from Lemma 2.42, Di ⊂ Dvi
, Dj ⊂ Dvj

and vi ≥ 0, vj ≥ 0. �

Proof of Theorem 2.7:

In the sequel, we define for measurable maps v : M → N resp. measurable functions
v : M → IR for all t > 0 and for any ϕ ∈ Cc(M)

Eϕ
t (v) =

1

2t

∫
M

∫
M

ϕ(x)d2(v(x), v(y))pt(x, dy)m(dx)

resp.

Eϕ
t (v) =

1

2t

∫
M

∫
M

ϕ(x)|v(x)− v(y)|2pt(x, dy)m(dx).

Lemma 2.16 yields for a measurable map v : M → N

d(v(x), v(y)) =


|vi(x)− vi(y)|, if x, y ∈ Di

1− vi(x) + vj(y) + ξ(ai, aj), if x ∈ Di, y ∈ Dj, j ∼ i, j > i
1− vj(y) + vi(x) + ξ(ai, aj), if x ∈ Di, y ∈ Dj, j ∼ i, j < i
vi(x) + vj(y) + ξ(ai, aj), if x ∈ Di, y ∈ Dj, j 6∼ i

with Di := v−1(ãi), i ∈ {1, . . . , n}.
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Thus, for a measurable map v ∈ D(EN) one has

Eϕ
t (v) =

1

2t

n∑
i=1

[∫
Di

∫
Di

ϕ(x)|vi(x)− vi(y)|2pt(x, dy)m(dx)

+
∑
i6∼j

∫
Di

∫
Dj

ϕ(x)|ξ(ai, aj) + vj(y) + vi(x)|2pt(x, dy)m(dx)

+
∑
j<i
i∼j

∫
Di

∫
Dj

ϕ(x)|ξ(ai, aj) + 1− vj(y) + vi(x)|2pt(x, dy)m(dx)

+
∑
j>i
i∼j

∫
Di

∫
Dj

ϕ(x)|ξ(ai, aj) + 1− vi(x) + vj(y)|2pt(x, dy)m(dx)

]

=
1

2t

[
n∑
i=1

∫
Di

∫
Di

ϕ(x)|vi(x)− vi(y)|2pt(x, dy)m(dx)

+
n∑
i=1

∑
i6∼j

∫
Di

∫
Dj

ϕ(x)[v2
i (x) + v2

j (y) + ξ2(ai, aj) + 2vi(x)ξ(ai, aj)

+2vj(y)ξ(ai, aj) + 2vi(x)vj(y)]pt(x, dy)m(dx)

+
n∑
i=1

∑
j<i
i∼j

∫
Di

∫
Dj

ϕ(x)[1 + ξ2(ai, aj) + v2
j (y) + v2

i (x)

−2vj(y) + 2vi(x) + 2ξ(ai, aj)− 2vj(y)vi(x)

−2vj(y)ξ(ai, aj) + 2vi(x)ξ(ai, aj)]pt(x, dy)m(dx)

+
n∑
i=1

∑
j>i
i∼j

∫
Di

∫
Dj

ϕ(x)[1 + ξ2(ai, aj) + v2
j (y) + v2

i (x)

+2vj(y)− 2vi(x) + 2ξ(ai, aj)− 2vj(y)vi(x)

+2vj(y)ξ(ai, aj)− 2vi(x)ξ(ai, aj)]pt(x, dy)m(dx)

]
.

Using Lemma 2.43 it follows

lim sup
t→0

Eϕ
t (v) = lim sup

t→0

1

2t

[
n∑
i=1

∫
Di

∫
Di

ϕ(x)|vi(x)− vi(y)|2pt(x, dy)m(dx)

+
n∑
i=1

∑
i6∼j

∫
Di

∫
Dj

ϕ(x)[v2
i (x) + v2

j (y) + 2vi(x)vj(y)]pt(x, dy)m(dx)

+
n∑
i=1

∑
j<i
i∼j

∫
Di

∫
Dj

ϕ(x)[1 + v2
j (y) + v2

i (x)

−2vj(y) + 2vi(x)(1− vj(y))]pt(x, dy)m(dx)
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+
n∑
i=1

∑
j>i
i∼j

∫
Di

∫
Dj

ϕ(x)[1 + v2
j (y) + v2

i (x)

−2vi(x) + 2vj(y)(1− vi(x))]pt(x, dy)m(dx)

]

and with Lemma 2.44 and Lemma 2.45 one obtains

lim sup
t→0

Eϕ
t (v) = lim sup

t→0

1

2t

[
n∑
i=1

∫
Di

∫
Di

ϕ(x)|vi(x)− vi(y)|2pt(x, dy)m(dx)

+
n∑
i=1

∑
i6∼j

∫
Di

∫
Dj

ϕ(x)[v2
i (x) + v2

j (y)]pt(x, dy)m(dx)

+
n∑
i=1

∑
j<i
i∼j

∫
Di

∫
Dj

ϕ(x)[|1− vj(y)|2 + v2
i (x)]pt(x, dy)m(dx)

+
n∑
i=1

∑
j>i
i∼j

∫
Di

∫
Dj

ϕ(x)[|1− vi(x)|2 + v2
j (y)]pt(x, dy)m(dx)

]
.

Furthermore, for a projection vi of a map v ∈ D(EN) one has

Eϕ
t (vi) =

1

2t

∫
Di

∫
Di

ϕ(x)|vi(x)− vi(y)|2pt(x, dy)m(dx)

+
1

2t

[∑
i6∼k

∫
Di

∫
Dk

ϕ(x)v2
i (x)pt(x, dy)m(dx)

+
∑
k<i
i∼k

∫
Di

∫
Dk

ϕ(x)v2
i (x)pt(x, dy)m(dx)

+
∑
k>i
i∼k

∫
Di

∫
Dk

ϕ(x)|1− vi(x)|2pt(x, dy)m(dx)

+
∑
i6∼k

∫
Dk

∫
Di

ϕ(x)v2
i (y)pt(x, dy)m(dx)

+
∑
k<i
i∼k

∫
Dk

∫
Di

ϕ(x)v2
i (y)pt(x, dy)m(dx)

+
∑
k>i
i∼k

∫
Dk

∫
Di

ϕ(x)|1− vi(y)|2pt(x, dy)m(dx)

 .



Trees 77

Hence,

n∑
i=1

lim
t→0

Eϕ
t (vi) = lim

t→0
Eϕ
t (v)

which yields

EN(v) = sup
ϕ∈Cc(M)
0≤ϕ≤1

lim sup
t→0

Eϕ
t (v) = sup

ϕ∈Cc(M)
0≤ϕ≤1

lim
t→0

Eϕ
t (v)

= sup
ϕ∈Cc(M)
0≤ϕ≤1

n∑
i=1

lim
t→0

Eϕ
t (vi) = sup

ϕ∈Cc(M)
0≤ϕ≤1

n∑
i=1

∫
M

ϕ(x)µ<vi>(dx).

Assuming that vi ∈ Db
loc(E),∀i ∈ {1, . . . , n}, and that condition (2.4) holds one can prove

the inverse implication in the same way (because of Lemma 2.5 and Lemma 2.42 and because
of the fact that Lemma 2.44 and 2.45 still hold). �

2.5 Generalizations to Trees with a Countable Number

of Edges

In this section, we will generalize the definition of the nonlinear energy to the case where
(N, d) is a metric tree with a countable number of edges which are all isometric to closed
intervals of IR. Let us denote by A = {ai, i ∈ IN} the set of edges of N . As in Definition 2.3
we define projections πi : N → [0, d(e−i , e

+
i )], i ∈ IN, and to each measurable map v : M → N

we associate a family of functions vi : M → [0, d(e−i , e
+
i )], i ∈ IN, defined by

vi := πi ◦ v ∀i ∈ IN.

There exists a sequence (Nk, d)k≥0 of connected finite subtrees of (N, d) withNk ⊂ Nk+1,∀k ≥
0, such that Nk → N, k →∞. We denote the set of edges of Nk by Ak = {ai, i ∈ Ik ⊂ IN}.
Given a measurable map v : M → N we define maps vNk

: M → Nk, k ≥ 0, by

vNk
(x) :=

{
v(x), if v(x) ∈ Nk

argminy∈Nk
d(y, v(x)), if v(x) 6∈ Nk.

For each k ≥ 0 let us denote the projections of Nk by πk,i, i ∈ Ik, and for each measurable
map v : M → N we define for all i ∈ Ik

vk,i := πk,i ◦ vNk
.

Lemma 2.46 For each k ≥ 0 and for each measurable map v : M → N it holds vk,i =
vi,∀i ∈ Ik.

Definition 2.47 Denoting the nonlinear energy function for maps with values in Nk by ENk

we define for measurable maps v : M → N the energy function EN by

EN(v) := lim
k→∞

ENk
(vNk

)

with D(EN) := {v : M → N measurable : vNk
∈ D(ENk

),∀k ≥ 0, and EN(v) <∞}.
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Theorem 2.48 For each map v : M → N the condition v ∈ D(EN) is equivalent to

vi ∈ Db
loc(E),∀i ∈ IN,

∑
i∈IN

µ<vi>(M) <∞ (2.27)

and

lim
t→0

1

t

∫
v−1(ãi)

∫
v−1(ãj)

ϕ(x)pt(x, dy)m(dx) = 0 (2.28)

for all ai, aj ∈ A with ξ(ai, aj) > 0 and for all ϕ ∈ Cc(M). In this situation, for each
v ∈ D(EN) the following equality hold

EN(v) =
∑
i∈IN

µ<vi>(M).

Proof: Let v ∈ D(EN) be given. Then it follows from Theorem 2.7 for all k ≥ 0 that
vi = vk,i ∈ Db

loc(E) and (2.4) holds for all vertices in Ak. Furthermore, one has∑
i∈IN

µ<vi>(M) ≤ EN(v).

Given a map v : M → N such that (2.27) and (2.28) are fulfilled for all k ≥ 0 it holds
vNk

∈ D(ENk
) and

ENk
(vNk

) =
∑
i∈Ik

µ<vi>(M)

and by Definition 2.47 one obtains

EN(v) =
∑
i∈IN

µ<vi>(M).

�

Remark 2.49 As before, one can show that our definition of nonlinear energy coincides with
the energy introduced in [Pic04]. Hence, one can define again the corresponding nonlinear
Dirichlet problem and transfer Theorem 2.30.



Chapter 3

Graphs

In this chapter, we study graph targets. Let (M,m) be a compact measure space with uni-
versal cover M̃ and with a local regular Dirichlet form E on L2(M̃, m̃) given by a semigroup
of Markov kernels pt. Furthermore, let (N, d) be a graph with a finite number of edges.
Before we define a nonlinear energy for measurable maps v : M → N equivariant mapping
problems are studied. This is motivated by the fact, that any continuous map v : M → N
lifts to a equivariant map ṽ : M̃ → Ñ , whereby the universal cover Ñ of the graph N is a
tree with a countable number of edges.
Given an equivariant map ṽ : M̃ → Ñ we say that two projections ṽi and ṽj are equivalent
(ṽi ∼ ṽj) if there is an element γ of the group of covering transformations of M̃ such that
ṽi = ṽj ◦ γ. This yields an equivalence relation on the set of all projections IF(ṽ) and the
nonlinear energy is defined by

EÑ(ṽ) :=
∑

ṽi∈IF(ṽ)/∼

µ<ṽi>(M̃)

whereby µ<ṽi> is the energy measure of ṽi.
One of the important issues is that for any fundamental domain M0 of M , in M̃ , such that
M̄0 is compact and ∂M0 has measure zero it holds

EÑ(ṽ) =
∑
i∈IN

µ<ṽi>(M0).

Therefore, the nonlinear energy function EN for a map v : M → N which is the projection
of an equivariant map ṽ : M̃ → Ñ is defined by

EN(v) := EÑ(ṽ).

Furthermore, conditions for the existence and uniqueness of a solution to the corresponding
nonlinear Dirichlet problem are given.
The analysis of homotopy problems is another major point of this chapter. For particular
domain spaces M the existence of a minimizer of the nonlinear energy in a given homotopy
class is shown.

79
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Throughout this chapter, M will be a path connected and locally simply connected topo-
logical compact space with universal cover M̃ . Let M and M̃ be the Borel σ-fields on M
and M̃ , resp., and let m be a finite measure on (M,M). In the sequel, we denote by m̃
the lift of the measure m to (M̃,M̃), by GM the group of covering transformations and by
ϕM : M̃ →M the covering map. We choose, once for all, base points z̃ in M̃ and z ∈ ϕM(z̃)
in M . The fundamental group π1(M, z) of M is canonically isomorphic to GM and the sets
in M̃ can be identified with the GM -invariant sets in M̃ .
We assume that there is a fundamental domain M0 for M , in M̃ , such that M̄0 is compact
and ∂M0 has measure zero. Moreover, let (E ,D(E)) be a regular Dirichlet form on L2(M̃, m̃)
with

(A1) (E ,D(E)) is local, that is, v, w ∈ D(E), supp[v] and supp[w] are compact, v ≡ 0 on a
neighbourhood of supp[w] ⇒ E(v, w) = 0.

(A2) The semigroup (Tt)t≥0 corresponding to the Dirichlet form (E ,D(E)) is given by a
semigroup of Markov kernels pt(x, dy) on M̃ .

(A3) It holds pt(x, dy)m̃(dx) � m̃(dy)m̃(dx) ∀t > 0
and pt(γx,A) = pt(x, γ

−1A) ∀x ∈ M̃,A ∈ M̃, γ ∈ GM .

(A4) For all u ∈ Dloc(E) the energy measure µ<u> has a density Γ(u).

Remark 3.1

(i) The conditions (A1) and (A2) yield that the Dirichlet form (E ,D(E)) is also strongly
local (cf. Appendix A.1).

(ii) Condition (A3) yields for the measure pt × m̃ := pt(x, dy)m̃(dx) defined on M̃ × M̃

pt × m̃ = γ(pt × m̃) ∀γ ∈ GM . (3.1)

Furthermore, let (N, d) be a finite graph. This means N consists of a finite number of edges,
which are isometric to closed intervals of IR, glued together at some endpoints, such that N
is a connected space, possibly with loops (see e.g. Figure 3.1).

We have the following proposition:

Proposition 3.2 Let (N, d) be a finite graph. Then its universal cover (Ñ , d̃) is a tree with
a countable number of edges and each edge is isometric to a closed interval of IR.
The fundamental group π1(N) of (N, d) is canonically isomorphic to the group of covering
transformations GN which acts properly discontinuously on Ñ , i.e. each point z ∈ Ñ has a
neighborhood Ñ0 such that Ñ0 ∩ ηÑ0 = ∅ for all η ∈ GN\{1}. The space N can be identified
with Ñ/GN . Then the covering map ϕ : Ñ → N is given by ϕN(x) = GNx.
The group GN is a subgroup of isom(Ñ), i.e. d̃(ηx, ηy) = d̃(x, y) for all x, y ∈ Ñ and
η ∈ GN .

Proof: For the first assertion, see Corollary 2.3.2 in [Jos97a]. For the topological results, we
refer to [SZ88]. �
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Figure 3.1: Example of a Finite Graph

3.1 Nonlinear Energy for Equivariant Maps

Before we define the nonlinear energy for maps with values in a finite graph let us discuss a
nonlinear energy function for equivariant maps with values in the universal cover of a finite
graph.

Throughout this section, let (N, d) be the universal cover of a finite graph (cf. Figure 3.2).

Figure 3.2: Subset of the Universal Cover of the Graph from Figure 3.1

In the following, we denote the set of edges {ai, i ∈ IN} of N by A and the midpoint of an
edge ai by zi.
We need to define for all edges consistently which is the ”left” vertex e−i and which is the
”right” vertex e+i of any edge ai, i ∈ IN. This in some sense arbitrary, because the tree N
has an infinite number of edges and there is no canonical orientation. Therefore, we choose
any edge ar as reference edge and denote the corresponding two vertices arbitrarily by e−r
and e+r . We define the following sets

Lr := {a ∈ A : e+r 6∈ γx,zr for any x ∈ a}
Rr := {a ∈ A : e−r 6∈ γx,zr for any x ∈ a}

with γx,y being the geodesic between the points x and y.
Now, for any edge ai ∈ Lr we denote the corresponding vertices by e−i and e+i in such a way
that

d(e−i , zr) > d(e+i , zr)
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and for any edge aj ∈ Rr such that

d(e−j , zr) < d(e+j , zr).

Definition 3.3 Given (N, d) we define the function

ξ : A×A → IN

(ai, aj) 7→ ξ(ai, aj),

where ξ(ai, aj) is the number of edges a ∈ A, a 6= ai and a 6= aj with a ⊂ γx,y for some x ∈ ai
and for some y ∈ aj.

Definition 3.4 For each edge ai, i ∈ IN, we define the projection vi of a measurable map
v : M̃ → N by

vi(x) :=


0, if x ∈ v−1(Li)
d(e−i , e

+
i ), if x ∈ v−1(Ri)

d(e−i , v(x)), if x ∈ ai

with

Li := {a ∈ A : a 6= ai and dist(e−i , a) < dist(e+i , a)}
Ri := {a ∈ A : a 6= ai and dist(e−i , a) > dist(e+i , a)}.

In the sequel, we denote by GN the group of covering transformations of N and we fix a
group homomorphism ρ : GM → GN . We will write ρ(γ)x for ρ(γ)(x).

A map v : M̃ → N is said to be ρ-equivariant if

v(γx) = ρ(γ)v(x)

for all x ∈ M̃ and γ ∈ GM .

Definition 3.5 Let ρ : GM → GN be a group homomorphism. For all γ ∈ GM we define
functions ργ : IN → IN such that ρ(γ)x ∈ aργ(i) for any x ∈ ai.

Lemma 3.6 Let v : M̃ → N be a ρ-equivariant measurable map. For all i ∈ IN and for all
γ ∈ GM one has

vi(x) = vργ(i)(γx) ∀x ∈ M̃.
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This lemma leads to the following definition.

Definition 3.7 Let v : M̃ → N be a ρ-equivariant measurable map. We say that two
projections vi and vj of v are related (vi ∼ vj) if there is γ ∈ GM such that vi(x) = vj(γx)
for all x ∈ M̃ .

It is easy to see that for each ρ-equivariant measurable map v : M̃ → N the relation ∼ is an
equivalence relation on the set of all projections.

Definition 3.8 Let us denote the set of all projections vi, i ∈ IN, of a ρ-equivariant measur-
able map v by IF(v). Then we define

Π(v) := IF(v)/∼.

Since N is the universal cover of a finite graph and ρ : GM → GN is a group homomorphism,
it holds #Π(v) <∞.

In the next lemma, we will analyze the energy of equivalent projections.

Lemma 3.9 Let v : M̃ → N be a ρ-equivariant measurable map. Assume there is a pro-
jection vi with vi ∈ Dloc(E). It holds for all projections vj equivalent w.r.t the relation ∼ to
vi

vj ∈ Dloc(E)

and

µ<vj> = γ(µ<vi>)

with γ ∈ GM such that vi(x) = vj(γx).

Proof: In the sequel, let us denote by Cc(M̃) the set of all continuous functions on M̃ with
compact support. Given φ ∈ Cc(M̃) one has∫

M̃

∫
M̃

φ(x)|vj(x)− vj(y)|2pt(x, dy)m̃(dx)

(3.1)
=

∫
M̃

∫
M̃

φ(x)|vj(x)− vj(y)|2γ(pt × m̃)(dx, dy)

=

∫
M̃

∫
M̃

φ(γx)|vj(γx)− vj(γy)|2pt(x, dy)m̃(dx)

=

∫
M̃

∫
M̃

φ(γx)|vi(x)− vi(y)|2pt(x, dy)m̃(dx).

Hence, (cf. [BM95])∫
M̃

φ(x)µ<vj>(dx) =

∫
M̃

φ(γx)µ<vi>(dx)

=

∫
M̃

φ(x)γ(µ<vi>)(dx) ∀φ ∈ Cc(M̃)
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which leads to

µ<vj> = γ(µ<vi>).

�
Motivated by the analysis of the nonlinear energy for maps with values in finite trees, we
present the following definition of a nonlinear energy function for ρ-equivariant measurable
maps:

Definition 3.10 Let v : M̃ → N be a ρ-equivariant measurable map. If all projections vi
are in Db

loc(E) (for the definition of Db
loc(E) see Chapter 2) and if

lim
t→0

1

t

∫
v−1(ai)

∫
v−1(aj)

φ(x)pt(x, dy)m̃(dx) = 0 (3.2)

for all ai, aj ∈ A with ξ(ai, aj) > 0 and for all φ ∈ Cc(M̃) holds we define the nonlinear
energy function EρN by

EρN(v) :=
∑

vi∈Π(v)

µ<vi>(M̃) <∞.

For all other ρ-equivariant measurable maps v we set

EρN(v) := ∞.

Thus, we define D(EρN) := {v : M → N ρ-equivariant, measurable : vi ∈ Db
loc, (3.2) holds}.

The nonlinear energy defined above has the following property:

Theorem 3.11 Let v ∈ D(EρN) be given and let M0 be any fundamental domain for M , in
M̃ , such that M̄0 is compact and ∂M0 has measure zero. Then one has

EρN(v) =
∑
i∈IN

µ<vi>(M0). (3.3)

On the other hand, if v is a ρ-equivariant measurable map, such that vi ∈ Dloc(E),∀i ∈ IN,
condition (3.2) and ∑

i∈IN

µ<vi>(M0) <∞

hold, one can deduce v ∈ D(EρN).

Proof: For each equivalence class in Π(v) let us choose a representative vi, i ∈ I, with
I = {1, . . . ,#Π(v)}. Defining Di := v−1

i ((0, 1)) one has (cf. [BH91])

µ<vi>(M̃) = µ<vi>(Di).
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For i ∈ I and γ ∈ GM we define the sets Gi
γ ⊂M0 by

Gi
γ := γ−1(γM0 ∩Di).

This yields a family of disjoint subset of M0. It holds for fixed i ∈ I

µ<vi>(Di) = µ<vi>(
⋃̇

γ∈GM

γM0 ∩Di)

=
∑
γ∈GM

µ<vi>(γM0 ∩Di)

=
∑
γ∈GM

γ−1µ<vργ (i)>(γM0 ∩Di)

=
∑
γ∈GM

µ<vργ (i)>(Gi
γ)

Furthermore, one has

µ<vργ (i)>(Gi
γ) = γ−1µ<vργ (i)>(γM0 ∩Di)

= µ<vi>(γM0 ∩Di)

= µ<vi>(γM0)

= γµ<vi>(M0)

= µ<vργ (i)>(M0)

Hence,

µ<vi>(M̃) = µ<vi>(Di)

=
∑
γ∈GM

µ<vργ (i)>(Gi
γ)

=
∑
γ∈GM

µ<vργ (i)>(M0)

and

EρN(v) =
∑
i∈I

µ<vi>(M̃)

=
∑
i∈I

∑
γ∈GM

µ<vργ (i)>(M0).

We still have to prove ∑
i∈I

∑
γ∈GM

µ<vργ (i)>(M0) =
∑
j∈IN

µ<vj>(M0). (3.4)
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Let vj be a projection with µ<vj>(M0) > 0 and let vi be the representative chosen above
with vi ∼ vj, i.e. there is γ ∈ GM with vi(x) = vj(γx). One has γM0 ∩Di 6= ∅ and

µ<vj>(M0) = γµ<vi>(M0)

= µ<vi>(γM0)

= µ<vi>(γM0 ∩Di)

= γ−1µ<vργ (i)>(γM0 ∩Di)

= µ<vργ (i)>(Gi
γ)

= µ<vργ (i)>(M0)

which yields equation (3.4).

On the other hand, from vi ∈ Dloc(E),∀i ∈ IN, (3.2) holds and∑
i∈IN

µ<vi>(M0) <∞

one can deduce in the same way vi ∈ Db
loc(E) and∑

vi∈Π(v)

µ<vi>(M̃) =
∑
j∈IN

µ<vj>(M0).

�

Remark 3.12 Given v ∈ D(EρN), let M0 and M1 be two different fundamental domains such
that M̄0, M̄1 are compact and ∂M0, ∂M1 has measure zero. Then it holds∑

i∈IN

µ<vi>(M0) =
∑
i∈IN

µ<vi>(M1).

3.1.1 Nonlinear Dirichlet Problem for Equivariant Maps

In this subsection, we define the nonlinear Dirichlet problem for equivariant maps. In the
sequel, let M0 be any fundamental domain for M , in M̃ , with M̄0 compact and ∂M0 has
measure zero.

Definition 3.13 (Nonlinear Dirichlet problem) Let (E ,D(E)) be a regular Dirichlet
form on L2(M̃, m̃) which fulfills the conditions (A1) - (A4). Given a map g ∈ D(EρN) and a
set D with D̄ ( M0, let us define the class of maps

V ρ
N(g) := {v ∈ D(EρN) : ṽ = g̃ quasi everywhere on M0\D}

where ṽ, g̃ denotes quasi-continuous versions of v and g, resp. A map u ∈ V ρ
N(g) is called

solution to the nonlinear Dirichlet problem for g and D whenever

EρN(u) = min
v∈V ρ

N (g)
EρN(v).
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The next result states a sufficient condition for the existence and uniqueness of a solution to
the nonlinear Dirichlet problem.

Theorem 3.14 Let (E ,D(E)) be a regular Dirichlet form on L2(M̃, m̃) which fulfills the
conditions (A1) - (A4) with diffusion Xt. Given a relatively compact open subset D with
dist(D̄, ∂M0) > 0 such that Xt quits D during its lifetime and a ρ-equivariant continuous
map g ∈ D(EρN) there exists a unique (up to modifications) map u ∈ D(EρN) which solves the
nonlinear Dirichlet problem for g and D.

Proof: Since g is continuous and M̄0 is compact it holds g(M̄0) ⊂ Nb where Nb is a finite
subtree of N . Given a map v ∈ V ρ

N(g) with Nb ⊂ v(M0) let vb the projection of v|M0 to Nb.
The map vb can be continued to a ρ-equivariant map vbc (because one changes only values
on D). Obviously, it holds vbc ∈ D(EρN) and

EρN(vbc) ≤ EρN(v)

such that to solve the nonlinear Dirichlet problem one can restrict oneself to the set

V ρ,b
N (g) := {v ∈ D(EρN) : ṽ = g̃ quasi everywhere on M0\D, v(M̄0) ⊂ Nb}.

Now, let gb be the projection of g on Nb. The map gb is defined on M̃ and has values in
the finite tree Nb but this map is not ρ-equivariant anymore. In addition, let ENb

be the
nonlinear energy for maps defined on M̃ with values in the finite tree Nb (see Section 2.1).
One has for a map w ∈ D(ENb

)

ENb
(w) =

l∑
i=1

µ<wi>(M̃)

with l being the number of edges of Nb. From Definition 3.10 it follows

gb ∈ D(ENb
).

We know that there is a solution to the nonlinear Dirichlet form for gb and D (see Section
2.2). Let us denote this solution by ub. It holds

ENb
(ub) =

l∑
i=1

∫
D

Γ((ub)i)dm̃+
l∑

i=1

∫
M0\D

Γ((gb)i)dm̃+
l∑

i=1

∫
M̃\M0

Γ((gb)i)dm̃. (3.5)

One can continue ub|M0 to a ρ-equivariant map u which is in V ρ,b
N (g). One has (cf. Theorem

3.11)

EρN(u) =
l∑

i=1

∫
D

Γ(ui)dm̃+
l∑

i=1

∫
M0\D

Γ(gi)dm̃ (3.6)
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This map u solves the nonlinear Dirichlet problem for g and D.
Assume there is a map w in V ρ,b

N (g) with EρN(w) < EρN(u). Then we define a map wb by

wb :=

{
w, if x ∈M0

gb, otherwise.

This map would be in VNb
(gb) and it would hold (cf. (3.5), (3.6))

ENb
(wb) < ENb

(ub)

which is a contradiction. �

3.2 Nonlinear Energy for Maps with Values in Finite

Graphs

In this section, we define the nonlinear energy for maps with values in a finite graph using
the results of the previous section.

Let (M,M,m) and (N, d) be as described in the introduction of this chapter. Further-
more, we assume that there is a regular Dirichlet form (E ,D(E)) on L2(M̃, m̃) which fulfills
the conditions (A1) - (A4).

Note that each continuous map

v : M → N

induces a homomorphism

v∗ : π1(M, z) → π1(N, g(z))

between fundamental groups by v∗(γ) being the loop t 7→ v(γt) in N with base point v(z)
whenever γ : t 7→ γt is a loop in M with base point z. Equivalently, it can be regarded as
homomorphism v∗ : GM → GN ⊂ isom(N).

Lemma 3.15

(i) For every continuous map v : M → N and every ñ ∈ ϕ−1
N (v(z)) there exists a unique

continuous map ṽ : M̃ → Ñ with

ϕN ◦ ṽ = v ◦ ϕM

and ṽ(z̃) = ñ (”ṽ is the lifting of v”). The map ṽ is v∗-equivariant.

(ii) Let ρ : GM → GN be a group homomorphism. Then every ρ-equivariant map ṽ : M̃ →
Ñ defines a unique map v : M → N (”projection of ṽ”) with v(GMx) = GN ṽ(x) for
all x ∈ M̃ .



Graphs 89

Proof: See [Stu02].

Definition 3.16 Let Ξ be the set of all group homomorphism between GM and GN . Then
we define for each ρ ∈ Ξ

Pρ(M,N) := {v : M → N : v is the projection of a ρ-equivariant measurable map ṽ}

and

P(M,N) :=
⋃
ρ∈Ξ

Pρ(M,N).

Let v ∈ P(M,N) be given. Since GN acts freely on Ñ , there exists a unique ρ ∈ Ξ and a
ρ-equivariant measurable map ṽ : M̃ → Ñ such that v is the projection of ṽ. We define the
nonlinear energy EN of v by

EN(v) := Eρ
Ñ

(ṽ) (3.7)

where Eρ
Ñ

is the nonlinear energy function defined for ρ-equivariant measurable maps with

values in Ñ . In addition, we define D(EN) := {v ∈ P(M,N) : EN(v) <∞}.

3.2.1 Nonlinear Dirichlet Problem

Now, we define the nonlinear Dirichlet problem for maps with values in finite graphs.

Let g ∈ D(EN) be a continuous map. Then the lifting g̃ : M̃ → Ñ is a g∗-equivariant
map. Furthermore, let D be a domain in M . We define the nonlinear Dirichlet problem for
g and D as follows:

Definition 3.17 Given g and D as described above, let us define the class of maps

VN(g) := {v ∈ D(EN) ∩ Pg∗(M,N) : v̂ = ĝ quasi everywhere on M\D}

where v̂, ĝ denote the projection of a quasi-continuous version of ṽ and g̃, resp. A map
u ∈ VN(g) is called solution to the nonlinear Dirichlet problem for g and D whenever

EN(u) = min
v∈VN (g)

EN(v).

The next result states a sufficient condition for the existence and uniqueness of a solution to
the nonlinear Dirichlet problem.

Theorem 3.18 Let g ∈ D(EN) be continuous and let D be a subset of M which fulfills the
following conditions
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1. There is fundamental domain M0 of M , in M̃ , with M̄0 compact and ∂M0 has measure
zero such that D0 := ϕ−1

M (D) ∩M0 is relatively compact and open.

2. It holds dist(D̄0, ∂M0) > 0.

3. The process Xt corresponding to E quits D0 during its lifetime.

Then there exists a unique map u ∈ D(EN)∩Pg∗(M,N) which solves the nonlinear Dirichlet
problem to g and D.
In particular, the three conditions are fulfilled, if D is a simply connected relatively compact
open subset of M such that ϕM(Xt) quits D during its lifetime.

Proof: The claim is a conclusion of Theorem 3.14, Lemma 3.15 (ii) and Equation (3.7). �

3.2.2 Homotopy Problems

Denoting the homotopy class of a continuous map g : M → N by Hom(g) we call a map
u ∈ Hom(g) harmonic if it is a minimizer of the nonlinear energy in this homotopy class.
For particular domain spaces M we will show the existence of harmonic maps.

We start with the following lemma.

Lemma 3.19

(i) Let u : M → N be continuous. Given a map v : M → N homotop to u one has that
the lifting ṽ is u∗-equivariant.

(ii) If ũ and ṽ are continuous ρ-equivariant maps (ρ ∈ Ξ) then the corresponding continuous
projections u and v : M → N are homotop.

Proof: See [Stu02], [KS93].

In the sequel, we will denote the homotopy class of a continuous map g : M → N by Hom(g).

Definition 3.20 We call a map u ∈ Hom(g) harmonic if

EN(u) = min
v∈D(EN )∩Hom(g)

EN(v).

Theorem 3.21 Let M be a connected compact Riemannian manifold with ∂M = ∅ and let
E be the classical Dirichlet form on M̃ given by the Laplace-Beltrami operator.
Given a continuous map g : M → N there exists a map u ∈ Hom(g) which is harmonic and
Lipschitz continuous.
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Before we start with the proof of the theorem let us introduce some notations and definitions
from the work [KS93] of Korevaar/Schoen.

We will say that Ω is a Riemannian domain if it is a connected, open subset of a k-dimensional
Riemannian manifold M having the property that its metric completion Ω̄ is a compact sub-
set of M . Furthermore, let µ be the Riemannian volume measure on M and let (X, d) be an
NPC-space.

Definition 3.22 We define the space L2(Ω, X) as the set of Borel-measurable maps v : Ω →
X for which ∫

Ω

d2(u(x), q)dµ(x) <∞

for some q ∈ X.

The space L2(Ω, X) is a complete metric space, with distance function D defined by

D2(u, v) =

∫
Ω

d2(u(x), v(x))dµ(x).

Definition 3.23 (Nonlinear Energy of Korevaar/Schoen) Let v ∈ L2(Ω, X) be given
and let Cc(Ω) be the set of all continuous maps on Ω with compact support. Then for ε > 0
and f ∈ Cc(Ω) define

Eε,f (v) = ck ·
∫

Ωε

f(x)

∫
S(x,ε)

ε−k−1d2(v(x), v(y)) dσx,ε(y)︸ ︷︷ ︸
eε(x)

dµ(x)

with Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}, S(x, ε) = {y ∈ Ω : |y − x| = ε}, dσx,ε(y) the
(k − 1)-dimensional surface measure on S(x, ε) and

ck =

∫
Sk−1

|x1|2dσ(x)

(where x = (x1, . . . , xk) ∈ IRk and Sk−1 = {|x| = 1}).
The map v has finite (nonlinear) energy (and one writes v ∈ W 1,2(Ω, X)), if

sup
f∈Cc(Ω)
0≤f≤1

(
lim sup
ε→0

Eε,f (v)

)
≡ E(v) <∞.

Now, let ṽ : M̃ → X be a ρ-equivariant map and let M0 be any connected compact fun-
damental domain for M , in M̃ , which boundary has measure zero. In the definition of
Korevaar/Schoen the map ṽ has finite energy if

ṽ ∈ W 1,2(
◦
M0, X)
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Thus, the nonlinear energy of a ρ-equivariant map ṽ : M̃ → X is given by

Eρ(ṽ) := E(ṽ).

For the proof of Theorem 3.21, we will show the following three steps:

1. Let (X, d) be a tree with l edges each with length equal to one. Then for any map

v ∈ W 1,2(
◦
M0, X) it holds

E(v) =
l∑

i=1

∫
M0

|∇vi(x)|2dµ̃(x) (3.8)

with vi, 1 ≤ i ≤ l, being the projections of v and µ̃ the Riemannian volume measure
on M̃ .

2. For the lifting ṽ of any map v ∈ D(EN) ∩Hom(g) it holds

Eg∗(ṽ) = Eg∗
Ñ

(ṽ) = EN(v) <∞.

3. For any g∗-equivariant continuous map ṽ : M̃ → Ñ with Eg∗(ṽ) <∞ one has

EN(v) = Eg∗
Ñ

(ṽ) = Eg∗(ṽ),

i.e. the projection v of the map ṽ is an element of D(EN) ∩Hom(g).

Then the claim follows from Theorem 2.7.1 in [KS93].

Step 1:
Equation (3.8) can be proven with the same arguments used in Subsection 2.1.2 taking into
account the following remark.

Remark 3.24 Let E be the classical Dirichlet form on L2(M̃, µ̃). Then the energy measure
dµ̃<u> of a function u ∈ Dloc(E) is given by dµ̃<u> = |∇u|2dµ̃.

Step 2:
Let v ∈ D(EN)∩Hom(g) be given. The lifting ṽ is continuous and bounded on any compact
fundamental domain (i.e. on M0 the lifting ṽ has values in a finite tree with l edges). Thus,
it follows from Theorem 3.11, Step 1, and the fact that ∂M0 has measure zero

Eg∗(ṽ) =
l∑

i=1

∫
M0

|∇ṽi|2dµ̃ = Eg∗
Ñ

(ṽ) <∞.

Step 3:
Given a g∗-equivariant continuous map ṽ with Eg∗(ṽ) < ∞ one can deduce with similar
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arguments as used in Lemma 2.18 and Proposition 2.17 that ∇ṽi exists for all projections
ṽi, i ∈ IN. Hence Step 1 and Theorem 3.11 yield ṽ ∈ D(Eg∗

Ñ
) and

Eg∗
Ñ

(ṽ) =
l∑

i=1

∫
M0

|∇ṽi|2dµ̃ = Eg∗(ṽ) <∞.

�

Corollary 3.25 Let M be a compact admissible Riemannian polyhedron with ∂M = ∅ and
let E be the classical Dirichlet form on M̃ given by the Laplace-Beltrami operator.
For any continuous map g : M → N there exists a map u ∈ Hom(g) which is harmonic and
Hölder continuous.

Proof: The proof that our energy coincides with the nonlinear energy for maps between
Riemannian polyhedra introduced in [EF01] works out in the same way as in Theorem 3.21.
For the existence and the Hölder continuity of the energy minimizer we refer to Theorem
11.1 in [EF01]. �

Final Remarks: Our intention was to study harmonic maps from a measure space (M,m)
equipped with a local regular conservative Dirichlet form E into a tree N . For this we defined
a extension EN of the energy functional for maps with values in trees. This definition of the
nonlinear energy was motivated by the approach of Jost presented in [Jos94]. He introduced
for a map f defined on a locally compact metric space M equipped with an abstract Dirichlet
form E with values in an NPC space the following definition of the nonlinear energy

ẼN(f) := Γ− lim
t→0

1

2t

∫
M

∫
M

d2(f(x), f(y))pt(x, dy)m(dx)

where (pt)t denotes the semigroup of Markov kernels corresponding to the Dirichlet form E .
The main difference to our definition is that we replace the Γ− lim by lim sup. Our approach
is more restrictive than Jost’s approach because of the restrictions on the target space. How-
ever, for our setting we proved a decomposition of the nonlinear energy (cf. Theorem 2.7)
which yields an energy measure for our nonlinear energy. Obviously, this decomposition
depends on the structure of the target space and will not hold for more general NPC spaces.
For the special case that M is a Riemannian manifold equipped with the classical Dirichlet
form we showed that our definition of nonlinear energy coincides with energy given by Kore-
vaar/Schoen in [KS93]. In addition, we proved that our nonlinear energy is identical to the
energy for maps with values in trees defined by Picard in [Pic04].

Another issue of this work was to present conditions for the existence and uniqueness of
a solution to the nonlinear Dirichlet problem for tree-valued maps and to provide a rig-
orously numerical approach. We constructed a numerical algorithm to solve the nonlinear
Dirichlet problem for maps from a two dimensional Euclidean domain into trees and we
proved the convergence of our numerical method. For the proof of convergence we used reg-
ularity results of the solution to the nonlinear Dirichlet problem given in [KS93] and [Ser94].
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In addition, we implemented the algorithm and visualized solutions to the nonlinear Dirich-
let problem. Because of the consistence of our nonlinear energy with the energy given by
Korevaar/Schoen and Picard one can use our algorithm to construct and visualize solutions
to the nonlinear Dirichlet problem given by their nonlinear energy.

A further intention of this work was to study harmonic maps from a compact measure space
equipped with a Dirichlet form into graphs. Our approach to analyze this problem was
motivated by the works [Jos94], [Jos96] of Jost and [KS93] of Korevaar/Schoen.
They investigated a nonlinear energy for equivariant maps and analyzed the properties of
energy minimizers. Korevaar/Schoen defined a nonlinear energy for equivariant maps from
the universal cover of a Riemannian manifold into an NPC space and showed the existence
of a Lipschitz continuous energy minimizing map. Jost studied a nonlinear energy for equiv-
ariant maps from a locally compact metric space equipped with a Dirichlet form E into an
NPC space. He presented conditions on the domain and the target space for the existence
of a Hölder continuous energy minimizer.
In general, Jost’s conditions on the target space are not fulfilled if the NPC space is the
universal cover of a graph. Therefore, we presented another nonlinear energy for equivariant
maps from a measure space into in the universal cover of a graph. Our approach is motivated
by our analysis of the nonlinear energy for tree-valued maps and the fact that the universal
cover of a graph is a tree (with an infinite number of edges).
Finding conditions for the existence of Hölder or Lipschitz continuous equivariant energy
minimizing maps is still an open question. But, we proved that our energy for equivariant
maps with values in the universal cover of a graph coincides with the energy given by Kore-
vaar/Schoen resp. Eells/Fuglede if the domain space is the universal cover of a Riemannian
manifold resp. Riemannian polyhedron. Hence, for our nonlinear energy we could show
the existence of a Lipschitz resp. Hölder continuous harmonic map between a Riemannian
manifold resp. Riemannian polyhedron and a graph in a given homotopy class.
A further open question is the development of a numerical algorithm to construct a harmonic
map in a given homotopy class with values in a graph.
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A.1 Locality for Regular Dirichlet Forms

In this part of the work, we will show that a regular Dirichlet form whose corresponding
semigroup (Tt)t≥0 is given by a semigroup of Markov kernels pt(x, dy) and which is local in
the sense of Fukushima is also strongly local.
Furthermore, we discuss for regular Dirichlet forms the equivalence of the strong locality
property in the sense of Fukushima and the locality property in the sense of Bouleau/Hirsch.

Let us start with the definitions of locality and strong locality in the sense of Fukushima.

Definition A.1 A Dirichlet form (E ,D(E)) is said to be local in the sense of Fukushima
(cf. [FOT94]) if

u, v ∈ D(E), supp[u] and supp[v] are compact, v ≡ 0 on a neighbourhood of supp[u]
⇒ E(u, v) = 0.

Definition A.2 A Dirichlet form (E ,D(E)) is said to be strongly local in the sense of
Fukushima (cf. [FOT94]) if

(ST) u, v ∈ D(E), supp[u] and supp[v] are compact, v is constant on a neighbourhood of
supp[u] ⇒ E(u, v) = 0.

For a regular Dirichlet form whose corresponding semigroup (Tt)t≥0 is given by a semigroup
of Markov kernels pt(x, dy) one has the following result.

Theorem A.3 Let (E ,D(E)) be a regular local (in the sense of Fukushima) Dirichlet form on
L2(X,m) whose corresponding semigroup (Tt)t≥0 is given by a semigroup of Markov kernels
pt(x, dy). Then (E ,D(E)) is also strongly local.

Proof: Let u, v ∈ D(E) be given with supp[u] and supp[v] compact and v ≡ c on a neigh-
bourhood of supp[u]. Defining uc := u− c one has

E(u, v) = lim
t→0

1

t

∫
{v 6=0}

[u(x)− ptu(x)] v(x)m(dx)

= lim
t→0

1

t

∫
{v 6=0}

[uc(x)− ptuc(x)] v(x)m(dx)

= − lim
t→0

1

t

∫
{v 6=0}

ptuc(x) · v(x)m(dx)

= 0

95
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because of dist(supp[uc], supp[v]) > 0 and because of the locality of pt. �

Lemma A.4 Let (E ,D(E)) be regular Dirichlet form on L2(X,m). Given a compact set
K ⊂ X and a relatively compact set V ⊂ X with K ⊂ V . Then there exists a function
v ∈ D(E) ∩ C0(X) with v ≡ 1 on K and supp[v] ⊂ V .

Proof: There exists a function u ∈ C0(X) with u ≡ 1 on K and supp[u] ⊂ V . Since E is
regular there exists a sequence of functions un ∈ D(E) ∩ C0(X) with supp[un] ⊂ {x ∈ X :
u(x) 6= 0} ⊂ V which converges to u uniformly (cf. Lemma 1.4.2 in [FOT94]). Thus, there
exists n0 ∈ IN such that |un0(x)−1| < 1

2
∀x ∈ K. Defining v := 2un0∧1 yields the claim. �

With Lemma A.4 we obtain the following theorem.

Theorem A.5 Let (E , (D(E)) by a regular strongly local Dirichlet form. Given two functions
u, v ∈ D(E) with v being constant on a neighbourhood of supp[u] then one has E(u, v) = 0.

Proof:
Step I: Let u, v ∈ D(E) with support of v compact and u ≡ c on a neighbourhood N of
supp[v] be given. (The function u doesn’t need to have compact support.) Then there exists
a relatively compact set U with supp[u] ⊂ U ⊂ N . Since the Dirichlet form E is regular
there is a function w ∈ D(E) with compact support, with supp[w] ⊂ supp[u] and with w ≡ c
on U (cf. Lemma A.4). It follows

E(u, v) = E(u− w, v) + E(w, v).

Furthermore, one has by the definition of strongly local that E(w, v) = 0, because of the
compact supports of w and v. In addition, it follows from Proposition 1.2 in [MR92] that
E(u− w, v) = 0, because of supp[u− w]∩ supp[v] = ∅. Thus E(u, v) = 0.

Step II: Now let u, v ∈ D(E) with u ≡ c on a neighbourhood N of supp[v] be given. It
follows from the proof of Proposition 1.2 in [MR92] that there exists a sequence vn ∈ D(E)
with vn → v in D(E), supp[vn] compact and supp[vn] ⊂ supp[v]. Hence, for all n one has
u ≡ 1 on a neighbourhood of supp[vn] and it follows by Step I

E(u, vn) = 0 ∀n.

Thus, it holds E(u, v) = 0, because of vn → v in D(E). �

Remark: Theorem A.5 yields that for regular Dirichlet forms one can replace in defini-
tions A.1 and A.2 compact support just by support.

Definition A.6 A Dirichlet form (E ,D(E)) is said to be local in the sense of Bouleau/Hirsch
(cf. [BH91]) if it satisfies:

(L0) ∀u ∈ D(E) ∀F,G ∈ C∞
0 (IR)

supp[F ] ∩ supp[G] = ∅ =⇒ E(F0(u), G0(u)) = 0

with F0(x) := F (x)− F (0).
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Theorem A.7 Let (E ,D(E)) be a regular Dirichlet form. Then the following properties are
equivalent:

(ST) E is strongly local in the sense of Fukushima.

(L0) E is local in the sense of Bouleau/Hirsch.

(L1) ∀u, v ∈ D(E) ∀a ∈ IR

(v + a)u = 0 =⇒ E(u, v) = 0.

For the proof of Theorem A.7 we need the following Proposition.

Proposition A.8 Let F be a normal contraction from IR into IR. Then the map

u ∈ D(E) −→ F ◦ u ∈ D(E) (A.1)

is continuous (for the Hilbert structure of D(E)).

For the proof see [Anc76].

In the sequel, we will denote the set of normal contractions of IR into IR by T 0
1 .

Proof of Theorem A.7:

(ST ) ⇒ (L0):
Let (E ,D(E)) be a regular strongly local Dirichlet form and let F,G ∈ C∞

0 (IR) with supp[F ]∩
supp[G] = ∅ and u ∈ D(E) ∩ C0(X) be given. We may assume that G(0) = 0. One has
that f := F0(u) is constant on supp(g) with g := G0(u). Defining for ε > 0 the function
gε := g− ((−ε)∨ g∧ ε) it holds gε ∈ D(E) and f is constant on a neighbourhood of supp(gε),
because of the continuity of g. Applying Theorem A.5 one obtains E(f, gε) = 0 and ε → 0
yields E(f, g) = 0.
Now, let u ∈ D(E) be given. Since E is regular, there exists a sequence of functions
un ∈ D(E) ∩ C0(X) with un → u in D(E). From Proposition A.8 it follows F0(un) → F0(u)
and G0(un) → G0(u) in D(E), because the set of Lipschitz functions from IR into IR is
homothetic to T 0

1 and C∞
0 (IR) is a subset of the set of Lipschitz functions from IR into IR.

Defining fn := F0(un), f := F0(u), gn := G0(un) and g := G0(u) one has

E(f, g) = E(f, g − gn) + E(f − fn, gn) + E(fn, gn).

Since E1(gn) is bounded and fn → f, gn → g in D(E) it holds limn→∞ E(f, g − gn) = 0
and limn→∞ E(gn, f − fn) = 0. In addition, one has E(fn, gn) = 0 ∀n. Hence, we obtain
E(f, g) = 0.
(L0) ⇒ (L1):
This follows from Proposition 5.1.3 in [BH91].
(L1) ⇒ (ST ):
Let u, v ∈ D(E) with supp[u] and supp[v] compact and v ≡ a ∈ IR on a neighbourhood of
supp[u] be given. It holds (v − a)u = 0 and thus E(u, v) = 0. �
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